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Abstract: The X-ray absorption fine structure (XAFS) is often used effectively to determine many structural parameters and 
dynamic properties of materials, so calculating the temperature-dependent XAFS Debye-Waller (DW) factor of metal crystals 
will be a necessary addition to the advanced material technique. In this work, the thermodynamic parameters are derived from 

the influence of the absorbing and backscattering atoms of all their nearest neighbors in the crystal lattice with thermal 
vibrations. The anharmonic XAFS DW factor of metal crystals has been obtained in explicit forms using the anharmonic 
correlated Debye (ACD) model. This calculation model is developed from the correlated Debye model using the anharmonic-
effective potential and many-body perturbation approach. The numerical results for the crystalline cadmium are in good 
agreement with those obtained by the other theoretical model and experimental data at several temperatures. The analytical 
results show that the ACD model is useful and efficient in calculating the anharmonic XAFS DW factor of metal crystals. This 
model can be applied to calculate the anharmonic XAFS DW factor for other metals from above absolute zero temperature to 
just before the melting point. 
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1. Introduction 

In recent years, the X-ray absorption fine structure 
(XAFS) is widely used to determine many dynamic 
properties and structural parameters of materials [1-4], and 
it has been developed into a powerful technique. However, 
the position of atoms is not stationary, and their interatomic 
always changes due to thermal vibrations [5, 6]. These 
thermal vibrations are sensitive to XAFS oscillation, so 
they cause the anharmonic effects and thermal disorders on 
crystal vibrations and will smear out the XAFS oscillations 
[6, 7]. In order to analyze the anharmonic XAFS signals 
caused by these thermal disorders, Bunker proposed a 
cumulant expansion approach to represent the anharmonic 
XAFS oscillation via the moments of the radial distribution 
(RD) function [8, 9]. In this approach, the anharmonic 
XAFS oscillation function is often written by means of 
XAFS cumulants that contain the second XAFS cumulant 

( )2 Tσ corresponding to the parallel mean-square relative 

displacement (MSRD) and describing anharmonic XAFS 
Debye-Waller (DW) factor [8, 10]. This factor is sensitive 
to short-range correlations of atomic fluctuations and can be 
used to examine the anharmonicity effects [11, 12]. It is an 
important factor in anharmonic XAFS analysis because it 
can characterize the anharmonic XAFS thermodynamic 

properties and describe the anharmonic XAFS amplitude 
reduction [13, 14]. 

Nowadays, metals and advances in manufacturing 
processes have brought us the industrial revolutions, so it 
becomes irreplaceable materials in the growth of human 
civilization. They are used extensively in manufacturing 
machines for automobiles, farming or agriculture, and 
industries, including rockets, airplanes, railways, road 
vehicles, etc. [15-18]. The XAFS DW factor of metal crystals 
has also been investigated using the general anharmonic 
correlated Einstein (GACE) [19] and the classical anharmonic 
correlated Einstein (CACE) [20] models and experiments 
[19, 20]. Still, this model only uses a unique correlated 
Einstein frequency to describe the atomic vibrations, so it 
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cannot mimic the acoustic phonon branches presencing in 
lattice crystals. 

Recently, an anharmonic correlated Debye (ACD) model 
[21] can treat even the acoustic phonons branches presencing 
in lattice crystals. It has also been efficiently used to 
investigate the anharmonic XAFS cumulants of many 
materials [22-24]. Still, it has not yet been used to analyze 
the anharmonic XAFS DW factor of metal crystals. 
Therefore, calculating the temperature-dependent XAFS DW 
factor of metal crystals based on extending the ACD model 
will be a necessary addition to experimental data analysis in 
the advanced material technique. 

2. Basic Formulae of XAFS DW Factor 

The K-edge EXAFS function in the framework of plane-
wave approximation for one scattering path, including a non-
Gaussian disorder, can be expressed via a canonical average 
by [8-11] 
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where r depends on the temperature T and is the 
instantaneous distance between the backscattering and 
absorbing atoms, λ  is the electron mean free path, the 

angular bracket  is the thermal average, ( )kδ  is the net 

phase shift, N  is the coordination number, 2
0 ( )S k  is the 

square of the many-body overlap term, ( )F k  is the atomic 

backscattering amplitude, and k  is the photoelectron 
wavenumber. 

Usually, the analysis of the temperature-dependent XAFS 
spectra using the XAFS cumulants expressed in terms of the 
power moments of the RD function [8, 9], so the second 
XAFS cumulant can be given by [25, 26] 

( ) ( )2 22 2
0,T r r x x x r rσ = − = − = − ,     (2) 

where r0 is the balance distance between the backscattering 
and absorbing atoms and x  is the deviation distance between 
these atoms. 

In the anharmonic XAFS theory, the XAFS DW factor is 
usually defined via an exponential function of the second 
XAFS cumulant as follows [27, 28]: 

( ) ( ){ }2 2W , exp 2T k k Tσ= − ,                     (3) 

To determine the thermodynamic parameters of a system, 
it is necessary to specify the force constants and anharmonic 
effective (AE) potential of this system [19, 25]. In the 
relative vibrations of absorbing (1) and backscattering (2) 
atoms, taking into account only the nearest-neighbor 
interactions and including the effect of correlation, the AE 
potential [29, 30] is given using the pair interaction (PI) 
potential in the form: 

( )12
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M
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= ≠

= + =∑ ∑       (4) 

where with masses M1 and M2, respectively, iM  is the mass 

of the ith atom, the sum i is the over absorber ( 1i = ) and 
backscatter ( 2i = ), the sum j is over the nearest neighbors, 

( )1 2 1 2/M M M Mµ = +  is the reduced mass of the absorber 

and backscatter, R̂  is a unit vector, x is the deviation distance 
between the absorber and backscatter, D is the dissociation 
energy, α  is the width of the potential, and ( )xϕ is the PI 

potential of the metals and is usually determined [31, 32] 
from the Morse potential as 

( )2( ) e 2x xx D eα αϕ − −= − ,                        (5) 

For the monatomic crystals, all atoms have iM  equals m, 

so iε  equals ½. Calculating the AE potential of this 

monatomic system from Eqs. (4)-(5) and ignoring the 
constant contribution, the result is obtained in the expressed 
form up to the fourth-order as 

2 3 4
3 4

1
,

2
eff effV k x k x k x− +≃                   (6) 

where effk  is the effective force constant, 3k  is the local 
force constant giving asymmetry of potential due to the 
inclusion of anharmonicity, and these force constants are 
considered in the temperature-independent [25, 26]. 

The general expression of the second EXAFS cumulants in 
the ACD model was calculated in the temperature dependence 
by Hung et al. [21]. Still, these obtained expressions are not 
optimized yet because they still depend on the lattice 
constant a. In this investigation, the previous ACD model has 
been extended to calculate the temperature-dependent XAFS 
DW factor of metal crystals. 

The ACD model is perfected based on the correlated 
Debye model [33] using the AE potential [29] and many-
body perturbation approach [21] and is derived from the 
dualism of an elementary particle in quantum theory [34]. In 
this model, a system consisting of many phonons can treat 
and quantize the atomic vibrations, in which a wave having a 
frequency ( )qω corresponds to each atomic vibration and is 
described via the dispersion relation [22-24]: 
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where q is the phonon wavenumber in the first Brillouin (FB) 
zone, a is the lattice constant, Eω  is the correlated Einstein 

frequency, and Dω  is the correlated Debye frequency and 

characterizes the atomic thermal vibrations. 
After using the general expression of the second EXAFS 

cumulants and converting from variable q  to variable p  in 
the formula / 2p qa= , the temperature-dependent second 
XAFS cumulants of metal crystals are obtained in the form as 
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Substituting this expression into the Eq. (3) to calculate the 
temperature-dependent XAFS DW factor of metal crystals, 
which obtains the following result: 
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Using an approximation ( ){ }exp 0,Bp k Tω− ≈ℏ the 

temperature-dependent XAFS DW factor of metal crystals at 
the high-temperature (LT) limit ( 0T → ) can be calculated 
from Eq. (9), and the obtained result is 
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Using an approximation ( ){ } ( )exp 1 ,B Bp k T p k Tω ω− ≈ −ℏ ℏ  

the temperature-dependent XAFS DW factor of metal 
crystals in the high-temperature (HT) limit (T → ∞) can be 
calculated from Eq. (9), and the obtained result is 
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Thus, an extended ACD model has been perfected to 
efficiently calculate the temperature dependence of the TE 
coefficient of metal crystals. The obtained expressions using 
this model can satisfy all their fundamental properties in the 
temperature-dependent. These expressions have also been 
optimized to not depend on the lattice constant a as in the 
previous ACD model [21, 23]. 

3. Results and Discussions 

To discuss the efficiency of the present theoretical model in 
calculating the anharmonic XAFS DW factor of metals, the 
obtained expressions using the ACD model from Sec. 2 are 
used to calculate the numerical results for crystalline cadmium 

(Cd). This metal has a hexagonal close-packed (HCP) structure 
[16], as seen in Figure 1. For monatomic crystals like Cd, each 
atom is similar in mass im m= and is bonded to twelve other 

surrounding atoms in the first shell [35]. 
In these numerical calculations, the atomic mass 

112.410m = u [36], Morse potential parameters α = 1.907 

Å-1, D = 0.168 eV, and 0 423.0r = Å [19], and the lattice 

constants a =  2.98 Å, c =  5.62 Å, and e 1.89= [36] are used 
to calculate the local force constants, the AE potential, the 
correlated Debye frequency, and the anharmonic second 

EXAFS cumulant and XAFS DW factor. The following is the 
presentation of these numerical results: 

 

Figure 1. The crystal model of Cd with an HCP structure. 

Using Eqs. (4)-(7) in the ACD model, it obtains the local 

force constants 2.975effk ≃  eVÅ-2, 3 1.429k ≃  eVÅ-3, and 

4 1.521k ≃  eVÅ-4 and the correlated Debye frequency 
133.186 10Dω ×≃ Hz. It can be seen that these obtained 

values fit well with those obtained using the GACE [19] and 
CACE [20] models and experimental data [19] in the 
previous works. 

 

Figure 2. The position-dependent AE potential of Cd obtained from the ACD 

(solid red line), GACE [19] (dashed-dotted green line), and CACE [20] 

(dotted magenta line) models and experimental data [20] (full green 

diamonds). 

The position dependence of the AE potential of Cd is 
calculated from Eq. (6) in the position range from -0.4 to 0.4 
Å and is represented in Figure 3. Herein, the obtained result 
in this work is calculated from the above force constants, and 
those obtained using experimental data are derived from the 
measured Morse potential parameters 1.905α = Å-1, 

0.165D = eV, and 0 3.055r = Å [19]. Meanwhile, the 

obtained result using the GACE model [19] does not take 
into account the anharmonic force constant k4 in this 
equation, and those obtained using the CACE model [20] 
does not consider the structural distortion of Cd in this 
calculation. It can be seen that the obtained results using the 
ACD model fit with those obtained using the ACE [19] and 
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CACE [20] models and experimental data [19]. Moreover, in 
comparison with the obtained result using the experimental 
data [19], the obtained results using the ACD model fit better 
than those obtained using other models [19, 20], as seen in 
Figure 2. 

 
Figure 3. The wavenumber-dependent frequency of Cd within the ACD 

model. 

The wavenumber dependence of the frequency of Cd in 
the FB zone is calculated from Eq. (7) and is represented in 
Figure 3. It can be shown that the obtained frequency using 
the ACD is a symmetric function of a linear chain of p, and 
its maximum value is Dω  at the bounds of the FB zone with 

/ 2p π= ± . This result is similar to the result calculated for 

other crystals in the previous work [22, 24]. 

 

Figure 4. Temperature-dependent second EXAFS cumulant of Cd obtained 

using the ACD (solid red line), CACE [20] (dotted magenta line), and GACE 

[19] (dashed-dotted green line) models and experiment [20] (full green 

diamonds). 

The second XAFS cumulant 2 ( )Tσ  of Cd in the 

temperature-dependence is shown in Figure 4. Herein, the 
obtained result in this work is calculated from Eq. (8), and 
the experimental values at 77 K and 300 K [19] are derived 
from measured EXAFS data analysis. It can be seen that the 
obtained result using the ACD model agrees well with those 
obtained from the GACE [19] and CACE (only in the high-
temperature region) [20] models and experiment [19], in 

which the obtained result in this work is in best agreement 
with the experimental values. For example, the obtained 
results using the ACD model, GACE model [19], and CACE 
model [20], and experimental data [19] at T = 77 K are 

2 33.07 10σ −×≃ Å2, 2 33.04 10σ −×≃ Å2, 2 32.18 10σ −×≃ Å2, and
2 33.10 10σ −×≃ Å2, respectively, while the corresponding 

results at T = 300 K are 2 38.96 10σ −×≃ Å2, 2 38.73 10σ −×≃ Å2, 
2 38.49 10σ −×≃ Å2, and 2 38.91 10σ −×≃ Å2, respectively. 

Also, in the LT region, the obtained result using the GACE 
model [19] is slightly greater than the obtained result using 
the ACD model because the ACE model use only one 
effective frequency to describe the atomic thermal vibrations. 
Meanwhile, the CACE model [20] approaches zero as the 
temperature approaches the zero-point (ZP) because it cannot 
calculate the ZP energy and quantum effects using classical 
statistical theory, as seen in Figure 4. 

 

Figure 5. Influence of temperature change on wavenumber-dependent XAFS 

DW factor of Cd obtained using the ACD (solid red lines), CACE [20] 

(dotted magenta lines), and GACE [19] (dashed-dotted green lines) models 

and experimental XAFS cumulant [20] (full green diamonds). 

The wavenumber dependence of the XAFS DW factor of 
Cd at 77 K and 300 K and in a range from 0 to 20 Å is 
represented in Figure 5. The obtained results are calculated 
from Eq. (9) with the temperature-dependent XAFS cumulant 
obtained using the ACD, GACE [19], and CACE [20] 
models and experiments. It can be seen that the obtained 
results using the ACD model have a reasonable 
characterization with those obtained using the GACE [19] 
and CACE [20] models and fit best with those obtained using 
experimental XAFS cumulant [19] in comparison with other 
models. Also, the small difference in the obtained results 
using the GACE [19] is because this model does not account 
for the effect of structural distortion on the second XAFS 

cumulant. Meanwhile, the nonconformity of obtained results 
using the CACE model at 77 K [20] is because this model 
does not work well in the LT region. For example, the 
obtained results using the ACD model, GACE model [19], 
CACE model [20], and experimental XAFS cumulant [19] at 
T = 77 K with k = 10 Å-1 and 20 Å-1 are W ≃ 0.5412 and 
0.0858, W ≃ 0.5599 and 0.0983, W ≃ 0.6466 and 0.1748, 
and W ≃ 0.5379 and 0.0837, respectively, while the 
corresponding results at T = 300 K are W ≃ 0.1667 and 
0.0007, W ≃ 0.1853 and 0.0012, W ≃ 0.2007 and 0.0016, 



 Advances in Applied Sciences 2022; 7(2): 21-26 25 
 

and W ≃ 0.1683 and 0.008, respectively. Moreover, It can be 
seen that the values of the XAFS DW factor decrease with 
fast-increasing wavenumber k and decrease with increasing 
temperature T. It is because the XAFS DW factor is an 
inverse function of the wavenumber k and second XAFS 

cumulant ( ) ( )2
Tσ , in which this cumulant increases with 

increasing temperature T, as seen in Eq. (3) and Figure 5. 

4. Conclusions 

In this investigation, an efficient model has been expanded 
to calculate the anharmonic XAFS DW factor of metals. The 
calculated result of the XAFS DW factor using the present 
ACD model decreases with increasing temperature T and 
satisfies all of their fundamental properties. It means that the 
XAFS amplitude decreases more strongly at higher 
temperatures. This result can also describe the influence of 
the anharmonic effects at high temperatures and quantum 
effects at low temperatures on the XAFS DW factor. 

The good agreement of the numerical results of Cd in this 
work with those obtained using the GACE model and CACE 
models and experimental data at various temperatures shows 
the effectiveness of the present model in investigating the 
anharmonic XAFS DW factor. This model can be applied to 
calculate the anharmonic XAFS DW factor for other metals 
from above absolute zero temperature to just before the 
melting point. 
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