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Abstract: This article proposes a new family of continuous distributions generated from a log dagum random variable 

(named Log-Dagum Weibull Distribution) on the basis of T-X family technique. mathematical and statistical properties 

including survival function, hazard and reverse hazard function, Rth moments, L-moments, incomplete rth moments, quantile 

points, Order Statistics, Bonferroni and Lorenz curves as well as entropy measures for this class of distributions are presented 

also LDW distribution characterized by truncated moments order statistics and upper record values. Simulation study of the 

proposed family of distribution has been derived. The model parameters are obtained by the method of maximum likelihood 

estimation. We illustrate the performance of the proposed new family of distributions by means of four real data sets and the 

data sets show the new family of distributions is more appropriate as compared to Exponentiated exponential distribution 

(EED), Weibull distribution (WD), Gamma distribution (GD), NEED Nadarajah Exponentiated exponential distribution and 

Lomax distribution (LD). Moreover, perfection of competing models is also tested via the Kolmogrov-Simnorov (K S), the 

Anderson Darling (A
*
) and the Cramer-von Misses (W

*
). The measures of goodness of fit including the Akaike information 

criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn 

information criterion (HQIC) are computed to compare the fitted models. 

Keywords: Probability Distributions, Log-Dagum Distribution, Parameter Estimation, Weibull Distribution 

 

1. Introduction 

Statistical distributions are extensively used in the literature 

for the modeling and the forecasting of real life phenomena. The 

recent literature has suggested numerous ways of extending 

well-known distributions. There has been an increased interest in 

defining new classes of the univariate continuous distributions 

by introducing one or more additional shape parameter(s) to the 

baseline distribution. This induction of parameter(s) has been 

proven useful in exploring tail properties and also for improving 

the goodness-of-fit of the generator family. The well-known 

families are: The beta-G of Eugene et al. [19] the Gamma-G 

(type-1) proposed by Zografos and Balakrishnan [35] the 

Kumaraswamy-G derived by Cordeiro and de Castro [14] the 

Mc-G family considered by Alexander et al. [5] the Weibull-X 

family of distributions developed by Alzaatreh et al. [3] the 

exponentiated generalized class derived by Cordeiro et al. [15] 

the Exponentiated T-X family developed by Alzaghal et al. [1] 

the weibull-G family proposed by Bourguignon et al. [13] the 

exponentiated half-logistic family considered by Cordeiro et al. 

[17] the gamma-G (type 3) family introduced by Torabi and 

Montazari [33] the log-gamma-G family developed by Amini et 

al. [7] the gamma-x family introduced by Alzaatreh et al. [4] the 

logistic-G family introduced by Torabi and Montazari [32]. The 

Kumaraswamy weibull-generated family developed by Hassan 

and Elgarhy [23] the new weibull-G family discussed by Tahir et 

al.[34] Exponentiated generalized exponential dagum 

distribution extended by Nasiru et al [25] the new generalized 

family of distributions discussed by Ahmad [2] Some new 
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members of the T-X family of distributions of Farrukh Jamal 

and Muhammad Nasir [20]. A modified T-X family of 

distributions discussed by Muhammad Aslam et al. [6] 

Handique et al. [22] discussed properties and applications of a 

new member of the T-X family of distributions, Shakil et al. [31] 

derived properties of Burr (4P) distribution and Shakil et al. [30] 

discussed some inferences on the Dagum (4P) distribution. 

Hamed et al. [21] established new class of Lindley distributions 

properties and application etc. 

The current work presents a new distribution called the 

Log-Dagum Weibull (LDW) distribution with three 

parameters. The proposed distribution due to its flexibility in 

accommodating all the forms of the hazard rate function can 

be used in a variety of problems for modeling lifetime data. 

The LDW distribution is not only suitable for modeling 

comfortable bathtub shaped failure rates data but is also 

suitable for testing goodness-of-fit of some models. 

The rest of the article is organized as follows. Section 2 

presents the T-X family of distributions. In section 3, the 

proposed Log-Dagum Weibull distribution is derived and 

studied graphical behavior of its probability density functions 

(pdf), survival function hazard functions shape of hazard 

function and concavity. In section 4, some statistical 

properties including rth moments, L- moment’s, incomplete 

rth moments, quantile function and order statistics are 

presented. Section 5, contains the Shannon entropy and 

Renyi entropy. Section 6 presents Bonferroni and Lorenz 

curves. The characterization via hazard function, reverse 

hazard function and truncated moments and ordered statistics 

of distribution is derived in section 7. Estimation of model 

parameters is presented in section 8. Evaluation measures 

and practical data examples of the proposed model to real 

data are given in section 9, followed by concluding remarks. 

2. T-X Family 

Let �(�)  be the probability density function (pdf) of a 

random variable �	Є	[	; 	�]  for −∞ ≤ 	 < � < ∞	 and let �[�(�)]  be a function of the cumulative distribution 

function (cdf) of a randomvariable � such that �[�(�)] 
satisfies the following conditions 

� 	(i)	�[�(�)] ∈ [a, b](��)�[�(�)]	Is	differentiable	and	monotonically	non − decreasing			and	(���)W[G(x)] → a	as	x → −∞	and	W	[G(x)] ∈ 	b	as	x → ∞                                      (1) 

Recently, Alzaatreh et al. [3] defined the T-X family of 

distributions by 

.(�) = 0 �(�)1�2[3(4)5                      (2) 

Where W[G(x)]  satisfies the condition (1). The pdf 

corresponding to (2) is given by 

6(�) = 7 884�[�(�)]9 �:�[G(x)];                 (3) 

In Table 1, we provide the W	[G(x)] functions for some 

members of the T-X family of distributions. 

Table 1. Different �[�(�)] functions for special models of the T-X family. 

S.No. <[=(>)] Range of T Members of T-X family 

1 �(�)	 [0, 1] 

Beta-G 19] 

KW-G type 1 [14] 
Mc-G [5] 

Exp-G (KW-G type 2) [15] 

2 −log	[G(x)]	 [0,	∞]	 Gamma-G Type-2 [35] 
Log-Gamma-G Type-2 [7] 

3 -lo?	[1 − 	�(�)] [0,	∞]	 Gamma-G Type-1 [26] 

Log-Gamma-G [7] 
Weibull-X [3] 

Gamma-X [4] 

4 - log [1 - �A(�)]	 [0,	∞]	 Exponentiated T-X [1] 

5 log [- log [1 - G(x)] [−∞,∞]	 Logistic-X 

6 log[
B(C)DEB(C)]	 [−∞,∞]	 Logistic-G [32] proposed 

7 
B(C)DEB(C)  [0,	∞]	 Gamma-G Type-3 [35] 

 

3. New Model 

A random variable T has the log dagum distribution with 

shape parameter β > 	0  and λ > 0  if it’s cumulative 

distribution function (cdf) is given by K(�) = (1 + eEM4)EN� ∈ O, P > 	0, Q > 	0           (4) 

Its corresponding probability density function (pdf) can be 

expressed as �(�) = PQeEM4(1 + eEM4)ENED� ∈ O, P > 	0, Q > 0      (5) 

Let �(�)  and �R(�) = 1 − �(�)  be the baseline cdf and 

survival function (sf) by replacing �[�(�)] by log( B(C)DEB(C)) 
and �(�) with (5) in equation (2), we define the cdf of the log 

dagum-x family by 
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.(�) = S1 L T 3�4�DE3�4�UEMVEW
                (6) 

The log dagum family pdf is expressed as 

6��� / S1 L T 3�4�DE3�4�UEMVEWED T 3�4�DE3�4�UEMED MWX�4��DE3�4��Y      (7) 

Henceforth, we denote by X a random variable having 

density function (7). The basic motivations for using the log 

dagum-x family in practice are to construct heavy tailed 

distributions that are not longer-tailed for modeling real data, 

to generate distributions with symmetric, left-skewed, right-

skewed and reversed-J shaped, to define special models with 

all types of the hazard rate function (hrf), to provide 

consistently better fits than other generated models under the 

same baseline distribution. 

The corresponding cumulative density function (cdf) 

probability density function (pdf), hazard function (hrf) and 

survival function are given as 

.Z[2��, Q, Ө, P� / �1 L �e]4^ 
 1�EM�EW             (8) 

 

 

Figure 1. Cumulative distribution plot of LDWD. 

Figure 1 gives the plots of the cumulative distribution 

function of the LDW distribution. 

The plots of this figure shows that for fixed Q and Pand 

changing	_ the curve stretch out insignificantly towards right 

as _  increases. However, for fixed P  and_and changing Q. 

Thecurve stretches out towards right significantly as Q 

increases. 

And 6Z[2��, Q, Ө, P� /�1 L �e]4^ 
 1�EM�EWED�
1e]4^�EMEDe]4^_QPa�WED    (9) 

 

 

Figure 2. Density plots of LDWD. 

Plots of Figure 2 display the density functions of the LDW 

distribution. Figure 2 portrays that changing Q  against the 

fixed P and _ the density function decreases. But changing P 

against the fixed Q the nature of the curve towards right as _	increases, however in case of changing _with fixed P and Q 

shift the curve towards left. 

bZ[2��, Q, _, P� / 1 
 �1 L �e]4^ 
 1�EM�EW          (10) 
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Figure 3. Survival plot of LDWD. 

The graph of survival function increases for different 

values of parameters then suddenly starts gradually decreases 

and converges to zero. 

c��, Q, P� / �Dd�efg^ED�hi�h^hj�EDdefg^�hihjefg^]MWY4^hjDE�Dd�efg^ED�hi�h^   (11) 

 

 

 

Figure 4. Hazard plot of LDWD. 

The hazard function plots in Figure 4 also portray the 

declining circumstance of the product as time increases in 

terms of impulsive spikes at the end of either increasing or 

decreasing hazard rate. This implies that the hazard function 

is sensitive against different combinations of the parameters 

as time changes, which seems to be a refine image of non 

stationary process and hence the hazard curve does not 

remain stable as times passes. Moreover, Figure 4 displays 

increasing, decreasing bathtub hazard shapes. 

3.1. Shape of Hazard Function 

Shape of the density function can be described 

analytically, the critical point of the LDW density are the root 

of the equation 

884 klDdmefg^EDnhioh^hjmEDdefg^nhihjefg^]MWY4^hj
DElDdTefg^EDUhioh^ p / 0 (12) 

There may be more than one root. 

3.2. Concavity 

The concavity of hazard rate function cqq���=	0 

 
rYrCY klDdmefg^EDn

hioh^hjmEDdefg^nhihjefg^]MWY4^hj
DElDdTefg^EDUhioh^ p / 0 

 

Figure 5. Concavity of different value of parameters the hazard function is 

concave up and concave down where the point of concavity change is called 

point of inflection. 

4. Some Statistical Properties 

In this section, we study some statistical properties of the 

LDW distribution, including Rth moments, L-moments, 

incomplete rth moments, quantile function and order 

statistics. 

4.1. Moments of Ldwd 

Let X is a particularly continuous non-negative random 

variable with PDF6���, and then the Rtu ordinary moment of 

the (LDW) distribution is given by: 
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 E�xw) =0 Xwy5 f�X�dX 

 	z��{� 	/ 0 �{y5 �1 − (1 − |]4^)EM)EWED(1 − |]4^)EMED|]4^_QPa�WEDdx 	E(xw) 	= 	∑ (E~)�(ED)�u!yu�5 0 �{y5 (1 −|]4^)MWED|]4^_QPa�WEDdx 

which, on substituting � = |]4^ and simplifying, reduces to 

	E(xw)=∑ (E~)�(ED)��! ∑ (ED)��!MWED��5yu�5 0 (ln �) �̂y5 y�dy 

Again substituting and simplifying 

z(�{) = QP 1_ �̂ �(−k)u(−1)uℎ! � (−1)��!
MWED
��5

y
u�5 � ( ?(� + 1)) �̂y

5 |EX 1?(� + 1) 
z(�{) = QP D

] �̂ ∑ (E~)�(ED)��! ∑ (ED)��!MWED��5yu�5 D
(�dD)�̂�j �({W + 1)                                             (13) 

4.2. L-Moments 

The L-Moments of the LDW family is defined as �� = z(�(.(�)�) 
�� = � �y

5 m1 − T1 − e]4^UEMnEW� 6(�)1� 

�� = � � m1 − T1 − e]4^UEMnEW� (∞

5 (1	 − (1 − e]4^)EM)EWED(1 − e]4^)EMEDe]4^_QPa�WED1� 

�� = �(−k)u(−1)uℎ!
y

u�5 � � T1 − e]4^UMW(�dD)EDy
5 e]4^_QPa�WED1� 

Let|]4^ = y, βθ|]4^�WEDdx = dy,� = D
] ĵ (���)ĵ1� 

When x→ 0, y→ 1andx→ ∞, y→ ∞ 

�� = Qβ_ ĵ �(−k)u(−1)uℎ!
y

u�5 � (���) ĵ(1 − y)MW(�dD)EDy
5 1� 

Expanding(1 − y)MW(�dD)ED	using	binomial	expension 

�� = Qβ_ ĵ �(−k)u(−1)uℎ!
y

u�5 e�dD � � mQP(� + 1) − 1m n (−1)a�(MW(�dD)ED)
��5

y
~�5 � (���)ĵ(y)�y

D 1� 

After some substitution, 

�� = Qβ_ ĵ �(−k)u(−1)uℎ!
y

u�5 e�dD � � mQP(� + 1) − 1m n (−1)a�(MW(�dD)ED)
��5

y
~�5 � eE�(�dD)y

5 � ĵdz 

�� == MN
] ĵ ∑ (E~)�(ED)��!yu�5 e�dD ∑ ∑ �MW(�dD)ED� �(−1)a�(MW(�dD)ED)��5y~�5 ( �(ĵdD)

(�dD)ĵ�j                               (14) 

4.3. Incomplete Moments 

The incomplete moments play an important role for 

measuring inequality, for example, income quintiles and 

Lorenz and Bonferroni curves. These curves depend on the 

first incomplete moment of the distribution. 
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The rth incomplete moment of the LDW family is defined 

as 

�{��� / � �{6���1��
5  

Using the PDF given in (8), we get 

�{��� / � �{�
5 �1 − (e]4^ − 1)EM)EWED(−1
+ e]4^)EMEDe]4^_QPa�WEDdx 

After simplifying we get 

		�{(�) = �	λβ_�dD ∑ (�) ¡!y¡�5 ∑ (ED)¢�! �M(¡dD)ED¡ �∑ (ED)£�! (� − 1)�y��5y��5 ¤¥�ĵ�£̂
�̂d�dD ¦                                  (15) 

The first incomplete moment can be obtained by taking in 

(15) as r=1. 

4.4. Quantile Points 

The quantile points of LDW distribution are computed by 

numerically for different sets of values of the parameters as 

provided in table below by solving the equation 

� = §¨ = �D] ©�ª? m«Eĵ − 1nEji + 1¬¦D/W	     (16) 

Table 2. Quantile Points of the LDW Distribution. 

Parameters  0.75 0.80 0.85 0.90 0.95 0.99 _=1, β=0.5, Q = 1.5 §¨ 0.6091 0.8158 1.1281 1.6615 2.8493 7.1275 _=1, β=1.5, Q = 1.5 §¨ 1.2153 1.2980 1.5382 1.7623 1.7623 2.2477 _=1.5, β=1.5, Q = 1 §¨ 1.1064 1.2029 1.3205 1.4763 1.7231 2.2341 _=0.5, β=1.5, Q = 2 §¨ 2.0101 2.197224 2.4360 2.7725 3.357517 4.7867 _=1, β=2, Q = 2 §¨ 1.1246 1.1677 1.2206 1.2914 1.4052 1.6474 _=2, β=1, Q = 2 §¨ 0.5025 0.5493 0.6090 0.6931 0.8394 1.1966 

 

4.5. Ordered Statistic 

The pdf of the jth order statistic for a random sample of 

size n from a distribution function .(�) and an associated 

pdf 6(�)are given by: 

6°,¡(�) = ¡ᴉ(°ED)(¡E°)ᴉ [.(�)]°ED[1 − .(�)]¡E°6(�)      (17) 

where 6(�)  and .(�)  are the pdf and cdf of the LDWD, 

respectively. The pdf of the jth order statistics for a random 

sample of size n from the LDW distribution is, however, 

given as follows 

6°,¡(�) = �ᴉ(² − 1)(� − ²)ᴉ ³m1 + Te]4^ − 1UEMnEW´°ED S1 − 	[(1 + Te]4^ − 1UEM)EWV¡E° 

(1 + (|]4^ − 1)EM)EWED(−1 + |]4^)EMED|]4^_QPa�WED 

So, the pdf of minimum order statistics is obtained by substituting ² = 1	we have: 

6°,¡(�) = �ᴉ(² − 1)(� − ²)ᴉ S1 − 	[(1 + Te]4^ − 1UEM)EWV¡ED m1 + Te]4^ − 1UEMnEWED (−1 + e]4^)EMEDe]4^_QPa�WED 

While the corresponding pdf of maximum order statistics is obtained by making the substitution of ² = � in above equation 

6°,¡(�) = 	 �ᴉ(² − 1)(� − ²)ᴉ ³m1 + Te]4^ − 1UEMnEW´¡ED m1 + Te]4^ − 1UEMnEWED (−1 + e]4^)EMEDe]4^_QPa�WED 

5. Entropies 

Entropy is the measure of variation of random variable	�. 

The theory of entropy has been used for the characterization 

of numerous standard probability distributions. Two popular 

entropy measures are the Shannon and Renyi entropies. 

The Shannon entropy of a random variable with p.d.f. 6(�) is defined as 

bµ = −� 6(�)�ª?6(�)1�y
5  

�ª?6(�) = −(P + 1) ln m1 + Te]4^ − 1UEMn − (Q + 1) ln T−1 + e]4^U + _�W + ln(_QPa) + (β − 1)lnx 
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bµ / �1 − QP)� 6(�)y
5 ln Te]4^ − 1U dx − _� 6(�)y

5 �W1� − ln(_QPa)� 6(�)y
5 1� − (β − 1)� 6(�)y

5 ���1� 

Where0 6(�)y5 1� = 1, 0 6(�)y5 ���1� = z(���), 0 6(�)y5 �W1� = z��W� 

	ln Te]4^ − 1U = �(−_)���W�!
y

��5  

bµ = (1 − QP)∑ (E¶)·¸¹·ºE�! − _z��W� − ��y~�5 (_QPa) − (β − 1)z(���)                                       (18) 

The Renyi entropy of a random variable � is defined by»� = DDE� �ª? 0 �6(�)��1�y5  

»� = 11 − � �ª?� (y
5 (1 + (e]4^ − 1)EM)EWED(−1 + e]4^)EMEDe]4^_QPa�WED))�1� 

»� = 11 − k log(_�Q�Pa� �(−k)u(−1)~ℎ!
y

u�5 )� (1 − e]4^)M�(WdD))(1 − e]4^)E~(MdD)e�]4^��(WE)Ddxy
5  

»� = 11 − k log ©_�EDQ�Pa�ED
_(�ED)TDEĵU ¬�(−k)u(−1)~ℎ!

y
u�5 	� � (−1)�~(MWED)

��5
y
~�5 � eE�(�d~ED)y

5 �TDEĵU(�ED)|E¼dz 

»� = (1 − k)ED m1P − 1n �ª?_ + ��ª?Q + (2� − 1)log	P log½�(−k)u(−1)~ℎ!
y

u�5 � � (−1)�~(MWED)
��5

y
~�5

Γ T1 − DWU (� − 1)
(m + k − 2)TDEĵU(�ED)¿ 

6. Bonferroni and Lorenz Curves 

In 1905, Max O. Lorenz represented a model for inequality 

of wealth distribution and C. E. Bonferroni in [1930] 

proposed a measure of income inequality. Both are used in 

financial mathematics to check equal distribution of wealth. 

Bonferroni and Lorenz curves are defined as follows: 

Let �  be a continuous random variable with probability 

density function 6(�) cumulative distribution function .(�). 
Let .ED(. ) denote the quantile function then the Bonferroni 

and Lorenz curves of a random variable � are defined by  

z(À) = 1ÀÁ � �¤5 6(�)1� 

And 

Â(À) = 1Á� �¤5 6(�)1� 

Respectively, here Á = 	z(�)  and Ã	 = 	.ED(À).  one can 

reduce (18) and (19) to 

z(À) = 1ÀÁ� �¤5 (1 − (e]4^ − 1)EM)EWED(−1 + e]4^)EMEDe]4^_QPa�WEDdx 

After some substitution, 

z(À) = 1ÀÁ λβ_ ĵ � (	)¡�!y
¡�5 � z ĵ(1 − e¼)EM(¡dD)ED]¤^

5 |�dz 

Expanding (1 − |¼)EM(¡dD)ED by using binomial expansion 

E(p) = 1ÀÁ λβ_ ĵ � (	)¡�!y
¡�5 � (−1)��! mQ(� + 1) − 1� n� (−1)��! (� − 1)�y

��5
y
��5 � z ĵd�]¤^

5 dzz(À) 
z(À) = 1ÀÁ Äλβ_�dD � (	)¡�!y

¡�5 � (−1)��! lQ(� + 1) − 1� o� (−1)��! (� − 1)�y
��5

y
��5

ÃDd ĵd£̂
DW + � + 1Å 

and 
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	Â�À� / 1Á Äλβ_�dD � (	)¡�!y
¡�5 � (−1)��! lQ(� + 1) − 1� o� (−1)��! (� − 1)�y

��5
y
��5

ÃDd ĵd£̂
DW + � + 1Å 

7. Characterization of Distribution by 

Truncated Moments 

In this section, we present our proposed 

characterizations of three-parameter LDW distribution, 

with cdf (8) and pdf (9). 

Many researchers such as Shakil et al. [28], [29] 

Ahsanullah et al. [9-11] and Rafique et al. [27] have studied 

the characterization by truncated moments. We characterize 

LDW distribution, the first characterization theorem is 

based on the relation between hazard rate and left truncated 

moment. The second characterization theorem is based on 

the relation between reverse hazard rate and right truncated 

moment. Applying these results, we have characterized 

LDW distribution by order statistics and upper record 

values also. 

Proposition 1. Suppose the absolutely continuous random 

variable Æ  has cdf .(�)  with .(0) 	= 	0, .(�) 	> 	0	∀	� >	0, p.d.f 6(�) 	= 	.′(�), the 

z[Æ|Æ	 ≤ 	�] = 	�(�)ℎ(�), � > 	0 

And where, ℎ(�) = 6(�).(�) 
�(�) = �(1 − [1 + T|]4^ − 1UEM)]EW + 0 (1 − [1 + T|]4^ − 1UEM)]EWdt�5[T1 + �|]4^ − 1�EMUEWED �−1 + |]4^)EMED|]4^_QPa�WEDÊ  

Proof: 

z[Æ|Æ	 ≤ 	�] = 1.(�)� �6(�)1��
5  

�(�)6(�) = � �6(�)1��
5  

�(�) = 0 ËÌ(Ë)8ËÍÎ Ì(�) =
E�(DEÏ(�)d0 (DEÏ(Ë))8ËÍÎÌ(�)  

Substituting (8) and (9). Then it is easily seen that 

�(�) = −�(1 − m1 + T|]4^ − 1UEMnEW) 	+ 0 (1 − [1 + T|]Ë^ − 1UEM)]EWdt�5T1 + �|]4^ − 1�EMUEWED (−1 + |]4^)EMED|]4^_QPa�WED  

Simple differentiation and simplification gives �,(�) 	= 	� − �(�)Ð(�), 
where 

Ð(�) = 6˴(�)6(�) = _ÑQaPÒ�ÑWEÒ(1 − Pa) m1 + Te]4^ − 1UEMnEWEa Te]4^ − 1UEMED P�WED(Q + 1) Te]4^ − 1UEMEa eÓ]4^
T1 + �e]4^ − 1�EMUEWED (−1 + e]4^)EMEDe]4^_QPa�WED  

Then we have�˴(�) = � −�(�) Ô]ÕMYWÖ4Õ^hÖ�DEWY�lDdmefg^EDnhioh^hYmefg^EDnhihjW4^hj(MdD)mefg^EDnhihYe×fg^
lDdTefg^EDUhioh^hj(EDdefg^)hihjefg^]MWY4^hj Ø 

From which we obtain
�E�˴(�)�(�) = Ô]ÕMYWÖ4Õ^hÖ�DEWY�lDdmefg^EDnhioh^hYmefg^EDnhihjW4^hj(MdD)mefg^EDnhihYe×fg^

lDdTefg^EDUhioh^hj(EDdefg^)hihjefg^]MWY4^hj Ø 

we have
Ì˴(�)Ì(�) = �E�˴(�)�(�)  

It follows that 

6˴(�)6(�) =
ÙÚÛ
ÚÜ_ÑQaPÒ�ÑWEÒ(1 − Pa) m1 + Te]4^ − 1UEMnEWEa Te]4^ − 1UEMED P�WED(Q + 1) Te]4^ − 1UEMEa eÓ]4^

T1 + �e]4^ − 1�EMUEWED (−1 + e]4^)EMEDe]4^_QPa�WED ÝÚÞ
Úß

 

On integrating the above expression with respect to ’y’ and simplifying, we obtain 



 Applied and Computational Mathematics 2021; 10(5): 100-113 108 

 

��6��� / ln	�à m1 + Te]4^ − 1UEMnEWED T−1 + e]4^)EMEDe]4^_QPa�WEDá 
Since C is determined by0 6(�)y5  ) = 1, we have the pdf. 

Proposition 2. Suppose the absolutely continuous random variable Æ has cdf .(�) with .(0) 	= 	0, .(�) 	> 	0	∀	� > 	0, p.d.f 6(�) 	= 	.′(�), then z[Æ|Æ	 ≥ 	�] = 	ã(�)ℎ(�), � > 	0 

And where,ℎ(�) = Ì(�)DEÏ(�) 

ã(�) = �(1 − [1 + T|]4^ − 1UEM)]EW + 0 (1 − [1 + T|]4^ − 1UEM)]EWdtyä[T1 + �|]4^ − 1�EMUEWED �−1 + |]4^)EMED|]4^_QPa�WEDÊ  

Proof: 

z[Æ|Æ	 ≥ 	�] = 11 − .(�)� �6(�)1�y
�  

ã(�)6(�) = � �6(�)1�y
�  

ã(�) = 0 ËÌ(Ë)8ËåÍ Ì(�) =
�(DEÏ(�)d0 (DEÏ(Ë))8ËåÍÌ(�)  

Substituting (8) and (9). Then it is easily seen that 

ã(�) = �(1 − m1 + T|]4^ − 1UEMnEW) 	+ 0 (1 − [1 + T|]Ë^ − 1UEM)]EWdtyäT1 + �|]4^ − 1�EMUEWED (−1 + |]4^)EMED|]4^_QPa�WED  

Simple differentiation and simplification gives ã ,(�) 	= 	−� − ã(�)Ð(�), where 

Ð(�) = 6˴(�)6(�) = _ÑQaPÒ�ÑWEÒ(1 − Pa) m1 + Te]4^ − 1UEMnEWEa Te]4^ − 1UEMED P�WED(Q + 1) Te]4^ − 1UEMEa eÓ]4^
T1 + �e]4^ − 1�EMUEWED (−1 + e]4^)EMEDe]4^_QPa�WED  

Then we haveã˴(�) = −� − ã(�) Ô]ÕMYWÖ4Õ^hÖ�DEWY�lDdmefg^EDnhioh^hYmefg^EDnhihjW4^hj(MdD)mefg^EDnhihYe×fg^
lDdTefg^EDUhioh^hj(EDdefg^)hihjefg^]MWY4^hj Ø 

From which we obtain
E�dç˴(�)ç(�) = Ô]ÕMYWÖ4Õ^hÖ�DEWY�lDdmefg^EDnhioh^hYmefg^EDnhihjW4^hj(MdD)mefg^EDnhihYe×fg^

lDdTefg^EDUhioh^hj(EDdefg^)hihjefg^]MWY4^hj Ø 

we have
Ì˴(�)Ì(�) = E�dç˴(�)ç(�)  

It follows that 

6˴(�)6(�) =
ÙÚÛ
ÚÜ_ÑQaPÒ�ÑWEÒ(1 − Pa) m1 + Te]4^ − 1UEMnEWEa Te]4^ − 1UEMED P�WED(Q + 1) Te]4^ − 1UEMEa eÓ]4^

T1 + �e]4^ − 1�EMUEWED (−1 + e]4^)EMEDe]4^_QPa�WED ÝÚÞ
Úß

 

On integrating the above expression with respect to ’y’ and simplifying, we obtain 
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��6��� / ln	�à m1 + Te]4^ − 1UEMnEWED T−1 + e]4^)EMEDe]4^_QPa�WEDá 
Since C is determined by0 6(�)y5  ) = 1, we have the pdf. 

Proposition 3: If 1 2   , , ... , nX X X  be the n  independent copies of 

the random variable X  with absolutely continuous distribution 

function ( )F x  and pdf ( )f x , and if 1, 2, ,...n n n nX X X≤ ≤ ≤ be 

the corresponding order statistics, then it is known from 

Ahsanullah et al. [9], chapter 5, or Arnold et al. [12], chapter 2, 

that , ,|j n k nX X x= , for 1 k j n≤ < ≤ , is distributed as the 

( )j k th−  order statistics from independent observations from the 

random variable V  having the pdf ( | )Vf v x where

( )
( | )

1 ( )
V

f v
f v x

F x
=

−
, 0 v x≤ < , and 

., ,| , 1i n k nX X x i k n= ≤ < ≤ , is distributed as ith  order 

statistics from k  independent observations from the random 

variable W  having the pdf ( | )Wf w x where 

( )
( | ) ,

( )
W

f w
f w x w x

F x
= < . Let 

( )1
1 1, 2, 1,1

...k n n k nk
S X X X− −−= + + + , and 

( )1
, 1, 2, ....k n k n k n n nn k

T X X X+ +−= + + + . Now, suppose the 

random variable X  is absolutely continuous with the cumulative 

distribution function ( )F x  and the probability density function

( )f x . We assume that ( ){ }inf | 0x F xω = > , and 

( ){ }sup | 1x F xδ = < . We also assume that ( )f x  is a 

differentiable for all x , and ( )E X  exists. Taking 0ω = and 

δ = ∞ , we have 1 ,( | ) ( ) ( )k k nE S X x m x h x− = = , where ( )m x  

and ( )h x  are respectively given by the expressions in Proposition 

1, if and only if X  has the pdf (9). 

Proof: It is known that 1 ,( | ) ( | )k k nE S X x E X X x− = = ≤ ; 

see Ahsanullah et al. [9], and David and Nagaraja [18]. 

Hence, by Proposition 1, the result follows. 

Proposition 4. Suppose the random variable X  is 

absolutely continuous with the cumulative distribution 

function ( )F x  and the probability density function ( )f x . 

We assume that 0ω =  and δ = ∞ . We also assume that 

( )f x  is a differentiable for all x , and ( )E X  exists. Then

( ) ( ), ,( | )k n k nE T X x s x h x= = , where ( )s x  and ( )h x  are 

respectively given by the expressions in Proposition 2, if and 

only if X  has the pdf (9). 

Proof: Since , ,( | ) ( | )k n k nE T X x E X X x= = ≥ , see 

Ahsanullah et al. [9], and David and Nagaraja [18], the result 

follows from Proposition 2. 

Proposition 5. Let be a sequence of independent and 

identically distributed absolutely continuous random 

variables with distribution function ( )F x  and pdf ( )f x . If 

1 2max ( , , ... , )n nY X X X=  for 1n ≥ and 1, 1j jY Y j−> > , 

then jX  is called an upper record value of { }, 1nX n ≥ . The 

indices at which the upper records occur are given by the 

record times 

( ) ( )( ){ }( 1)min | 1 , , 1j U nU n j j U n X X n−> > + > > and 

( )1 1U = . Let the nth upper record value be denoted by

( ) ( )U n
X n X= . For details on record values, see Ahsanullah 

[8]. 

Now, Suppose the random variable X  is absolutely 

continuous with the cumulative distribution function ( )F x  

and the probability density function ( )f x . We assume that 

0ω = and δ = ∞ . We also assume that ( )f x  is a 

differentiable for all x , and ( )E X  exists. Then

( ) ( )( ( 1) | ( ) )E X n X n x s x h x+ = == , where ( )s x  and ( )h x  

are respectively given by the expressions in Proposition 2, if 

and only if X  has the pdf (9). 

Proof: It is known from Ahsanullah et al. [8] and 
Nevzorov [24] that ( ( 1) | ( ) ) ( | )E X n X n x E X X x+ = = ≥ . 

Then, the result follows from Proposition 2. 

8. Maximum Likelihood Estimation 

Several approaches for parameter estimation have been 

proposed in the literature but the maximum likelihood 

method is the most commonly employed. 

Let �D,�a,… , �� be a random sample of size n of the LDW 

distribution then the total log-likelihood (LL) function is 

given 

L(λ, θ, β) = βaê ëm1 + Te¶Cº − 1UEìnENED λêê
í�D ëT−1+ e¶CºUEìED θê ëe¶Cº ëxê

í�D
NEDê

í�D
ê

í�D L(λ, θ, β) 
= 2nLog[β] + nLog[θ] + nLog[λ] + θ�xîN + (ê

î�D β − 1)�Log[xî]ê
î�D −	(λ + 1)�Log ïeCðº¶ − 1á +ê

î�D λ(β
+ 	1)�Log(1 +	TeCðº¶ − 1U)ê

î�D	  

The First derivatives of the log-likelihood function are given as follow 
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ñÂ�Q, _, P)ñP = 2�P + _P��òWED +¡
ò�D �Log[�ò]¡

ò�D − (Q + 1)�_P�òWED¡
ò�D + 2Q�β�òWED_¡

ò�D  

ñÂ(Q, _, P)ñQ = �Q −�Log[e4ó^] − 1]¡
ò�D + Q(P + 1)� 	Log(1 +	Te4ó^] − 1U)¡

ò�D  

ôZ(M,],W)ô] = ¡]+õ �òW¡ò�D − (Q + 1)õ �òW¡ò�D + Q(P + 1)õ �òW¡ò�D  

Equating equations to zero and solving them numerically, 

one can obtain the estimates of the unknown parameters. 

9. Simulation Study 

This section deals the simulation study. In proposed model 

we generated random variables by using CDF of LDWD with 

four different value of parameters for n=25, 50, 100. 

Parameters are estimated with method of MLE by using each 

generated random variable. 

In statistical study, bias states to the tendency of a 

measurement process to over or under estimate the value of 

population parameters. Squared error is a function which 

obtained from square values of bias. MSE is always 

constructive. Bias shows the contrasts between estimated 

values of parameter variation from true value of parameter. 

By using the estimated parameters, we calculated Bias and 

MSE of LDWD. All simulations were done on computational 

software `Mathematica. 

The analysis computes the coming values: 

Average bias of the simulated estimates: 11000� (ö∗ − ö)D555
ø�D  

Average mean square error (MSE) of the simulated 

estimates: 11000� (ö∗ − ö)aD555
ø�D  

The results are reported in Tables 3 and 4. 

Table 3. Average mean of Bias and MSE values for estimators_	ù ,Pú  and Qú of data 1. û Bias	(üù) Bias(ýù) Bias(þ�) MSE(üù) MSE(ýù) MSE(þ�) 25 0.65234 −0.08837 0.56572 0.56572 0.40559 0.86286 50 0.35310 0.23613 0.17950 0.29754 0.52918 0.15562 100 0.27740 0.46278 −0.01169 0.11882 0.72056 0.04713 

Table 4. Average mean of Bias and MSE values for estimators_	ù ,Púand Qúof data 2. û Bias	(üù) Bias	(ýù) Bias	(þ�) MSE	(ü) MSE	(ýù) MSE	(þ�) 25 1.00745 −0.44500 −0.34131 1.26654 0.25397 0.21862 50 0.57483 −0.23206 −0.39724 0.39676	 0.09400 0.19138 100 0.43445 0.41399 −0.68022 0.28879 0.63077 0.50529 

 

10. Evaluation Measures and Practical 

Data Examples 

In this section, we illustrate the usefulness of the log 

dagum weibull distribution and compare the results with the 

weibull distribution, gamma distribution, Lomax distribution, 

exponentiated exponential distribution, Nadarajah 

exponentiated exponential distributions by means of four real 

data sets. We will check goodness of fit of our model with 

some test statistics like AD test, CVM test, K-S test and p-

value. All calculations are executed on computational 

software MATHEMATICA. 

In order to demonstrate the proposed methodology, we 

consider four different practical data sets described below 

with their analysis. Moreover, perfection of competing 

models is also tested via the Kolmogrov-Simnorov (K S), the 

Anderson Darling (Ð∗)  and the Cramer-von Misses (�∗) 
statistics. The mathematical expressions for the statistics are 

given by 

�b	 = 	max	: �� − �ø , �ø − � − 1� ; 
A
∗ = m2.25ma − 0.75m + 1n :−1
− 1m�(2i − 1)ln	(zí(z�EídD));�

D  

w
∗ = �mzí − 2i − 12m na + 112m

�
D  

Data set 1. Thefirstdata set of leukemia-free survival times 

of 50 patients with Autologous transplant. Data sets are 

presented in the following tables 0.03, 0.493, 0.855, 1.184, 

1.283, 1.480, 1.776, 2.138, 2.500, 2.763, 2.993, 3.224, 3.421, 

4.178, 4.441, 5.691, 5.855, 6.941, 6.941, 7.993, 8.882, 8.882, 

9.145, 11.480, 11.513, 12.105, 12.796, 12.993, 13.849, 

16.612, 17.138, 20.066, 20.329, 22.368, 26.776, 28.717, 
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28.717, 32.928, 33.783, 34.211, 34.770, 39.539, 41.118, 45.033, 46.053, 46.941, 48.289, 57.401, 58.322, 60.625. 

Table 5. AD, CVM, The K-S statistics and p-values for the data set 1. 

Distributions �
∗ <

∗ K-S p-value 

LDWD 0.403996 0.0651719 0.076948 0.943568 
EED 0.362828 0.0483839 0.084435 0.868171 

WD 0.411538 0.0562415 0.0868536 0.845013 
GD 0.369975 0.0496265 0.0847622 0.86513 

LD 2.504843 0.3799524 0.19666206 0.04182 
NEED 0.666096 0.0962511 0.0906376 0.805953 

Table 6. Information Criteria of Different Distributions for Data 1. 

Distributions AIC AICC BIC HQIC CAIC 

LDWD 394.682 395.140 398.235 396.37 395.140 
EED 394.954 395.209 398.778 396.41 395.209 

WD 395.433 395.689 399.257 396.89 395.689 
GD 395.057 395.312 398.881 396.51 395.312 

LD 394.783 395.304 400.5187 396.97 395.304 
NEED 396.045 396.301 399.869 397.50 396.301 

 

Data set 2: Second data set Lifetime of 50 devices is 0.1, 

0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 

36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 

79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86. 

We fit the LDW model and other competitive models such 

as the Exponentiated exponential distribution (EED), Weibull 

distribution (WD), Gamma distribution (GD), NEED 

Nadarajah Exponentiated exponential distribution and Lomax 

distribution (LD) to data sets. 

Table 7. The K-S statistics and p-values for the data set 2. 

Distributions �
∗ <

∗ K-S p-value 

LDWD 0.41395 0.06328 0.07134 0.9135 
EED 0.36282 0.04838 0.08444 0.8682 

WD 0.41153 0.05624 0.08685 0.8450 

GD 0.36997 0.04962 0.08476 0.8651 
LD 8.09533 1.66869 0.3377 0.00002 

NEED 8.11488 1.67229 0.322722 0.00006 

Table 8. Information Criteria of Different Distributions for Data 2. 

Model AIC AICC BIC CAIC 

LDWD 455.064 455.586 460.800 455.586 

EED 483.99 484.246 487.814 484.246 
WD 486.004 486.259 489.828 486.259 

GD 484.38 484.636 488.204 484.636 

NEED 516.033 519.857 516.289 516.857 
LD 474.0873 474.3427 477.9114 474.3427 

 

Data set 3: This data set consists of 100 uncensored data 

on breaking stress of carbon fibres (in Gba), 0.39, 0.81, 0.85, 

0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 

1.57, 1.59, 1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.8, 1.84, 

1.84, 1.87, 1.89, 1.92, 2, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 

2.17, 2.35, 2.38, 2.41, 2.43, 2.48, 2.48, 2.5, 2.53, 2.55, 2.55, 

2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 

2.83, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 

3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 

3.33, 3.39, 3.39, 3.51, 3.56, 3.6, 3.65, 3.68, 3.68, 3.68, 3.7, 

3.75, 4.2, 4.38, 4.42, 4.7, 4.9, 4.91, 5.08, 5.56. 

Table 9. Information criteria of different distributions for data 3. 

Model AIC BIC AICC HQIC CAIC 

LDWD 288.62 296.43 288.8685 296.4883 296.4883 
GD 290.4673 295.6775 290.5909 292.576 290.5909 
WD 	289.06 296.87 289.3086 292.2217 289.3086 
EED 296.36460 301.574 296.488 298.4733 296.4883 
NEED 393.8472 399.0575 393.9709 395.9559 393.9709 
LD 474.0873 477.9114 474.3427 475.54356 474.3427 

 

Table 10. The K-S statistics and p-values for the data sets 3. 

Distributions �
∗ <

∗ K-S p-value 

LDWD 0.39666 0.06508 0.0618 0.8395 
EED 1.2341 0.2303 0.1077 0.19618 
WD 18.9521 3.7772 0.3341 4.02837 × 10

ED5 
GD 200.5016 32.9885 0.9996 2.22044 × 10

ED
 
LD 79.3018 17.3623 0.8210 
2.22044 × 10ED
 
NEED 16.9307 3.35163 0.3170 3.73137 × 10

E� 
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Data set 4: This data consist times to failure of eighteen electronic devices used to show how the proposed distribution can 

be appliedin practice. 5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 196, 224, 245, 293, 321, 330, 350, 420. 

Table 11. The K-S statistics and p-values for the data sets 4. 

Distributions �
∗ <

∗ K-S p-value 

LDWD 0.1725 0.02361 0.0840 0.9996 
EED 0.4456 0.07077 0.12138 0.9535 
WD 0.4609 0.0644 0.1132 0.9752 
GD 0.4487 0.06986 0.1206 0.956104 

LD 28.2328 5.0981 0.9157 1.5487 × 10
EDÓ 

NEED 2.46950 0.4826 0.28141 0.115548 

Table 12. Information Criteria of Different Distributions for Data 4. 

Model AIC BIC HQIC AICC CAIC 

LDWD 208.2915 210.9626 208.6598 210.0058 210.0057 
GD 226.1 227.9 226.9 229.9 229.9 

WD 395.433 397.214 395.6789 396.233 396.233 
EED 225.2528 227.0335 225.4983 226.05277 226.0527 
NEED 237.8595 239.6403 238.10512 238.6596 238.65956 
LD 341.4154 343.1962 341.6609 342.2154 342.2154 

 

Analysis 

The measures of goodness of fit including the Akaike 

information criterion (AIC), consistent Akaike information 

criterion (CAIC), Bayesian information criterion (BIC), 

Hannan-Quinn information criterion (HQIC), Anderson-

Darling (Ð∗ ), Cram´er–von Mises (�∗�  and Kolmogrov-

Smirnov (K-S) statistics are computed to compare the fitted 

models. In general, the smaller values of these statistics 

better fit to the data. The required computations are carried 

out in the Mathematica 11.0. 

Tables 4 to 12 represents that the LDWD model produces 

the heigh p-value and the smallest test statistics value and 

therefore fitted better than the others (WD, GD, LD, EED, 

NEED) for the estimated parameter the pdf of the 

distributions have been superimposed on the histogram of 

four data sets provided as figures 6, 7 and 8. 

 

Figure 6. Fitted densities for data 1. 

 

Figure 7. Fitted densities for data 2. 

 

Figure 8. Fitted densities for data 3. 

11. Conclusion 

There has been an increased interest in defining new 

generated classes of univariate continuous distributions. 

The extended distributions have attracted several 

statisticians to develop new models. Current article 

proposes the new Log-Dagum T-X family of distributions. 

Some of its mathematical properties have been derived; 

estimation of the parameters has been discussed. Also, 

computations of Quantile points and Characterizations have 

been done. The application of LDW distributions has been 

studied using four real life-time data sets. It has been 

observed that the proposed special model is consistently 

better fit than other competing models. It is expected that 

this new family and its generated models will attract wider 

application in several areas such as engineering, survival 

and lifetime data, hydrology, economy. 
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