
 

Applied and Computational Mathematics 
2021; 10(4): 91-99 

http://www.sciencepublishinggroup.com/j/acm 

doi: 10.11648/j.acm.20211004.12 

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

The Global Dynamics of HIV Latency Model Including  
Cell-to-Cell Viral Transmission 

Wajahat Ali
*
, Zhipeng Qiu 

School of Science, Nanjing University of Science and Technology, Nanjing, China 

Email address: 

 
*Corresponding author 

To cite this article: 
Wajahat Ali, Zhipeng Qiu. The Global Dynamics of HIV Latency Model Including Cell-to-Cell Viral Transmission. Applied and 

Computational Mathematics. Vol. 10, No. 4, 2021, pp. 91-99. doi: 10.11648/j.acm.20211004.12 

Received: May 29, 2021; Accepted: June 21, 2021; Published: July 9, 2021 

 

Abstract: HIV spreads by cell-to-cell transfer and the release of cell-free particles. A slightly more effective method of 

retroviral transmission is the direct cell-to-cell transfer of HIV, according to recent reports. Intracellular interaction between 

unhealthy and healthy cells, in combination with cytokine discharged by the cells included, may affect the susceptibility of a 

target resting CD4+T cell to HIV infection and the formation of latent infection. We suggest a class of HIV latency 

mathematical model, integrating both cell-free virus transmission and direct cell-to-cell diffusion to improve the understanding 

of the dynamics of the latent reservoirs. We incorporate four components in our model: the uninfected T cells, the latently 

infected T cells, the active-infected T cells and the HIV viruses. We examine the latency model by introducing the basic 

reproduction number. We first establish the non-negativity and boundedness of the solutions of the system, and then we 

investigate the global stability of the steady states. The diseased-free equilibrium is globally stable when the basic reproduction 

number is less than 1 and if the basic reproduction number is greater than 1, the diseased equilibrium exists and is globally 

stable. Numerical simulations are executed to interpret the theoretical outcomes and evaluate the relative contribution of 

latency fractions in the virus production and the HIV latent reservoir by providing estimates. 
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1. Introduction 

The manner in which a pathogen evolves inside a host has 

significant implications for the effective establishment of an 

infection and its maintenance. Viruses have developed 

distinct mechanisms to attack the target cells so as for 

replication and infection dissemination. 

In general, two main ways are identified for viral 

transmission, i.e. (i) virus cell-free (CF) transmission and (ii) 

virus cell-cell (CC) transmission [3]. Although CF viral 

particle diffusion allows distant cell infection whereas CC 

viral transmission relates to local diffusion, ignores complex 

operations of our body and is considered to have the ability 

to guard the viral particles from neutralization of antibodies, 

antiviral constraint aspects and few anti-retroviral remedies 

[4, 5]. Therefore, the CC transmission way is thought to be 

more responsible in spreading infection [6, 7]. 

In addition, virally induced bonds, or virological synapses 

are formed by cell contacts, among CD4+T cells, 

concentrating immense amount of particles at the place of 

intracellular contact [8–10]. The target cells receive a high 

MOI due to this process [2, 11]. It is still necessary to 

determine in detail the importance and input of every 

transmission modes to viral spread. However, a decent 

quantification of the transmission dynamics is required to 

address it. 

Computational models formulated to observe the infection 

kinetics of HIV, containing both these transmission ways [1, 

14–18, 31–41, 43, 46]. The relative contribution to the spread 

of HIV by the two transmission modes is studied by 

Komarova et al. [13] and Iwami et al. [12]. Lai [20, 21] 

derived models including both these ways of viral diffusion. 

H. Pourbashash et al. [17] analyzed a multi-strain model to 

show a competitive exclusion principle. 

The highly suggestive obstacle for the HIV-1 infection 

wipeout is the presence of latent infected pools which subsist 

regardless of long-term viral multiplication restraint by 

HAART [22–24]. Most of infected latent cells are composed 
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of long living resting CD4+T cells and are managed by 

homeostatic proliferation [25–27]. These latent cells can 

produce virus infection by connecting with relevant antigens. 

Motivated by the work of Alshorman et al. [28] and Lai et 

al. [20, 21], in this paper, we derive an HIV latency model 

which includes CF and CC. Firstly, we prove the non-

negativity and boundedness of solutions of our model. Then, 

we perform the derivation of basic reproduction number ℛ� 

and equilibria. We investigate the global stability of two 

steady states. In the end, numerical simulations are 

performed to show the complexity of dynamics of model. 

2. The Model 

We developed a following mathematical model. 

��(�)�� = 	 − ��� − �
�� − ����∗, 
��(�)�� = �
�
�� + ������∗ − ��� − ��, 

��∗(�)�� = (1 − �
)�
�� + (1 − ��)����∗ − ��∗ + ��, 
��(�)
�� = ���∗ − ��,                          (1) 

where the concentration of latent infected cells denoted by L. 

The concentration of uninfected cells, infected cells and free 

viruses is represented by T, �∗  and V, respectively. The 

suspected cells become infected due to virus-to-cell and cell-

associated infections at the rates 	�
�	�	� �	����∗ , 

respectively, where �
  and ��  denotes the incidence rates. 

The fractions (1 − �
, 1 − ��	� �	�
, ��)  represents the 

possibilities that upon infection, a suspected cell turns out to 

be either productively infected or latently infected, 

respectively. The death rate of latently infected cells and 

productively infected cells is denoted by �� and �. Parameter � represents the rate at which latently infected cells become 

productively infected cells. We did not add the proliferation 

of latently infected cells in this model but can do so as in 

[42]. 

 

Figure 1. Model (1) illustrative representation. Variables �, �, �∗	� �	� represent infection-free CD4+ T cells, infected CD4+ T latent cells, productively 
unhealthy CD4+ T cells and CF, respectively. 

2.1. Non-negativity and Boundedness 

Let us define 

Ω = "(�, �, �∗, �) ∈ ℝ%�& : 0 ≤ �, �, �∗ ≤ *
, 0 ≤ � ≤ *�+. 
Lemma 2.1. The compact set Ω is positively invariant for system (1). 

Table 1. System framework. 

Parameter Description Rate Units Fountains �
  T-cells Infection proportion for CF 10-
�~10-/  �-
01  [48] ��  T-cells Infection proportion for CC 10-/~10-2  �-
01  [17] 	  T-cells origination proportion 10&  �-
01-
  [47] ��  T-cells mortality proportion 0.01  �-
  [19] �  T-cells (latent) stimulation proportion 0.01  �-
  [42] ��  Infected T-cells (latent) mortality proportion 0.004  �-
  [19] �  T-cells (infected) mortality proportion 1  �-
  [36] �
  Latency proportion for CF 0.001  �4	5 6�  [49] ��  Latency proportion for CC 0.001  �4	5 6�  [49] �  Viral explode proportion 100~2000  �-
�811-
  [42, 47] �  Virions mortality proportion 23  �-
  [36] 
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Proof. 

We observe that 

�: |(�<�) = 	 > 0, 
�: |(�<�) = (�
�
� + �����∗)� ≥ 0, ∀	�, �∗, � ≥ 0, 
�∗: |(�∗<�) = (1 − �
)�
�� + ��, ∀	�, �, � ≥ 0, 

�: |(�<�) = ���∗, ∀	�∗ ≥ 0. 
This confirms that @�(�), �(�), �∗(�), �(�)A ∈ ℝ%�&  with @�(0), �(0), �∗(0), �(0)A ∈ ℝ%�& . Let B = � + � + �∗ + 


�C�. Then 

B: = 	 − ��� − �
�� − ����∗ + �
�
�� + ������∗ − ��� − �� 

+(1 − �
)�
�� + (1 − ��)����∗ − ��∗ + �� + 12� (���∗ − ��) 
= 	 − ��� − ��� − ��∗ − ��2� 

≤ 	 − D E� + � + �∗ − 12� �F = 	 − DB, 
where D = min" �� , �� , �, �+. Hence 0 ≤ B(�) ≤ *
 for all � ≥ 0 if B(0) ≤ *
, where *
 = J

K. Consequently, 0 ≤ �, �, �∗ ≤
*
	� �	0 ≤ � ≤ *�	∀	� ≥ 0 if �(0) + �(0) + �∗(0) + 


�C�(0) ≤ *
, where *� = �CJ
K . This establishes the boundedness of �(�), �(�), �∗(�)	� �	�(�). 

2.2. Reproduction Numbers and Equilibria 

The equilibria of model (1) should satisfy the following equalities. 

	 − ��� − �
�� − ����∗ = 0, 
�
�
�� + ������∗ − ��� − �� = 0, 

(1 − �
)�
�� + (1 − ��)����∗ − ��∗ + �� = 0, 
���∗ − �� = 0. 

Straightforward calculation shows that our system (1) has two following steady states. 

i. the healthy equilibrium: L� = (��, 0, 0, 0),	where	�� = J
�M. 

ii. the chronic equilibrium: LN = (	�N, �N, �N ∗, �N). 
Inspired by the method in Diekmann et al. [29] and van den Driessche and Watmough [30], let us introduce the basic 

reproduction number for our system (1). 

ℛ� = ��
	��� O ��
� + �� + (1 − �
)P + ��	��� O
���� + �� + (1 − ��)P, 

where 
CQRJS�M  and 

QTJU�M  are the basic reproduction numbers 

through virus-to-cell infection and cell-associated infection, 

respectively. We also observe that ℛ�  determined here is 

similar to that attained from the threshold condition ensuring 

the existence of the endemic steady state. 

When ℛ� > 1 then 

�N = J
�MℛV, 

�N = J(CUWRQRXSWTQT)(ℛV-
)ℛV(YX�Z)(CUQRXSQT) , 

�N∗ = S�M(ℛV-
)(CUQRXSQT), 

�N = CU�M(ℛV-
)(CUQRXSQT) , 
Theorem 2.2. We have ℛ� from our system (1), then 

i. System (1) has just non-disease equilibrium L�  if ℛ� 	< 	1: 

ii. System (1) has two equilibria L� and LN if ℛ� 	> 	1: 

Its proof can be evaluated by simple arithmetic and we 

skipped it here. 
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3. Global Stability Analysis of System 

with \] 	= 	\^ 

We formulate Lyapunov functionals to examine the global 

kinetics of system’s (1) steady states in this section. We 

assume �
 = ��  while the case of �
 ≠ ��  remains to be 

further studied. 

Theorem 3.1. If ℛ� < 1, then the healthy equilibrium L� is 

globally asymptotically stable, while �
 = ��. 

Proof. Initially, we claim that �(�) ≤ ��  for any � ≥ 0 . 

Otherwise there exists �
 > 0  such that �(�
) > ��  and 

��
�� (�
) > 0. 

��
�� (�
) = 	 − ���(�
) − �
�(�
)�(�
) − ���(�
)�∗(�
) ≤ 0, (2) 

which contradicts with 
��
�� (�
) > 0. Now, we construct the 

Lyapunov function 

`(�) = �� + (�� + �)�∗ + QR(YX�Z(
-WR))�V�S .      (3) 

Now compute the derivation of `(�) along the system’s (1) 

solution, then 

��̀� = �(�
�
�� + ������∗ − ��� − ��) + (�� + �)((1 − �
)�
�� 

+(1 − ��)����∗ − ��∗ + ��)+
QR(YX�Z(
-WR))�VS  (���∗ − ��) 

= @� + ��(1 − �
)A(�
�� + ����∗) − (� + ��)��∗ 
+ QR(YX�Z(
-WR))�VS  (���∗ − ��) 

= @� + ��(1 − �
)A(�
�� + ����∗)(� − ��) + (�� + �)��∗(ℛ� − 1).                                        (4) 

Hence, 
�a
�� ≤ 0  when ℛ� < 1 . Moreover 

�a
�� = 0  iff �	 = 	��; � = 	0;	�∗ = 	0	 and 	� = 0.  Largest consistent set within 

(�; 	�; 	�∗; 	�	):	�a�� 	= 	0 be the singleton set L� . By using LaSalle's invariance principle, we attain that the infection-free 

equilibrium L� is globally asymptotically stable [44]. 

Theorem 3.2. If ℛ� 	> 	1, then the acute-infection equilibrium LN is globally asymptotically stable, while �
 = ��. 

Proof. Let us formulate Lyapunov functional 

c(�) = @� + ��(1 − �
)A d�(�) − �N − �N1 ��Ne + � d�(�) − �N − �N1 ��Ne 
+(� + ��) f�∗(�) − �N ∗ − �N ∗1 �∗

�N∗g + QR(YX�Z(
-WR))�NS  f�(�) − �N − �N1 �
�hg.                            (5) 

Then the derivative of Y along system’s (1) solution is 

�c�� = @� + ��(1 − �
)A i1 − �N�j (	 − ��� − �
�� − ����∗) + � i1 − �N�j (�
�
�� + ������∗ 

−��� − ��) 	+ (� + ��) k1 − �N∗
�∗l ((1 − �
)�
�� + (1 − ��)����∗ − ��∗ + ��)+ 

QR@YX�Z(
-WR)A�NS (���∗ − ��) k1 − �h
�l 

= @� + ��(1 − �
)A i1 − �N�j (	 − ��� − 	 + ���) − �
@� + ��(1 − �
)A�� 

−	��@� + ��(1 − �
)A��∗ + �
@� + ��(1 − �
)A�N�N + ��@� + ��(1 − �
)A�N�N∗ 
−�
@�	 + ��(1 − �
)A �N�N�� −��@� + ��(1 − �
)A �N��N ∗� + �
@� + ��(1 − �
)A��N  

+��(� + ��(1 − �
))�N�∗ + �
�
��� + ���
���∗ − �(� + ��)� + �(� + ��)�N 

−�
�
� ���N� − ���
� ��∗�N� +�
(� + ��)(1 − �
)��+��(� + ��)(1 − �
)��∗ 

+�(� + ��)� − �(� + ��)�∗ + �(� + ��)�N∗ − �
(� + ��)(1 − �
) ���N ∗�∗ − ��(� + ��) 
(1 − �
)��N∗ − �(� + ��) ��N∗�∗ + �
��@� + ��(1 − �
)A�∗�N� − �
@� + ��(1 − �
)A��N 
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+�
(� + ��(1 − �
))�N�N − �
��(� + ��(1 − �
)�N�∗�N��  

= −@� + ��(1 − �
)A��(� − �N)�+�
(� + ��)(1 − �
)�N�N+��(� + ��)(1 − �
)�N�N ∗ + 

�
�
��N�N + ���
��N�N ∗ − �
(� + ��)(1 − �
) �N�N�� − �
�
� �N�N�� − ��(� + ��) 
(1 − �
) �N��N∗� − ���
� �N��N∗� − �
(� + ��)(1 − �
)�� − �
�
��� − ��(� + ��) 
(1 − �
)� − ���
���∗+�
(� + ����N + ��@� + ��(1 − �
)A�N�∗ + �
�
��� 

+���
���∗ − �(� + ��)� − �
�
� ���N� − ���
� ��∗�N� + �
�
��N�N + ���
��N�N ∗ 
+�
(� + ��)(1 − �
)��+��(� + ��)(1 − �
)��∗ + �(� + ��)� − �(� + ��)�∗ 

−�
(� + ��)(1 − �
) ���N∗�∗ − ��(� + ��)(1 − �
)��N∗+�
(� + ��)(1 − �
)�N�N  

−�
�
� �N�N��N ∗�∗�N − ���
� �N��N∗
�

�∗�N + �
�
��N�N + ���
��N�N∗ + ��(� + ��)(1 − �
)�N�N∗ 
+�(� + ��)�∗ − �
@� + ��(1 − �
)A �N��N�∗

�N∗� + �
(� + ��)(1 − �
)�N�N + �
��
�N�N − �
@� + ��(1 − �
)A�N�∗, 
where we used 

QRCU@YX�Z(
-WR)A�∗�NS  = �(� + ��) − ��@� + ��)(1 − �
)A�N�∗,                                     (6) 

which we get by combining the following identities 

��N∗ + ���N = �
�N�N − ���N�N∗, 
�N = �
��N∗� + ��(1 − �
), 

�N ∗ = �
@� + ��(1 − �
)A�N�N�(� + ��) − ��@� + ��(1 − �
)A�N, 
���N ∗ = ��N.                                                                                  (7) 

Thus equation becomes 

�c�� = −@� + ��(1 − �
)A��(� − �N)�+�
@� + ��)(1 − �
)A�N�N i3 − �N� − ���N∗
�N�N�∗ − �N�∗

��N ∗	j 

+�
��
 �h
�N k4 − �N

� − ���N
�h�N� − ��N∗

�N�∗ − �h�∗
��N∗l+��@� + ��)(1 − �
)A�N∗�N k2 − �N

� − �
�Nl + ����
�N ∗�N(3 − �N

� − ��∗�N
�N∗�N� − ��N∗

�N�∗).     (8) 

The arithmetic-geometric mean inequality 

(
m∑ op ≥mp<
 q∏ opmp<
s )  implies 
�t
��u(v) ≤ 0  with equality if 

and only if � = �N, � = �N, �∗ = �N ∗, � = �N . Thus, the largest 

consistent set in w(�, �, �∗, �) ∈ ℝX& : �t��u(v) ≤ 0x  be the 

singleton set "LN+ . It evolves from LaSalle invariance 

principle that the equilibrium LN is globally asymptotically 

stable if ℛ� 	> 	1 . This completes the proof of the 

theorem. 

4. Numerical Simulations 

Some mathematical simulations have been executed in this 

section to explain the stability outcomes and analyze the relative 

contributions of both viral transmission ways for viral load and 

latent infected cell reservoir. We considered the proportion of 

latency fractions is 0.001	(�
 = ��) while values of all other 

parameters are given in Table 1. We computed the basic 

reproductivity ℛ� 	= 	0.2	 < 	1  for healthy equilibrium by 

utilizing our parameters. So it evolves from our outcomes in 
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Theorem (3.1) that L� 	= 	 (102, 0, 0, 0�  is globally 

asymptotically stable. The basic reproductivity for the infected 

equilibrium is �� 	� 	2.20	 = 	1  by doing simple arithmetic. 

Hence, the infected equilibrium	Lh � 	 �4.5 z 10{, 3.90 z 10v , 

388.73,3380.28� is globally asymptotically stable by Theorem 

(3.2). The outcomes of L�  and LN  are numerically exhibited in 

Figure 2 and Figure 3, respectively. 

 

Figure 2. Kinetics anticipated by system (1) for �� < 1. We have �	= 1; b = 0.01; ��= 0.004; N = 100; 		 = 10&; �
 	� 	2.4 z 10-
�; c = 23; �� 	� 	 10
-/. IC 

are ��0� � 	10{, ��0� 	� 	0, �∗�0� 	� 	0 and �	�0� 	� 	10-v. 

 

Figure 3. Kinetics anticipated by system (1) for �� > 1. We have �	= 1; b = 0.01; ��= 0.004; N = 2000; 		 = 10&; �
 	� 	2.4 z 10-/; c = 23; �� 	� 	 10
-2. IC 

are ��0� � 	4.4 z	10{, ��0� 	� 3.88 z 10�, �∗�0� 	� 	380 and �	�0� 	� 	3379. 

5. Relative Contribution (RC) 

The significant proposition is the influence of CF and CC 

on the viral load and the latent containers. We utilized the 

subsequent fractions ��� and ��� to appraise it. 

��� �
WRQR��

WTQT��
∗
,	                            (9) 

and 

��� �
�
-WR�QR��

�
-WT�QT��
∗
,	                        (10) 

As we know that the proportionality relation between viral 

load and productively-diseased cells (quasi steady state 

assumption), 

� �
���∗

�
, 
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then ��� and ��� becomes 

��� ≈
�
-WR�QRCU

�
-WT�QTS
,	                            (11) 

and 

��� ≈ WRQRCUWTQTS ,	                            (12) 

Recall that 

ℛ� = ��
	��� O ��
� + �� + (1 − �
)P
+ ��	��� O

���� + �� + (1 − ��)P, 

where first and second term represents the basic reproduction 

number from CF infection and CC infection, respectively. As 

the fractions �
 and �� are very small, we had 

�����	������������	������	����	��	���������
�����	������������	������	����	��	��������� ≈ QRCUQTS .	 (13) 

Therefore, we acquired the following estimates 

��� ≈ (
-WR)(
-WT) . �����	������������	������	����	��	���������
�����	������������	������	����	��	���������,	 (14) 

and 

��� ≈ WRWT . �����	������������	������	����	��	���������
�����	������������	������	����	��	���������.	 (15) 

Estimates in equation (14) and (15) agree with the plotted 

RC after a very short time. The effect of �
 and �� is highly 

dependent on ��� and ��� from the estimates (14) and (15). 

 

Figure 4. Relative contribution to viral load and infected (latent) cells from 

CF and CC. Latency fraction �
	are (0.0006; 	0.002; 	0.006)  and �� 	=	0.003(fixed): We have �	= 1; b = 0.01; ��= 0.004; N = 2000; 		 = 10&; �
 	= 	2.4 × 10-/ ; c = 23; �� 	= 	 10-2 . IC are �(0) = 	10{, �(0) 	=	0, �∗(0) 	= 	0 and �	(0) 	= 	10-v. 

6. Conclusion 

HIV studies have determined that virus can infect cells by 

way of CC and CF [3, 19]. Many HIV mathematical systems 

have examined virus kinetics with only CF infection. Here, 

we have globally analyzed an HIV (latency) model 

containing two types of viral transmission strategies (CF and 

CC). We have established positivity and boundedness of our 

system (1) and also obtained the basic reproduction number, ℛ� . We have proved that healthy steady state is globally 

asymptotically stable if ℛ�  is smaller than 1 and if ℛ�  is 

larger than 1, then an unhealthy steady state occurs that is 

globally asymptotically stable. 

We have exhibited the RC of viral transmission strategies 

(CF and CC) in HIV infection with the assistance of 

arithmetical and graphical mediums. We have obtained their 

RC estimates (theoretically) for viral load and latent 

containers. From which, we considered that viral load and 

latent containers highly depend on these latency fractions. 

However, because of uncertain parameter values, RC remains 

unknown until further investigated. 

Future Work 

Currently available HAART therapy is effective in 

repressing HIV replication beneath the detection limit of 

conventional clinical examines, but it does not entirely 

eradicate HIV. Clinical studies show that there is a rapid viral 

bounce back after the suspension of HAART, which 

demonstrates the presence of latent reservoirs. To eliminate 

these viral reservoirs, a shock and kill therapeutic technique 

has recently been suggested [50]. We may improve our 

knowledge of the dynamics of the latent reservoir by 

incorporating the shock and kill approach in our model. 
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