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Abstract: Biology is becoming more quantitative. If we are to support the future of quantitative biology, then the next 

generation of biologists must be prepared to consistently integrate quantitative reasoning into subject matter that has traditionally 

been considered through a qualitative lens. We introduce a quantitative reasoning framework and discuss the importance of 

quantitative modeling in biology. The framework includes the Quantitative Act as a support for Quantitative Modeling and 

Quantitative Interpretation. The QM BUGS diagnostic instrument was developed to assesses undergraduate biology students’ 

abilities to create and apply models employing pre-calculus mathematics. A brief discussion of our research findings based on 

implementation of the instrument include the lack of student ability to develop quantitative models. We present items from the 

instrument as examples of the Quantitative Act elements: variable quantification through identifying variable and attributes, 

measurement, variation, quantitative literacy, and context. We also provide items representing quantitative modeling and 

quantitative interpretation. We then view quantitative biology from K-12 and collegiate perspectives, including instructional 

practices for teaching quantitative biology, motivating problem contexts that afford quantification, instructional strategies of 

repetition, scaffolding, peer teaching and learning, direct instruction and teacher moves on the K-12 level, as well as identifying 

five competencies for the next generation of biologists which require QA abilities. 
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1. Introduction 

Biology is evolving. From its foundation in the Natural 

Philosophy of ancient civilizations such as Mesopotamia and 

Egypt, the origins of modern biology sprung from the work 

of Aristotle (384-322 BC) in his History of Animals [1, 2]. 

The method of observation was the primary means of study 

in biology. Physical sciences were then brought to bear in 

biology, primarily as a means of building tools to assist in 

biological investigations, such as Friedrich Wohler’s and 

Justus Liebig’s application of physical and chemical methods 

in organic chemistry to better understand biological processes. 

But the quantitative study of biology has moved far beyond 

that now. D’Arcy Thompson’s On Growth and Form [3] was 

influential in that it ushered in the application of physical and 

geometric principles in biology [4] and resulted in a scientific 

explanation for one of the fundamental aspects of 

developmental biology: morphogenesis – the biological 

process that causes an organism to develop its shape. The 

outcome of Thompson’s efforts was an interdisciplinary field 

at the intersection of biology, physical sciences, and 

mathematics having at it is center the mathematical 

formulation of the physical mechanisms underlying 

morphogenesis [4]. Pioneers in this transition include the 

work by Galvani and Volta on animal electricity which led to 

the first battery [5] and research by Hodgkin and Huxley on 

the action potentials in the squid giant axon [6]. Over the 78 

years since Thompson’s influential work pushed biology in a 

quantitative direction, the field of biology has transitioned 

from a primarily qualitative view of phenomena to include 

quantitative analysis that provides congruent explanations 
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that go beyond description. 

In the 21st century, the use of mathematics in biology has 

become widespread and is generally accepted as a powerful 

and important tool [4]. With the availability of extensive 

quantitative data, researchers can now develop and test 

mathematical models of biological phenomena. The 

increased use of mathematics, statistics, and computational 

techniques to study life and living organisms has resulted in a 

number of new areas of study including: cellular identities 

within regularity networks [7], computation applied in study 

of nervous system [8], social interactions of flocking birds 

[9], and structures of protein molecules [10]. The future of 

quantitative biology looks to go beyond mathematical models 

of complex biological phenomena and toward the 

formulation of theories that can be tested quantitatively [11], 

thus expanding the bounds of biology to include quantitative 

science and providing for an understanding of the living 

world where the distinction between biology and physical 

sciences will vanish [4]. 

If we are to support the future of quantitative biology, then 

the next generation of biologists must be prepared to 

consistently integrate quantitative reasoning into subject 

matter that has traditionally been considered through a 

qualitative lens. We define the concept below: 

Quantitative reasoning is mathematics and statistics 

applied in real-life, authentic situations that impact an 

individual’s life as a constructive, concerned, and reflective 

citizen [12]. 

Quantitative Reasoning (QR) includes quantifying a 

problem by conceptualizing the focal object and assigning 

units of measure to its attributes (i.e., the Quantitative Act 

[QA]), developing and revising models to explain 

phenomena related to the object and its attributes (i.e., 

Quantitative Modeling [QM], and using models to make 

predictions (i.e., Quantitative Interpretation [QI]). QA is 

fundamental to meaningful student engagement in QM and 

QI. QA is the mathematical process of conceptualizing an 

object and an attribute of it so that the attribute has a unit 

measure. Included in QA is quantitative literacy, the use of 

fundamental mathematical concepts in sophisticated ways, 

which allows the student to describe, compare, manipulate, 

and draw conclusions from the quantified variables. Models 

require building blocks and an understanding of how those 

blocks go together to form mathematical expressions. This is 

the realm of QA, mathematizing a scientific context by 

identifying variables, assigning measures to the variables, 

and determining attributes that allow for comparing, 

contrasting and combining variables to from quantitative 

expressions. Mathematical expressions are the meta-building 

blocks used to create quantitative models. Quantitative 

reasoning is underpinned by QA. 

In this chapter we introduce a quantitative reasoning 

framework and discuss the importance of quantitative 

modeling in quantitative biology. We then shift the focus to 

the Quantitative Act as a support for QM and QI. A summary 

of our research on Quantitative Biology through the lens of 

the quantitative reasoning framework is provided before 

offering examples of QA supporting QM and QI from K-12 

and collegiate perspectives, and exploring both K-12 teacher 

professional development and faculty professional 

development in teaching Quantitative Biology. The chapter 

addresses the following questions: 

1) What is quantitative reasoning? 

2) What is the role of modeling in Quantitative Biology? 

3) How do you measure quantitative reasoning in Biology? 

4) How does Quantitative Biology look like in the classroom? 

5) How do K-12 teachers or university faculty improve 

student’s Quantitative Act ability? 

6) What are the barriers to implementing Quantitative 

Biology in K-12 courses and undergraduate biology 

courses? 

2. Quantitative Reasoning Framework 

Across all areas of STEM, national organizations support 

improving students’ quantitative reasoning abilities, which 

include quantitative act, quantitative modeling, and 

quantitative interpretation. [13-17]. One of the mechanisms 

recommended for improving quantitative reasoning is 

engagement in the construction, assessment, and revision of 

models for real-world natural phenomena [18, 19]. Students 

develop a hypothesis, create a model, make predictions using 

the model and compare them with data they collected, then 

revise the model as needed. Reference [19] state that the 

desired outcome is to generate a “defensible explanation for 

the way the natural world works”. This requires interpretation 

of the model (QI) within in context. Both QM and QI are 

dependent on the student’s ability in QA. 

QA, QM and QI are inexorably intertwined, but a clear 

understanding of the relationship between the three elements 

of quantitative reasoning was lacking. We created a QR 

Framework to address this need. The following discussion of 

our quantitative reasoning framework is based on the NSF 

funded Culturally Relevant Ecology, Learning Progressions, 

and Environmental Literacy (or simply the Pathways project). 

The Quantitative Reasoning (QR) framework was based on 

Pathways research exploring the trajectory of QR 

development in science across sixth to twelfth grades. This 

framework introduced and defined three components of 

quantitative reasoning: Quantitative Act (QA), Quantitative 

Interpretation (QI), and Quantitative Modeling (QM). 

We conceptualized the QR framework as a learning 

progression having four levels: the lower anchor, upper 

anchor and two intermediate levels of understanding. The 

lower anchor was based on the students’ current 

understanding of QR, which was established through 

distribution and analysis of a QR assessment and interviews 

with 6th to 12th grade students. The upper anchor was based 

on what experts identified as desired QR understanding at the 

12th grade level. The framework provides three progress 

variables, which are essential categories for the overall QR 

construct across which the levels are established. The QR 

progress variables are: 

Quantification Act (QA): Mathematical conceptual-ization 
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of an object and an attribute of it so that the attribute has a 

unit measure. This includes the use of fundamental 

mathematical concepts in sophisticated ways, which allows 

the student to describe, compare, manipulate, and draw 

conclusions from the quantified variables (i.e., quantitative 

literacy). 

Quantitative Interpretation (QI): Use of models to discover 

trends and make predictions. 

Quantitative Modeling (QM): Creation of quantitative 

representations to explain phenomena and to revise them 

based on fit to reality. 

Finally, each of the progress variables was elucidated by 

identifying a collection of elements determined through 

student interviews that indicated essential abilities within the 

categories: 

a. Quantification Act Elements: Variable Quantification, 

Variation, Quantitative Literacy, Context. 

b. Quantitative Interpretation Elements: Trends, 

Predictions, Translation, Revision. 

c. Quantitative Modeling Elements: Create model, Refine 

model, Reason with model, Statistical analysis. 

For a detailed presentation of the QR framework see 

Reference [12]. 

Table 1. Quantitative modeling framework of students’ abilities. 

Model Formulation Model Deployment Meta-Modeling 

Analyze – decompose phenomena into 

quantifiable variables 

Empirical Testing – investigate quantitative interactions 

within phenomena 

Nature and Purpose of Models - 

describe role of modeling in science 

Inductive Reasoning – hypothesize how elements 

interact conceptually and quantitatively 
Evaluate – assess degree of fit and ways to change model 

Steps of Modeling - describe the 

iterative nature of modeling practice 

Quantify – formulate a quantitative model Analogical Testing – compare models to identify the best  

 Apply – use the model to predict or explain other phenomena  

 

2.1. Quantitative Modeling 

Quantitative modeling is a means for developing and 

enhancing a conceptual understanding of natural 

phenomena. Successful model building is centered in 

model-based reasoning and meta-modeling abilities [20, 

21]. Model-based reasoning is the ability for students to 

constuct scientific models in order to explain observed 

phenomena. Meta-modeling is understanding the nature of 

models and their utility and purpose [22]. Here we focus 

on the first of these abilities, model-based reasoning. The 

MoDeLs Project [23] has students construct and revise 

models based on empirical evidence. An anchoring 

phenomena is observered, then a model of the phenomena 

is constructed, empirically tested, evaluated, compared to 

other models, and revised before finally being used to 

predict or explain. Model-based reasoning makes it 

possible to understand and predict aspects or 

characteristics of the phenomena [24-26]. In the 

model-based framework, science is a complex, dynamic 

network of models. Scientific modeling is defined as the 

process of developing concrete representations of abstract 

concepts in science and the underlying mechanisms that 

cause physical phenomena and are driven by observations 

of physical phenomena [27-29, 19]. Modeling thus plays a 

central role in the formation and justification of new 

knowledge [30, 25]. Learners use models to link new 

information to prior knowledge, adjusting the models as 

needed to accommodate new experiences to enhance their 

understanding of the phenomenon under study. 

Modeling-based learning (MbL) is a theoretical framework 

whereby learning takes place via student construction of 

models as representations of physical phenomena [31, 19]. In 

science education, the MbL approach is grounded in inquiry, 

constructivism, and constructionism traditions [23] and is 

used to promote scientific literacy and authentic scientific 

inquiry [32-33]. The construction and refinement of models 

has been shown to improve conceptual understanding, 

operational understanding of the nature of science, and 

ability to employ procedural and reasoning skills [34-35]. 

Modeling also engages students in communication about 

science [33], collaboration with peers [36-37], and 

encourages metacognition [38]. Moreover, modeling is an 

interdisciplinary skill, where modeling improvement in one 

discipline can transfer to other disciplines [39]. Research on 

the elements or steps in modeling is extensive [40, 41, 42, 23, 

29, 19] and generally suggests students’ abilities fall under 

model formulation and model deployment categories (Table 

1). For the quantitative reasoning framework by [43] 

presented in the next section, model formulation includes QA 

in the analyze component, QL in the inductive reasoning 

component, QM in the quantify component, and QI in model 

deployment encompasses. 

Modeling takes on many forms, including experiential 

(physical manipulatives), visual, verbal (qualitative 

discourse), numerical (quantitative data), or symbolic 

quantitative models [44]. Multiple model representations can 

provide different perspective of a problem and thus, have the 

potential to improve students’ comprehensive understanding 

[45-46] as they encode and retrieve knowledge in different 

modalities [47]. Computational modeling and the simulation 

of models are two examples of modern quantitative modeling 

approaches that permit a deeper understanding of underlying 

mechanisms and the ability to investigate a complex problem 

or process holistically [48]. For example, quantitative 

modeling requires learners to develop a quantitative account 

of the phenomena and understand mathematical and 

conceptual interactions among the model components [12]. 

Translation across multiple representations is strengthened 

through quantitative interpretation of models when 

determining trends and making predictions [12]. Importantly, 

students who are given the opportunity to develop the 
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quantitative models themselves become owners of the 

modeling process since they are responsible for learning 

about the phenomena [22-23], and selecting the model form 

that provides the most appropriate account of the particular 

facet of the phenomenon in which they are interested. 

It is important for students to move from a qualitative 

account to a quantitative account in their models, providing 

the capacity for data-based argumentation to support their 

conclusions [49-50, 16, 51]. For example, students in middle 

and high school often provide qualitative accounts of 

phenomena in environmental science and chemistry and 

avoid employing quantitative reasoning about them [52, 53, 

12]. The students in the Mayes et al. study [12] relied on a 

force-dynamic discourse based on personal experiences 

rather than scientific discourse [54], whereas the students 

who provided a quantitative discourse were better able to 

provide a convincing data-based argument [12]. 

2.2. Quantitative Biology 

Quantitative biology is the use of mathematics, statistics or 

computational techniques to study life and living organisms. 

As problems researched in the field of biology are becoming 

more complex and interdisciplinary, modern experimental and 

computational tools are transforming biology from an 

observational to a data-intensive science. Grand challenges for 

complex biological systems over the next 20 years, as 

identified by the Biological and Environmental Research 

Advisory Committee [55], include enabling predictive 

biology through development of simulation models, modeling 

the evolution and dynamics of a complex biological system; 

measuring and analyzing biological systems through 

advanced computational and analytic methods; and exploring 

ecosystem function and elemental cycling. Extensive data and 

advanced computing are supporting interdisciplinary teams in 

conducting this research, where biologists are joined by 

chemists, physicists and mathematicians to tackle these grand 

challenges. Quantitative models have taken on a major role 

given the study of complex global problems and the 

development of software and inexpensive hardware that 

permit data analysis and simulation [56]. If quantitative 

biology is essential to future biology research, then we need to 

know more about how to integrate it into biology courses to 

better prepare students today for engaging in quantitative 

biology tomorrow. In this section, we discuss the Quantitative 

Modeling in Biology for Undergraduate Students (QM BUGS) 

project which informed our understanding of the current status 

of QR in undergraduate biology. 

Research on student learning in quantitative biology 

courses has focused on improving students’ numeracy skills, 

graphical interpretation of data, and inferences from 

mathematical models [57-58]. At the undergraduate level, 

quantitative accounts of biological system dynamics are often 

left to biology courses with a lack of consensus on whether to 

first introduce biology, mathematics, modeling, or technology 

[59, 60, 51]. Such courses started with the assumption that a 

quantitative account yields greater biological knowledge, with 

no metric for measuring the current or changing quantitative 

modeling abilities of the students. However, no instrument 

existed that examined the entirety of the modeling practice, 

from building to evaluating to revising the model and 

understanding the model’s purpose. This left a gap in the 

research concerning students’ cognitive and metacognitive 

modeling abilities and the practices students utilized while 

they built and revised quantitative models in undergraduate 

biology courses [61]. 

3. Measuring Quantitative Reasoning 

3.1. QM BUGS Diagnostic Instrument 

To address this need, we developed the QM BUGS 

diagnostic instrument which assesses undergraduate biology 

students’ abilities to create and apply models employing 

pre-calculus mathematics. The Pathways QR framework was 

applied in the development of the diagnostic instrument, 

which measures QA, QM, and QI. 

The foundation for student engagement in modeling 

biological phenomena is the quantification act (QA). The 

student should begin by mathematizing the biological context. 

Quantification begins by drawing the variables out of the 

context. Once identified, the variables are assigned 

appropriate measures for the context. Finally, attributes are 

determined for the variables, allowing for comparing, 

contrasting and combining variables to form quantitative 

expressions. So how do instructors engage students in QA? 

A common practice we observed in the Pathways Project 

with 6th to 12th grade science classes and in QM BUGS with 

undergraduate biology courses was instructors providing 

quantitative models to students and asking them to interpret 

the models (QI). The students would jump right in, plugging 

numbers into the models without consideration of the context 

the model represented. For example, we observed students 

interpreting graphs without a clear conception of the variables 

assigned to the axes of the graph. The instructors failed to 

begin the QI exercise with appropriate attention to 

quantification of the variables. The result is meaningless 

calculation and a lack of connection of results with the context 

of the problem. This is evident when students provide an 

answer with no measure and no connection to other variables 

in the problem. This is reminiscent of a question asked in The 

Hitchhiker’s Guide to the Galaxy, a comic science fiction 

series and movie created by Douglas Adams. 

Hyper-intelligent beings task the supercomputer Deep 

Thought with finding the answer to the ultimate question of 

life, the universe, and everything. After 7.5 million years of 

computing Deep Thought proclaims the answer to be 42. The 

computer (student) failed to provide any measure or 

meaningful attributes for the variable. The hyper-intelligent 

beings (teacher/faculty) never actually knew what the 

question was. This is an example of poor QA. 

Modeling is challenging, so students may need scaffolding 

to develop modeling abilities. While a good scaffolding 

technique is to engage the students in quantitative 

interpretation (QI) of a model provided for them, the instructor 
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must ensure that students start their interpretation with QA. 

Quantitative interpretation of models provided by the 

instructor was common, but the instructor often over directed 

the interpretation, not allowing students to fully engage. Slow 

down the QI process by providing time for students to fully 

engage in QA, including having students work in small groups 

to identify potential variables, label the variables, determine 

attributes of the variables, and determine a measure for the 

attributes that are appropriate for the context of the problem. 

Have students apply the attributes and measures to explore 

how the variables are related, a first step in building a model. 

The ultimate goal of incorporating quantitative reasoning 

into biology is for students to develop their own models. In 

our observations of 6-12 and undergraduate biology this goal 

was seldom achieved and often not even attempted. QA and 

QI were employed, but students were not asked to create a 

model (QM). Quantitative modeling requires learners to 

develop a quantitative account of the phenomena and 

understand mathematical and conceptual interactions among 

the model components [43]. Translation across multiple 

representations is strengthened through quantitative 

interpretation of models when determining trends and making 

predictions [12]. If developing students’ quantitative biology 

understanding is a goal, then providing at least one or two 

open-ended modeling tasks is essential. Remember that 

developing QM starts with QA. So let’s look in more detail at 

the quantitative act. 

3.2. Quantitative Act 

In our framework, the Quantitative Act (QA) has four 

elements: variable quantification, variation, quantitative 

literacy, and context. Here we provide definitions and 

examples of each of the four elements. Examples will be 

drawn from the Quantitative Modeling in Biology for 

Undergraduate Students (QM BUGS III) diagnostic 

assessment. The assessment was designed by our research 

team to measure students’ proficiency in quantitative 

modeling. QM BUGS III is a third version of the 

assessment which underwent rigorous review, reliability 

and validity testing, The diagnostic assessment consisted of 

5 subsections - quantitative act (QA, 6 items), quantitative 

interpretation (QI, 6 items), quantitative modelling (QM, 8 

items), metamodeling knowledge (MMK, 6 items), and 

quantitative biology capability confidence (QBCC, 12 

items). Across the five subsections of QM BUGS III there 

are 38 questions: 26 multiple choice questions addressing 

four subcategories of QA, QI, QM, and MMK, and 12 

Likert questions using a 4-level scale (from 1 Strongly 

Disagree to 4 Strongly Agree) addressing QBCC. The 

self-ratings items (QBCC) include 1 on Quantitative Act 

capability, 7 on Quantitative Modelling capability, and 4 on 

Quantitative Interpretation capability. 

Variable quantification is the development of a mental 

construct for an object within a context that includes both 

attributes and measure [62]. Variable quantification builds the 

capacity to communicate quantitative accounts of a solution, 

facilitate decisions concerning solving the problem, and set a 

course of action within the context of the problem. QM 

BUGS III item 3 and item 4 (Figures 1 and 2) assessed 

variable quantification. The biological context for the 

assessment was transpiration in plants. This provided a 

context which undergraduate students have been exposed to 

either in high school or college. The following information 

on the context was provided as an opening to the assessment. 

Transpiration Context: Transpiration is the process by 

which water is carried through plants from roots to small 

pores on the underside of leaves called stomata, where it is 

released as vapor into the atmosphere. The process is critical 

for plant cooling, accessing nutrients from the soil, providing 

water to plant cells to maintain rigidity, and supplying cells 

with hydrogen and oxygen atoms for cellular respiration. 

There are a number of atmospheric factors affecting 

transpiration. Answer the following questions on 

transpiration. 

3.2.1. Variable Quantification: Identifying Variable and 

Attributes 

QM BUGS III Item 3 addressed variable quantification 

characteristics of identifying variables and attributes of those 

variables from context. The students were provided five 

possible variables to use to answer a research question. They 

had to identify the appropriate variables to use given 

attributes of the variables. The desired response was 3e. Item 

3 had the second highest correct response rate across the 20 

questions on QA, QI, and QM. 

 

Figure 1. Transpiration study apparatus. 

QM BUGS ITEM 3: Students were interested in the 

question: Will plants with larger leaves transpire more than 

those with smaller leaves? They conducted an experiment 

where they placed 3 different plants with small, medium and 

large leaves in sealed tubes (see apparatus in Figure 1). The 

plants were placed where they received the same amount of 

partial sunlight. The students measured temperature change 

(Co), relative humidity (%), and wind speed (mph) each day. 

They also measured the square area (cm2) of each plant’s leaf 

area. Over the course of two weeks they tracked the amount 

of water lost from the apparatus. Identify the variables that 

the students should use to answer their research question. 

(QA Variable Quantification – identify possible variables and 

attributes from context). 
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a. Temperature increase triggers plant to open stomata 

which increases transpiration rate, so they should use 

temperature and water lost data. 

b. Relative humidity of air surrounding plant rises making 

it harder for water from plant to evaporate, so they 

should use relative humidity and leaf area data. 

c. Leaf surface area and light to determine increased 

photosynthesis. 

d. Light makes photosynthesis possible, plant opens 

stomata to take in CO2 which increases transpiration, so 

they should use light and water lost data. 

e. Leaf surface area increases number of stomata which 

would increase transpiration, so they should use leaf 

surface area and water lost data. 

3.2.2. Variable Quantification: Measurement 

QM BUGS III Item 4 addressed the variable quantification 

characteristic of measurement. The context provided 

information that indicated the appropriate measure to select, 

which was response 4c. Item 4 had the highest correct 

response rate of the 20 questions on QA, QI and QM. 

QM BUGS ITEM 4: Transpiration is related to the rate of 

passage of water vapor exiting through the stomata of a leaf, 

which is called stomatal conductance. Stomatal conductance 

is a diffusion flux representing the movement of air from a 

region of high moisture concentration to a region of low 

moisture concentration across an area of leaf over a given 

time (Figure 2). Which of the following is an appropriate unit 

of measure for stomatal conductance? (QA Variable 

Quantification measure). 

NOTE: A mole (mol) is the amount of substance, in this 

case water vapor, in a unit of air. 

a. mol air/meter x second 

b. mol air/meter2 

c. mol air/meter2/second 

d. mol air/meter3/second 

e. second/meter2 x mol air 

 

Figure 2. Stomatal conductance in a leaf. 

3.2.3. Variable Quantification: Variation 

Establishing relationships between variables within a 

context is reliant on the ability to reason about covariation of 

variables. Covariation entails comparing, contrasting, and 

relating variables in the context of the problem. Statistically 

covariance is a measure of joint variability between two 

variables. QM BUGS Item 2 addressed variation. A context is 

provided, then five possible variations are given. The student 

was to use the context of the study to determine the appropriate 

covariation between two variables. The desired response was 

2e. This item did not rank in the highest five correct response 

rates of the 20 questions on QA, QI and QM. 

QM BUGS ITEM 2: A biologist is studying transpiration 

of apple trees. She collected the data in Table 2 on two trees. 

The biologist compares variation in two variables to 

determine relationships. Which of the following is an 

important relationship between variables for her study? 

(Inductive Reasoning – hypothesize from data, Variation). 

a. Variation in transpiration by variation of length of day. 

b. Variation in stomatal resistance by variation in leaf area. 

c. Variation in leaf area by variation in humidity. 

d. Variation in transpiration rate by variation in temperature. 

e. Variation in transpiration rate by variation in stomatal 

resistance. 

Twelve selected sampling dates throughout year (DJ 

number of days since January 1, 1996), Temperature (T in 

Kelvin), Length of Day (N photoperiod duration in hours), 

Relative Humidity (RH mean percent), Leaf Area (LA in 

square meters), Transpiration Rate (TR in leaf water 

transpired per tree per day), and Stomatal Resistance is 

resistence to evaporation of water from stomata (s in meters 

per second). 

3.2.4. Quantitative Literacy 

Quantitative literacy is reasoning with quantities to explain 



 Applied and Computational Mathematics 2022; 11(1): 1-17 7 
 

relationships between variables. It is fundamental to moving 

from variable quantification to building quantitative 

expressions. Quantitative literacy includes ability to engage 

in proportional reasoning, numerical reasoning, and algebraic 

reasoning or higher mathematical reasoning. QM BUGS III. 

Item 5 addressed quantitative literacy. A context was 

provided which included question on the quantitative 

relationship between four variables. Students were to 

translate the text into a quantitative expression modeling the 

relationship. The desired response was 5a. This item did not 

rank in the highest five correct response rates of the 20 

questions on QA, QI and QM. 

Table 2. Data on transpiration of apple trees. 

Day DJ (1-1-96) 
Temperature 

T (Kelvin) 

Length of Day 

N (hours) 

Relative Humidity 

RH (%) 

Leaf Area 

LA (m2) 

Transpiration Rate (TR) (L 

H2O tree-1 day-1) 

Stomatal Resistance 

(s) (m s-1) 

Tree 1       

184 289.8 15 92 9.3 7.3 302 

188 292.3 15 75 9.3 15.1 509 

191 292.5 15 73 9.3 15.3 550 

198 292.1 15 68.3 9.3 12.8 572 

200 293.5 15 68.9 9.3 16.6 602 

205 296.4 15 82.6 9.3 10.9 475 

Tree 2       

185 295.5 15 48 20.6 57.6 761 

187 294.8 15 78 20.6 31.7 542 

191 293.6 15 79 20.6 29.4 476 

192 293.5 15 69.2 20.6 38.9 562 

193 294.6 15 59.3 20.6 47.5 656 

194 294.9 15 56.2 20.6 51.8 664 

 

QM BUGS ITEM 5: Stomatal conductance Rvs is the rate 

of passage of water vapor exiting through the stomata (small 

pores) of a leaf. A steady state porometer (Figure 3) is an 

instrument that measures stomatal conductance by clamping 

it to the leaf surface, then computing the vapor flux between 

two locations on the diffusion path. The ratio of the change 

between vapor concentration at the leaf CvL and the 

concentration at the first sensor Cv1 to the combined 

stomatal resistance Rvs and resistance at the first sensor R1 is 

used in the vapor flux computation. Which of the following 

expressions represents this ratio? (QA Quantitative Literacy). 

 

Figure 3. Study state porometer measuring stomatal conductance. 
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3.2.5. Quantitative Context 

Context involves taking a situated view of quantitative 

reasoning within a community of practice [63]. Ill-defined 

problems existing within socio-political contexts are 

solved by ad-hoc methods. Solutions require informal 

reasoning within the context [64]. QM BUGS III Item 1 

(Figure 5) and Item 6 addressed elements of context. An 

anchoring phenomenon is provided in Item 1 within a 

real-world context and students are asked to reflect on it. 

The desired response was 1c. Item 1 had the fifth highest 

correct response rate of the 20 questions on QA, QI and 

QM. 

QM BUGS ITEM 1: A biologist places a bag over a branch 

of a plant, leaves the bag on for a day, then comes back to 

observe the results (Figure 4). She sees water has collected in 

the bag. What does she hypothesize about her observation? 

(Analyze - Anchoring Phenomena, hypothesize from 

observation). 

a. Bag is permeable and dew passed through bag. 

b. High humidity air was trapped when she placed bag 

over limb. 

c. There is water in the bag released from the leaves. 

d. Photosynthetic process releases water into bag. 

e. Water condensed in the bag due to temperature 

difference inside and outside the bag. 
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Figure 4. Plant branch bag apparatus. 

QM BUGS III Item 6 addressed context through cultural 

appreciation for biology. A context related to applying 

biology to everyday life was provided. The students had to 

interpret a table to analyze the condition of their plant. The 

desired response was 6b. This item did not rank in the highest 

five correct response rates of the 20 questions on QA, QI and 

QM. 

QM BUGS ITEM 6: Relative humidity has a big impact on 

growing your indoor plants. Growers pay attention to the 

impact of temperature on plants, but often ignore humidity. A 

rule of thumb for growers is to have 70% relative humidity 

for vegetative growth, but this does not take into account 

temperature. Vapor Pressure Deficit (VPD) is the difference 

between the vapor pressure inside a leaf compared to the 

vapor pressure of the air. VDP can be calculated from the air 

temperature and relative humidity. VPD provides the grower 

with a better indicator of how plants really “feel” and react to 

the combination of humidity and temperature. For best 

growing conditions you should keep the VPD between 7.5 

and 10.5 kilopascal units of pressure (Table 3). Which of the 

following is the correct analysis of your plant condition with 

respect to VPD? (QA Context cultural appreciation). 

Table 3. Relative humidity by temperature chart. 

TEMP Relative Humidity 

°C °F 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 35% 

15 59 0.0 0.8 1.7 2.5 3.4 4.2 5.1 5.9 6.8 7.6 8.5 9.4 10.2 11.1 

16 61 0.0 0.9 1.8 2.8 3.7 4.6 5.5 6.4 7.3 8.2 9.1 10.0 10.9 11.8 

17 63 0.0 1.0 2.0 2.9 3.9 4.9 5.8 6.8 7.8 8.8 9.7 10.6 11.6 12.6 

18 64 0.0 1.0 2.0 3.1 4.1 5.1 6.2 7.2 8.2 9.3 10.3 11.3 12.4 13.4 

19 66 0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0 12.1 13.2 14.3 

20 68 0.0 1.2 2.4 3.5 4.7 5.9 7.0 8.2 9.4 10.6 11.7 12.8 14.0 15.2 

21 70 0.0 1.2 2.4 3.7 4.9 6.2 7.4 8.6 9.9 11.1 12.4 13.7 14.9 16.1 

22 72 0.0 1.3 2.6 3.9 5.3 6.6 7.9 9.2 10.5 11.9 13.2 14.5 15.8 17.2 

23 73 0.0 1.4 2.8 4.2 5.6 7.0 8.5 9.9 11.3 12.7 14.1 15.4 16.8 18.2 

24 75 0.0 1.5 3.0 4.5 5.9 7.4 8.9 10.4 11.9 13.4 14.9 16.4 17.9 19.4 

25 77 0.0 1.6 3.2 4.8 6.4 8.0 9.5 11.1 12.7 14.3 15.9 17.4 19.0 20.5 

26 79 0.0 1.7 3.4 5.1 6.7 8.4 10.1 11.8 13.4 15.1 16.8 18.4 20.1 21.8 

27 81 0.0 1.8 3.5 5.3 7.1 8.9 10.7 12.4 14.2 16.0 17.8 19.6 21.3 23.1 

28 82 0.0 1.9 3.8 5.7 7.6 9.5 11.4 13.3 15.1 17.0 18.9 20.7 22.6 24.5 

29 84 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.1 24.1 26.1 

30 86 0.0 2.1 4.2 6.4 8.5 10.6 12.7 14.8 17.0 19.1 21.2 23.3 25.4 27.5 

31 88 0.0 2.2 4.5 6.7 9.0 11.2 13.4 15.7 17.9 20.2 22.4 24.6 26.9 29.1 

32 90 0.0 2.4 4.7 7.1 9.5 11.9 14.2 16.6 19.0 21.3 23.7 26.1 28.4 30.8 

33 91 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.6 20.1 22.6 25.1 27.6 30.1 32.6 

34 93 0.0 2.7 5.3 8.0 10.6 13.3 15.9 18.6 21.2 23.9 26.5 29.2 31.8 34.5 

 

a. My plant has a leaf virus at 70°F with VPD 3.7 

kilopascal so increase relative humidity. 

b. My plant is exhibiting slow growth at 70°F with VPD 

14.9 kilopascal so increase relative humidity. 

c. My plant leaves wilted at 70°F with VPD 13.7 

kilopascal so decrease relative humidity. 

d. My plant is exhibiting slow growth at 70°F with VPD 

8.6 kilopascal so decrease relative humidity. 

e. My plant is forcing water out of the leaves at their edges 

at 70oF with VPD 2.4 kilopascal so increase relative 

humidity. 

3.3. Quantitative Modeling and Interpretation 

We provide an example of quantitative modeling and 

quantitative interpretation from the QM BUGS III diagnostic 

assessment to indicate the type of items addressing the other 

two components of quantitative reasoning. 

Table 4. Transpiration rate by temperature for trees. 

T (K) TR (L/tree x d) 

289.8 7.3 

292.1 12.8 

292.3 15.1 

292.5 15.3 

293.5 16.6 

293.5 38.9 

293.6 29.4 

294.6 47.5 

294.8 31.7 

294.9 51.8 

295.5 57.6 

296.4 10.9 

3.3.1. Quantitative Modeling 

Developing closed form questions that address quantitative 

modeling is a challenge, since QM is centered on students 

developing a model for themselves. The eight items 



 Applied and Computational Mathematics 2022; 11(1): 1-17 9 
 

addressing QM included items on conceptual model 

development, phenomenological modeling, analytic models, 

graphic models, mechanistic models, statistical analysis, and 

refining a model. Here we share the phenomenological 

modeling Item 9. A phenomenological model describes the 

empirical relationship of phenomena to each other, in a way 

which is consistent with fundamental theory, but is not 

directly derived from theory. The desired response was 9b. 

This item ranked as the fifth most difficult in response rates 

of the 20 questions on QA, QI and QM. 

QM BUGS ITEM 9: The biologist is working on building 

a model of Transpiration Rate (y-axis) by Temperature 

(x-axis) from the data in Table 4. She created a scatterplot of 

the data (Figure 5) and fit different models to the data. Which 

of the following is an appropriate strategy for modeling the 

data? (QM Create Model – phenomenological). 

a. Fit a line that passes through the origin and another data 

point. 

b. Fit multiple models and determine which has best fit. 

c. Fit a linear model that passes through the most data 

points. 

d. Fit a linear model that divides the data set in half. 

e. Fit a non-linear model that passes through the first and 

last data points. 

 

Figure 5. Transpiration rate by temperature scatterplot. 

3.3.2. Quantitative Interpretation 

The six questions on quantitative interpretation included 

items on empirical testing of models, model comparisons, 

applying trends in models, translation between models, 

making predictions from models, and revision of models. 

Here we share the prediction Item 19. Students were 

provided a graphic model and an analytic formula model and 

were asked to confirm a prediction. The desired response was 

19c. This item had the third highest correct response rate of 

the 20 questions on QA, QI and QM. 

 

Figure 6. Transpiration rate by temperature model. 

QM BUGS ITEM 19: Use the graph or equation model in 

Figure 6 to predict what happens to transpiration rate if the 

temperature is 300 K? Select the best answer. (Model 

Application QI Prediction). 
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a. Data was only collected between 289 and 296 degrees 

Kelvin, so you can’t make a prediction for transpiration 

rate at 300 degree Kelvin. 

b. You cannot extend the graph of the best fit curve to 

make an estimate above 296 degree Kelvin. 

c. Transpiration rate is increasing at a nonlinear rate as 

temperature increases, at 300 degree Kelvin the 

transpiration rate is approximately 70 L/(tree x d). 

d. Above 296 degrees Kelvin the transpiration rate 

remains at a constant value, so with 4 degrees increase 

from 296 to 300 Kelvin the transpiration rate grows to 

approximately 58.5 L/(tree x d). 

e. Transpiration rate increases at a constant rate of about 

1.7, so with 5 degrees increase from 295 to 300 degrees 

Kelvin the transpiration rate grows to approximately 

56.5 L/(tree x d). 

4. Quantitative Reasoning Results 

Here we provide a short summary of the assessment 

findings on undergraduate biology students quantitative 

reasoning performance. 

1) On the QM BUGS II assessment undergraduate biology 

majors tended to perform at a higher mean level on 

quantitative act (M = 42.5, SD = 26) than on 

quantitative interpretation (M = 29.3, SD =19) and 

quantitative modelling (M= 30.8, SD=18). However, 

the relatively low percentage correct (42%) provides 

reason for concern about their overall ability level. 

2) Bonferroni post-hoc comparisons found QA 

performance differed significantly from QM (delta = 

11.8, SE = 1.1), effect size of d =.52, t(1) = 11.0, p < 

0.001 and from QI (delta = 13.2, SE = 1.1), effect size 

of d =.58, t(1) = 12.0, p < 0.001, while QI and QM were 

not significantly different (delta = 1.5, SE = 0.9), effect 

size of d =.08, t(1) = 1.6, p = 0.339. Overall, QI and 

QM performance levels were both over one half of one 

standard deviation below that of QA. 

3) Evidence of relatively consistent associations among 

QA, QI, and QM was shown by Pearson correlations 

which indicated there was a significant positive 

correlation among all three subsections: QA and QM (r 

=.33, p <.001), QA and QI (r =.32, p <.001), and QM 

and QI (r =.28, p <.001). 

Student performance on the QA subsection may have been 

higher than that of QI or QM due to the call for training, 

explicitly or implicitly, in quantitative literacy throughout 

secondary school [65]. Despite this type of exposure students 

have shown to be largely underprepared for QA [66-67]. The 

percentage correct for QA within our investigation is 

reflective of the 54% correct found by Johnson and Kaplan 

[68] in a study of quantitative literacy among undergraduate 

statistics students. Performance on the QA predicted 

performance on the QI and QM subsections, suggesting that 

students who reasoned about quantitative relationships were 

better prepared to conduct interpretation and modelling with 

the plant transpiration phenomena. Speth et al [57] found that 

incorporating quantitative literacy in undergraduate 

introductory biology courses through active-learning 

pedagogy improved quantitative skills, but construction of 

data-based scientific arguments was more of a challenge. 

Students in the present investigation performed particularly 

well on QA questions that included anchoring their 

understanding of transpiration by identifying a hypothesis, 

identifying relevant variables to study, and quantifying the 

variable of interest. The students were more comfortable with 

QA, given that four of the five easiest items for students were 

QA items. However, even the two easiest items, on 

quantifying a variable by determining an appropriate measure 

(item 4) or identifying variables with attributes in context 

(item 3), were correctly answered by only 57% (item 4) and 

54% (item 3) of students. In addition, it is worth considering 

that the superior QA performance in this study may possibly 

be influenced by an order effect of QA being assessed first 

on the QM BUGS III assessment. 

We hypothesized that students would perform at an 

intermediate level on the QI subsection given the push in 

biology to consider quantitative reasoning in the form of 

graphical analysis [13, 16] including how to interpret 

functional relationships [68]. Stanhope et al. [69] found that 

items related to visualizing data generally had low difficulty 

although a few questions about translating between a research 

question to a visual model (e.g., what is the best way to 

represent the data for temperature versus transpiration rate) 

had high difficulty levels. However, this intermediate level 

performance was not found in the present study and that likely 

contributed to the poor performance on QM. QM is not 

considered entirely dependent on QI performance in a 

hierarchical manner, although there are elements of QI that are 

important for QM elements. For example, the ability to refine a 

model will be predicated partially on one’s ability to interpret 

the trends of the current model and make a mental prediction 

about a new model or new data. Goldstein and Flynn [70] 

found that even students who learned quantitative analysis 

skills had trouble applying the skills to interpret biological 

datasets. At the same time, refining a model also involves 

additional cognitive tasks like knowing the nature of models 

(quantitative relationships, biological significance) and the 

purpose of determining coherence with scientific evidence. 

5. Quantitative Biology K-12 Level 

The development of students’ quantitative reasoning has 

become increasingly emphasized in K-12 education. In fact, 

one look at the framing of National Science Standards (i.e., 

Next Generation Science Standards [NGSS]) documents 

erases all doubt that the QR revolution has arrived [71]. For 

example, the bulk of science and engineering practices from 

the NGSS directly mirror aspects of QR (e.g., developing and 

using models, planning and carrying out investigations, 

analyzing and interpreting data, and engaging in argument 

from evidence), while the remaining practices are informed by 

QR at the very least (e.g., argumentation). Similarly, 

crosscutting concepts such as patterns, cause and effect, scale, 
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proportion, and quantity, and stability and change, all reflect 

the importance of QR for contemporary science education in 

general and for biology education, specifically. Finally, given 

that a majority of the performance expectations include 

aspects of QR, it is clear that mastery of science standards 

requires fluency with QR and its constituent parts. In summary, 

the framing of core ideas, practices, and crosscutting concepts 

highlights the importance of quantitative literacy toward the 

preparation of K-12 students as informed citizens and 

underscores the significance of QR to a functional 

understanding of biology. 

The inclusion of quantitative reasoning practices in the 

national science standards is certainly warranted – the 

real-world problems that schools are preparing students to 

solve require quantitative reasoning and as a result, is requisite 

to a functional understanding of biology. Current evidence 

supporting this assertion is the consideration of change in 

populations over time. For example, much of the news cycle in 

2020 has focused on rates of COVID-19/coronavirus transfer 

among populations of countries around the world. COVID-19 

is a real-world context with authentic opportunities to apply 

quantitative reasoning with the purpose of better 

understanding the coronavirus and slowing its spread. In 

response to the coronavirus outbreak, Sadler et al. [72] 

developed a module using the COVID-19 pandemic as an 

anchor and focusing on students’ engagement in modeling 

practices. One of the modeling simulations enabled students to 

better understand how reproduction number (RO) related to 

the number of individuals infected with the disease. Another 

simulation used a computation model developed within 

Netlogo to simulate the impact that social distancing had on 

the spread of the virus. The modeling activities made it 

possible for students to analyze variables related to the growth 

and spread of the virus, adjust the variables to determine how 

they related to transmission rate, and situate quantitative 

reasoning in a real world context in which decisions had to be 

made to slow virus transmission (e.g., whether or not to 

socially distance). Decision-making regarding policy to quell 

the spread of COVID-19 would not be informed without a 

heavy dose of quantitative reasoning. 

A favorite biology investigation of ours that requires 

students to engage in quantitative reasoning is called Life in 

Groups: Why Do Wolves Live in Groups from Sampson and 

Murphy’s [73] Argument-Driven Inquiry in Third-Grade 

Science. The investigation explores why animals live in 

groups and focuses on wolves living in packs and the benefits 

to hunting that doing so affords. The goal of the investigation 

is for students to determine whether living in groups (packs) 

makes it easier for wolves to get food and survive. Students 

are tasked with watching a number of videos of wolves 

hunting prey of different sizes, including caribou (200-400 

lbs.), elk (500 – 700 lbs.), and bison (1300 – 1500 lbs.), while 

looking for cause (group living) and effect (getting the food 

they need to survive) relationships. After devising methods for 

their study, students collect and analyze data with the purpose 

of supporting an argument for why wolves live in packs. The 

different elements of the QA are readily apparent in the 

problem (Table 5). 

Table 5. Elements of Quantitative Act necessary for ‘Why Do Wolves Live in Groups?’ investigation. 

Quantitative 

Act Element 
Example 

Variable 

quantification 

Students must determine the aspects of hunting episodes that are important to the investigations so that they can devise a method for 

measuring each attribute as they engage in the investigation. Important attributes to account for in this investigation include the number 

of wolves, the type of prey (size), and the outcome of the hunt. 

Variation 

Students must consider how the important attributes in the investigation relate to one another. In this investigation, the number of wolves 

involved in the hunt would be expected to directly relate to the likelihood of a successful kill. Additionally, the size of the prey would also 

directly relate to the number of wolves necessary to succeed in hunting it. 

Quantitative 

literacy 

Students exhibit quantitative literacy by accounting for the relationships between variables. In this investigation, students should be able to reason 

that larger pretty are more difficult to kill and thus, likely require additional manpower to increase the likelihood of success. However, no matter 

the size, having a few wolves around to help separate weaker prey from the group should increase hunting success rate. 

Context 

Whereas this investigation as written by Sampson and Murphy did not include a socio-political context that in which the quantitative 

reasoning would need to be situated in order to resolve an issue, I often situate this investigation in the context of wolf reintroduction to 

Yellowstone, where quantitative reasoning about wolves’ group living and hunting success would need to be integrated with perspective 

taking regarding a number of stakeholders (e.g., indigenous, farmers, ecologists, visitors, etc.) before a solution could be settled on. 

 
Another example highlighting the importance of 

quantitative reasoning to biology education relates to “The 

Tragedy of the Commons” [74], where resources that are 

available to all will ultimately be overharvested and disappear. 

One context that is often used to illuminate the Tragedy of the 

Commons is fisheries biology, where overharvesting of fish 

has catastrophic effects on fish populations and can lead to 

their extinction. A popular activity that can be used effectively 

across grade levels is to have a bowl (lake) full of fish 

(goldfish snacks) and allow individuals who access the lake to 

fish at different rates to determine the effect of catch rate and 

reproduction rate on population size. We usually frame the 

activity with four fishers, each whom represents the head of a 

hungry family, whose only food source is the lake. The lake 

has a carrying capacity of 20 fish, and the fish remaining after 

each season (student fishing episode) double to account for 

reproduction (up to 20 fish carrying capacity, of course). The 

parameters are that the families of fisherman who catch < 2 

fish starve but those that catch 2 fish survive. Each fish caught 

after the first 2 nets $1 from Captain D’s, and the greatest 

provider of fish to Captain D’s from the lake wins a $20 bonus 

and all you can eat hushpuppies. Before fishing ensues, each 

student writes what their daily catch will be and lists all factors 

that contributed to their decision, on their own and in silence. 
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Then, each individual tells their group how many fish they 

will take each season, an amount they cannot change (students 

are often aghast by the number of fish their peers chose to 

harvest). Once fishing begins, all fish usually disappear within 

the first few rounds (seasons) of fishing. The activity provides 

students with an opportunity to engage in quantitative 

reasoning by considering attributes and measure (e.g., number 

of fishers, number caught per day, reproduction rate), how 

each of those variables relate and why, functions that represent 

the relationships present, and the moral context provided by 

students selecting different daily catch and how they justify it 

through analysis of the sum of factors contributing to their 

determined harvest amount. 

5.1. Instructional Practices for Teaching QR in Biology 

All players in academia need additional support to usher in 

the era of quantitative reasoning. Seriously, whether we are 

talking about students, pre-service or in-service teachers, or 

even university faculty, most have generally not had 

substantive QR experiences, and those expected to teach QR 

could use significant support [75-76]. In the following 

paragraphs, we highlight instructional practices that can 

contribute to teachers’ success in facilitating quantitative 

reasoning instruction. 

5.2. Motivating Problem Contexts That Afford 

Quantification 

Perhaps the first step to enhancing students’ quantitative 

reasoning skills in biology is to identify contexts that afford 

quantification [77] that would be meaningful for students and 

require QR. Real world problems, such as the COVID-19 

example, are often relatable to students and serve as 

meaningful contexts that can motivate learning, but even 

problem contests that are loosely based in reality (e.g., 

goldfish tragedy of the commons scenario) can garner 

significant interest and engagement. We find it helpful to 

make an effort to get them hooked before breaking out the 

quantitative reasoning provides motivation to consider the 

mathematics behind that which they got hooked on. For 

example, regarding COVID-19, a video clip of someone 

suffering on a respirator might engender a compassionate 

response and provide motivation to use quantitative reasoning 

in order to suggest solutions that would have the greatest 

likelihood of reducing that individuals’ suffering. 

Alternatively, watching videos of wolves hunting and 

breaking down how they do it provides an interesting context 

for many to willingly engage in data collection with the 

purpose of generating meaningful explanations about the 

wolves hunting practices. The point is, quantitative reasoning 

for the sake of it may not interest the masses, but real world 

problems can be easily leveraged to hook students on using 

whatever means necessary to better understand the problem, 

including quantitative reasoning. 

It is important to note teachers need not find new biological 

contexts for each grade level to engage their students in age 

appropriate quantitative reasoning. Rather, problem contexts 

that are ubiquitous in the biological sciences can be tailored 

for different age groups to ensure that the quantitative 

reasoning tasks you are expecting students to accomplish meet 

grade-level objectives and are within their ‘zone of proximal 

development’ [78, p. 86], or within their reach with the help of 

a peer or the teacher. For example, an educator can describe a 

Tragedy of the Commons activity around fisheries and 

carrying capacity that is appropriate for late elementary or 

middle school students. However, White, Timmons, and 

Medders [79] used the same context to meet learning 

objectives for their high school students. 

5.3. Repetition 

If students are to become adept at using quantitative 

reasoning skills to make sense of real-world problems, they 

need practice and repetition. Concepts like competition for 

resources and tragedy of commons are ubiquitous across sub 

disciplines of biology and can be used as a means for 

providing repeated bouts of practice with quantitative 

reasoning in different contexts using similar mathematics. For 

example, whereas we highlighted competition for resources in 

our Fisheries-Tragedy of the Commons activity, Bozzone [80] 

developed a different context for her students to engage in 

similar QR about phases of the amoebae lifecycle that are 

triggered by the depletion of food supplies. Similarly, Jessup, 

Ode, and Balgopal [81] described their implementation of a 

lesson about parasitic wasps, who inject hosts (e.g., moths) 

with venom and lay eggs on them. The larval offspring then 

compete for the food resources as they feed on the host. 

Providing students with multiple opportunities to practice QR 

skills in different contexts is a sure-fire way to aid their 

competence. 

5.4. Scaffolding 

Given that many students have not had ample opportunities 

to engage in quantitative reasoning, teachers cannot expect 

that students are comfortable with diving head first into 

quantitative reasoning and may wish to scaffold learning by 

providing supports at the beginning that are gradually 

removed as QR skills are mastered. For example, we have 

found that pre-service elementary teacher often struggle with 

variable quantification in the ‘Wolves living in packs’ 

investigation. We often find these students in the weeds, so to 

speak, considering variables that did not directly contribute to 

answering the research question at hand (such as whether it 

was winter or who the alpha male was). Teachers may choose 

to scaffold instruction such that skills can be developed that 

better prepare for problematic elements of QR, such as 

variable quantification in the case of my pre-service teachers. 

For example, in the parasitic wasp larvae activity [81], the 

investigation was framed to the students as a research project 

that had only been partially completed – the data had been 

collected but needed analysis. By providing the data set, the 

instructors could focus their students attention to whether and 

how the variables included in the data set were important to 

understanding parasitic wasp competition for resources (e.g., 
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variation and quantitative literacy elements of QA), without 

first getting bogged down in trying to identify and quantify 

any number of variables that might be relevant. Scaffolding in 

such a manner could aid students in develop proficiency 

considering a handful of variables and their relation to a 

problem before turning them lose to resolve a different related 

problem. Using multiple contexts with similar themes, such as 

competition for resources as indicated in the previous 

paragraph, makes for smooth scaffolding, as students can gain 

confidence using similar skills to answer similar questions in 

novel situations. 

5.5. Peer Teaching and Learning 

Some of the most effective strategies for helping students 

gain proficiency with QR is to use peer teaching and learning 

strategies, such as think-pair-share, where students first 

consider and attempt to resolve problem contexts requiring 

QR before getting together with a peer(s) to see how their 

conception of meaningful objects, attributes, and their 

measurements in the context of their driving research question 

differed. For example, in the ‘Why do wolves live in groups?’ 

activity, students often struggled with QR practices, such as 

which variables to account for or how to represent findings 

with models. By having students first struggle with QR, they 

become conscious of their incompetence, and upon joining in 

groups with their peers, they see multiple means for reasoning 

about these things, and can discuss with their peers which 

strategies are best and why. We often have groups share the 

experimental design and model that they felt was most 

appropriate before highlighting those that did not make the cut 

and providing reasoning as to why they were inferior. Peer 

teaching and learning is not only effective, it also takes some 

of the work off the teachers’ hands to identify and rectify each 

students’ mistakes. 

5.6. Direct Instruction and Teacher Moves 

A final instructional practice for developing QR that is 

worth highlighting is direct instruction. There are a number of 

areas of QR that are common practices with which students 

often struggle. For example, students often struggle to 

formulate meaningful research questions, and even when they 

do, struggle to identify variables that are important for 

answering those questions. It is important for teachers to aid 

students in considering objects and attributes present in a 

problem set and determining their relevance to the research 

question, whether they are dependent or independent variables, 

and reason about their potential relation to one another. 

Similarly, students struggle to create models using data that 

meaningful inform the problem they are attempting to solve. It 

can be helpful to provide students with a number of graph 

types and discuss when and why each of the graphs are most 

appropriate. Finally, a teacher should take an evaluative stance 

and model for their students’ constructive criticism and 

critique and normalizing their use in the classroom. Students 

often approach investigation through different lenses, and the 

research products they produce are diverse, which provides 

ample opportunity for deeply considering the pros and cons of 

the different methods that were used to solve problems and 

answer questions using QR. 

6. Quantitative Biology on Collegiate 

Level 

What guidelines, skill sets and competences should be 

considered in undergraduate and graduate quantitative biology 

programs? First, an overall training on the use of massive data 

sets and modern technology is needed. Bialek and Botstein [49] 

laid out an integrated curriculum that addressed this need by 

proposing that prerequisite mathematics, physics, chemistry 

and computation courses be replaced with quantitative 

biology courses that use authentic biology problems as 

contexts for meaningfully integrating concepts from these 

courses. Quantitative biology should be truly interdisciplinary 

by incorporating quantitative approaches and technology to 

analyze biological systems and construct model engineered 

life systems [82]. These programs need to develop students 

and future scientists that are adept at transdisciplinary 

approaches to solving tomorrows problems in biology. Tan et 

al. [83] identified a list of competencies for the next 

generation of biologists: 

1) Basic knowledge in the specific domains of computer 

science, statistics, and mathematics that support modern 

biology. 

2) Expertise in communicating and representing biological 

knowledge and processes in mathematical, statistical, 

and computing terms and concepts. 

3) Ability to use or develop efficient bioinformatics and 

biocomputational tools and techniques for the 

acquisition, interpretation, analysis, prediction, 

modeling, simulation, and visualization of experimental 

and other biological data. 

4) Proficiency in the search, retrieval, processing, curation, 

organization, classification, management, and 

dissemination of biological data and information in 

databases for deriving biological insights and knowledge 

discovery. 

5) Critical thinking and problem-solving skills in 

quantitative aspects of biology. 

All five of these competencies require QA abilities. 

The barriers to changing university biology programs to 

become quantitative biology-focused are significant. 

Bioinformatics education, which is the teaching and learning 

of the use of computer and information technology to gather, 

store, analyze, interpret, and integrate data to solve biological 

problems [84], is closely tied to QB, and effectively 

integrating bioinformatics into university programs has been 

challenging due to (1) its cross-disciplinary nature; (2) 

disparate methods, outlooks and cultures of its related 

disciplines; (3) the lack of an integrated training support 

structure [85]. The Course Source Bioinformatics Learning 

framework [86] supports the effort by providing course 

curricula that includes the competencies above. Other 
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curricula supporting the competencies have been developed 

and piloted, including the course Computational Approaches 

for Life Scientists [87] which integrates abstract, algorithmic, 

and logical thinking in a computational culture. If creating a 

new program is not possible, college programs might consider 

creating quantitative biology interest groups, peer-to-peer 

learning events such as hackathons and workshops such as the 

Santa Barbara Advanced School of Quantitative Biology, or 

QB bootcamps [82]. Eaton et al [88] identify a number of 

additional reform efforts in undergraduate biology education 

to improve QB, including the Professional Society Alliance 

for Life Science Education, Quantitative Undergraduate 

Biology Education and Synthesis - QUBES [89], 

Intercollegiate Biomathematics Alliance, Mathematical 

Biosciences Institute, National Institute for Mathematical 

Biology and Synthesis – NIMBioS, Interdisciplinary Training 

for Undergraduates in Biological and Mathematical Sciences 

– UBM, and National Consortium for Synergistic 

Undergraduate Mathematics via Multi-institutional 

Interdisciplinary Teaching Partnerships – SUMMIT-P. 

Efforts to implement QB courses are reported in the 

literature with many focused specifically on aspects of QR. 

For example, Speth et al [57] incorporated quantitative 

literacy skills into large-enrollment introductory biology 

courses for science majors. They focused on representing and 

interpreting data and articulating data-based arguments. The 

sample of 175 freshmen and sophomore students included life 

science majors and prehealth or preveterinary students. The 

students completed active, inquiry-based modules, homework, 

and assessments that incorporated QL. QL skills included 

graphing data, labeling axes appropriately, using an 

appropriate graph to represent data. Preassessment results 

indicated that students had difficulties with representing data 

on a graph, labeling axes, and formulating complete and 

correct arguments. Students made significant gains in the first 

two skills, but still struggle with formulating arguments. They 

concluded that student-centered inquiry-based learning 

environments were well-suited to support development of 

quantitative literacy skills. The three major challenges to 

incorporating QL in introductory biology courses they 

identified were: how to fit QL into a crowded curriculum, 

what quantitative skills are most important to include, and 

how to assess students’ development of those skills. First, 

infusion of QL does not district from content, but greatly 

supports teaching for conceptual understanding. Second, the 

QL skills they began with were frequencies, substituting 

numbers into a formula, ability to perform simple calculations, 

distinguish expected versus observed results, and interpreting 

a statistical test of significance. Third, use immediate 

formative assessment to provide feedback on skill 

development and incorporate authentic assessment where 

students have to demonstrate their ability within a biological 

context. 

Hoffman et al. [58] integrated quantitative reasoning 

modules into an introductory undergraduate ecology and 

evolution biology course. The modules were designed to 

improve quantitative numeracy, which is a component of QA, 

interpreting data (QI) and making inferences using models 

(QI). Four modules were integrated into the courses using 

active-learning approaches: Mendelian Genetics, Introduction 

to Mathematical Modeling, Population Genetics I – National 

Selection, and Population Geneitics II – Gene Flow and 

Genetic Drift. Students improved their quantitative numeracy 

abilities from pre-test to post-test and regardless of initial 

abilities, they obtained comparable levels of proficiency. 

Students also showed significant improvement in interpreting 

data but gains in making inferences were highly variable. 

Interviews with students in the classes indicated that few 

students understood covariation, a QA ability. They 

concluded that greater and sustained QA improvements 

requires consistent integration throughout the biology 

curriculum. 

7. Conclusion 

A number of promising efforts in and resources for 

quantitative biology are provided in this chapter. The QA 

outcomes of these efforts include improved quantitative 

numeracy, facility with the language of mathematics, 

extracting relevant information from large data sets, 

understanding covariation, and simply quantifying a 

biological context. But there are other important potential 

outcomes of integrating quantitative reasoning, including QA, 

QI, and QM, into biology. The active learning strategies that 

were used in some of the examples promote collaboration 

across disciplines, engender positive student attitudes about 

quantitative methods that reduce student anxiety and increase 

their willingness to engage in biology, and increase student 

persistence in taking more biology courses [90-91]. Aikens 

and Dolan [61] believe that development of quantitative skills 

in biology can have the following impacts: 

1) More positive emotional responses to quantitative work 

– more enjoyment, less anxiety. 

2) More positive beliefs about the ability to do quantitative 

work – increase confidence and self-efficacy. 

3) Greater sense of centrality of mathematics, statistics, and 

computation to the practice of life sciences. 

4) Improved ability to work in interdisciplinary teams. 

5) Increased persistence in pursuing and careers in 

quantitative biology. 

The integration of quantitative methods into biology has 

deep learning and future workforce implications. It all begins 

with the Quantitative Act (QA). 
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