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Abstract: This study presents the Homotopy Perturbation Method (HPM) for nonlinear fractional reaction diffusion systems, 

the fractional derivatives are described in the caputo's' fractional operator. The study focus on three systems of fractional reaction 

diffusion equations in one, two and three dimensions, in this method, the solution considered as the sum of an infinite series. 

Which converges rapidly to exact solution. The Homotopy Perturbation Method is no need to use Adomian's polynomials to 

calculate the nonlinear terms; we test the proposed method to solve nonlinear fractional systems of redaction diffusion equations 

in one dimension, two dimensions and three dimensions. To show the efficiency and accuracy of this method, we compared the 

results of the fractional derivatives orders with ordinary derivative order index α1=α2=1 for nonlinear fractional reaction 

diffusion systems. Approximate solutions for different values of fractional derivatives index α1=0.5 and α2=0.5 together with 

non-fractional derivative index α1=1 and α2=1 and absolute errors are represented graphically in two and three dimensions. In 

addition, the graphical represented the solutions, which had been given by MATLAB program. From all numerical results, we 

can conclude the efficiency of the proposed method for solving different types of nonlinear fractional systems of partial 

differential equations over existing methods. 

Keywords: Fractional Calculus, Diffusion Equations, Homotopy Perturbation Method, Approximate Solutions 

 

1. Introduction 

Recently, it has turned out that many phenomena in 

engineering and other sciences can be described by models 

using mathematical tools from fractional calculus (FC), 

fractional calculus owes its origin to a question of whether the 

meaning of a derivative to an integer order could be extended 

to still be valid when n is not an integer. In 1819, Lacroix [1] 

became the first mathematician to publish a paper that 

mentioned a fractional derivative. Diffusion phenomena is one 

the most important topic in heat transfer, especially in 

Mechanics Engineering. In this work, we consider the 

fractional nonlinear reaction diffusion system [2, 3], is given 

by 

������ � �	� 
 ����
, �� � ��
, ��� 
 ��
, ����
����� � �	� 
 ����
, �� 
 ��
, ��� � ��
, ����   (1) 

where � � 1 � �� � � , � � 1 � �	 � � , �, �, �, �, �, ���	� 

are constants, �	  denotes Laplacian with respect to the 

variables � � ���, �	, � �	and ���, 
�, ���, 
�  is solution of 

Eq. (1). 

2. Preliminaries and Fractional Calculus 

In this section, gives some important definitions, such as the 
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gamma function and basic definitions of the fractional 

derivatives. 

2.1. Gamma Function 

Gamma function Γ���  is simply the generalization of 

factorial to complex and real arguments. The gamma function 

can be defined as [4]  

Γ��� � " 
#$��$��
 � �� � 1�!, � ∈ '()
* 	    (2) 

which is convergent for � > 0 . A recurrence formula for 

gamma function are [5, 6] 

Γ�� + 1� = �Γ���	�-.	� ∈ '/0	        (3) 

Γ��� = 1�#0��
2 	�-.	� ∈ '/$	          (4) 

2.2. Fractional Derivatives 

Definition (1): Riemann-Liouville Fractional Integral 

Operator 

Suppose that � > 0 , � − 1 < � ≤ � , the 

Riemann-Lioville fractional integral define as [5, 6, 7] 

�$�3��
�4 = �
1���" �
 − ���$��������

5      (5) 

Fractional integral for polynomial and fractional derivative 

[6, 7, 8, 9] 

�$��
#� = 1�#0��
1��0#0�� 
�0#	          (6) 

�$�3����
�4 = ��
� − ∑ �7
8! ��8��0�, � − 1 < � ≤ �	#$�89*  (7) 

Definition (2): Caputo Fractional Differential Operator 

Suppose that � > 0, � − 1 < � ≤ �, the Caputo fractional 

differential define as [6, 10, 11, 12, 13, 14] 

�:$�3��
�4 = �
1�#$��" ;<�=�

��$=�>?<@� ���
5 	      (8) 

Definition (3): The Mittag- Leffler Function 

Suppose � > 0, A > 0 , then the Mittag-Leffler function 

define by [7, 14] 

B�,C�
� = ∑ �7
1��80C�	)89*              (9) 

3. Homotopy Perturbation Method 

The Homotopy Perturbation Method (HPM), which 

provides an analytical approximate solution [15]. In this 

section, we extened HPM to Eq. (1) according to this method 

we construct the following simple homotopy [5, 7] 

������ = D�∇	� + ����
, �� − ��
, ��� + ��
, �����
����� = D�∇	� + ����
, �� + ��
, ��� − ��
, �����	 (10) 

where D ∈ E0,1F is an embedding parameter. In case D = 0, 

Eq. (10) is fractional differential equations, which is easy to 

solve; when D = 1 , Eq. (10) turns out to be the original 

system in Eq. (1). The basic assumption is that the solution can 

be written as a power series in D	[8-10] 

���, 
� = ∑ D#�#��, 
�)#9*           (11) 

���, 
� = ∑ D#�#��, 
�)#9* 	         (12) 

If D → 1, we obtain the analytical approximate solution of 

Eq. (11) and Eq. (12) 

� = limK→�∑ D#�#��, 
�)#9* = ∑ �#��, 
�)#9* = �* + �� +⋯ (13) 

� = limK→�∑ D#�#��, 
�)#9* = ∑ �#��, 
�)#9* = �* + �� +⋯ (14) 

4. The Steady State Solution 

Consider the following steady state problem: 

������ = ∇	� + �� − ��	 + ���
����� = ∇	� + �� + ��� − ��		       (15) 

where �, �, �, �, �, ���	�  are positive constants and ��
, ��, ��
, ��  is a solution of Eq. (11). The steady state 

solution satisfies the following equations [1, 16]. 

���, �� = �� − ��	 + ���	           (16) 

M��, �� = �� + ��� − ��		           (17) 

We compute the Jacobian 

N = O�=	M=�P	MPQ = O� − 2�� + ��	����	� + �� − 2��Q 

N = O�� − �� + ��� − ��	����	�� + �� − ��� − ��Q 
Now we find intersection points from 

� − �� + �� = 0	              (18) 

� + �� − �� = 0	              (19) 

From Eq. (14), in � axis the point is �5S , 0� and from Eq. 

(15) in �  axis the point is �0, T;� , by using simultaneous 

solution we obtain ��∗, �∗� = �5;0T:S;$V: , ST0V5S;$V:�. 
If 

S
V > :

; there are four equilibriums points �0,0�, �5S , 0�, 
�0, T;� and ��∗, �∗�. 
4.1. Stability Steady 

The stability steady of this problem, describing by using 

eigenvalue problems [1]  

N − W' = X�� − �� + ��� − �� − W	����	�� + �� − ��� − �� − WY 

4.2. The Stability 

In this section, we discuss these points �0,0� , Z5S , 0[ , 
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Z0, T;[ and ��∗, �∗� 
i. det�N − W'� |�*,*� = `� − W 00 � − W` = 0 , W�, W	 > 0 

this point unstable 

ii. det�N − W'� |Zab,*[ = c−� − W 	0:5
S � + � 5

S − Wc = 0 , 

W� < 0, W	 > 0 this point unstable 

iii. det�N − W'� |Z*,de[ = c� + � T
; − W � T

;0 −� − Wc = 0 , 

W� > 0, W	 < 0 this point unstable 

iv. det�N − W'� |�=∗,P∗� = f−��∗ − W ��∗��∗ −��∗ − Wf = 0, the 

characteristic equation is W	 + ���∗ + ��∗�W +��� − ����∗�∗ = 0, then 

W�,	 = $�S=∗0;P∗�±h�S=∗0;P∗��$i�S;$:V�=∗P∗
	   

If 
S
: > V

; , the /�3W�,	4 < 0  under this condition the 

problem is stable [1]. 

5. Numerical Results 

Example 4.1: Fractional nonlinear reaction diffusion 

system in one dimension 

����� = �jj + �� − ��	 + ��� 

����� = �jj + �� − ��	 + ��� 

BCs: ���, 0� = �	&	���, 0� = �	, 0 ≤ � ≤ l 

Define the HPM 

����� = D��jj + �� − ��	 + ���� 
����� = D��jj + �� − ��	 + ���� 

Integration both sides, obtain 

��$������� = D��$����jj + �� − ��	 + ���� 
��$������� = D��$����jj + �� − ��	 + ���� 

���, 
� − ∑ �7
8!

#$�89* m7=�j,*�
m�7 = D��$����jj + �� − ��	 + ����  

���, 
� − ∑ �7
8!

#$�89* m7P�j,*�
m�7 = D��$����jj + �� − ��	 + ����  

Now define ���, 
� = ∑ Dn�n)n9* , ���, 
� = ∑ Dn�n)n9*  & 0 < ��, �	 ≤ 1 

∑ Dn�n = ���, 0� + D)n9* ��$��E�∑ Dn�n)n9* �jj + �∑ Dn�n)n9* − ��∑ Dnnn9* �n�	 + ��∑ Dnnn9* �n��∑ Dnnn9* �n�F  

∑ Dn�n = ���, 0� + D)n9* ��$��E�∑ Dn�n)n9* �jj + �∑ Dn�n)n9* − ��∑ Dnnn9* �n�	 + ��∑ Dnnn9* �n��∑ Dnnn9* �n�F  

Coefficients of D 

D*:	�* = ���, 0� = � 

�* = ���, 0� = �	 

D�:	�� = ��$��E��*�jj + ��* − ��*	 + ��*�*F 
�� = ��� − ��	 + �� � �>�

1���0��  

�� = ��$��E��*�jj + ��* − ��*	 + ��*�*F 
�� = �2 + ��	 − ��i + �� � �>�

1���0��  

D	:	�	 = ��$��E����jj + ��� − 2��*�� + ��*�� + ��*��F 
�	 =

��$�� p�−2� + �6� + �	�� − 3���	 + �2�� − 2�	�� − 3���i + �	�s� �>�
1���0��+ �2�� + ��� − �	�s + ���i� �>�

1���0��t  

�	 = �−2� + �6� + �	�� − 3���	 + �2�� − 2�	�� − 3���i + �	�s� ��>�
1�	��0��+ �2�� + ��� − �	�s + ���i� �>�@>�

1���0��0��  

�	 = ��$��E����jj + ��� − 2��*�� + ��*�� + ��*��F 
�	 = ��$�� p�4� + 8�� − �16� − �	��	 − 3���	 + 3��� − �3�� − �	��i − 3���s + 2�	�w� �>�

1���0��+ ���� − ���i + ���s� �>�
1���0��t  

�	 = �4� + 8�� − �16� − �	��	 − 3���	 + 3��� − �3�� − �	��i − 3���s + 2�	�w� ��>�
1�	��0��+ ���� − ���i + ���s� �>�@>�

1���0��0��  
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. 

. 

. 

���, 
� = limK→�∑ Dn�n)n9* = �* + �� + �	 +⋯  

���, 
� = limK→�∑ Dn�n)n9* = �* + �� + �	 +⋯  

���, 
� ≅ � + ��� − ��	 + �� � �>�
1���0��+ �−2� + �6� + �	�� − 3���	 + �2�� − 2�	�� − 3���i + �	�s� ��>�

1�	��0��+
�2�� + ��� − �	�s + ���i� �>�@>�

1���0��0��  

���, 
� ≅ �	 + �2 + ��	 − ��i + �� � �>�
1���0��+ �4� + 8�� − �16� − �	��	 − 3���	 + 3��� − �3�� − �	��i −

3���s + 2�	�w� ��>�
1�	��0��+ ���� − ���i + ���s� �>�@>�

1���0��0��  

Table 1. The result with time 0.001, the length 10, � = 1, � = 2, � =0.01, � = 1, � = 2	&	� = 0.02. 
z 

{| = {} = | {| = {} = ~.�	 ��z, �, �� ��z, �, �� ��z, �, �� ��z, �, �� 
0.0000 -0.0000 0.0754 -0.0000 0.0754 

1.0000 1.0359 1.1110 1.0359 1.1110 

2.0000 2.0705 4.2089 2.0705 4.2089 

3.0000 3.1041 9.3420 3.1041 9.3420 

4.0000 4.1368 16.4661 4.1368 16.4661 

5.0000 5.1688 25.5208 5.1688 25.5208 

6.0000 6.2004 36.4319 6.2004 36.4319 

7.0000 7.2317 49.1140 7.2317 49.1140 

8.0000 8.2631 63.4732 8.2631 63.4732 

9.0000 9.2947 79.4115 9.2947 79.4115 

10.0000 10.3268 96.8305 10.3268 96.8305 

0.0000 -0.0000 0.0754 -0.0000 0.0754 

Table 1 shows the approximate solution of fractional 

nonlinear reaction diffusion system in one dimension, it is noted 

that only the third order of the Hopotopy perturbation solution. 

Figure 1 and Figure 2: The surface of system diffusion equation 

in one dimension is convergence between fractional order and 

ordinary order, in Figure 3: we get small difference between 

ordinary order with multiple fractional orders. 

 

Figure 1. Graphical presentation of system with non-fractional order. 

 

Figure 2. Graphical presentation of system with fractional order. 

 

Figure 3. Comparison between derivative orders system. 

Example 4.2: Fractional nonlinear reaction diffusion 

system in two dimension 

����� = �jj + ��� + �� − ��	 + ��� 
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����� � �jj 
 ��� 
 �� � ��	 
 ��� 

BCs: ���, �, 0� = sinh�� + ��, 
���, �, 0� = cosh	�� + ��, 0 ≤ � ≤ l 

Define the HPM 

����� = D3�jj + ��� + �� − ��	 + ���4 

����� = D3�jj + ��� + �� − ��	 + ���4 

Integration both sides, we obtain 

��$������� = D��$��3�jj + ��� + �� − ��	 + ���4 

��$������� = D��$��3�jj + ��� + �� − ��	 + ���4 

���, �, 
� − ∑ �7
8!

#$�89* m7=�j,�,*�
m�7 = D��$��3�jj + ��� + �� − ��	 + ���4  

���, �, 
� − ∑ �7
8!

#$�89* m7P�j,�,*�
m�7 = D��$��3�jj + ��� + �� − ��	 + ���4  

Now define ���, �, 
� = ∑ Dn�n)n9* , ���, �, 
� = ∑ Dn�n)n9*  & 0 < ��, �	 ≤ 1 

∑ Dn�n = ���, �, 0� + D)n9* ��$��E�∑ Dn�n)n9* �jj + �∑ Dn�n)n9* ��� + �∑ Dn�n)n9* − ��∑ Dnnn9* �n�	 +��∑ Dnnn9* �n��∑ Dnnn9* �n�F  

∑ Dn�n = ���, �, 0� + D)n9* ��$��E�∑ Dn�n)n9* �jj + �∑ Dn�n)n9* ��� + �∑ Dn�n)n9* − ��∑ Dnnn9* �n�	 +��∑ Dnnn9* �n��∑ Dnnn9* �n�F  

coefficients of D 

D*:	�* = ���, �, 0� = sinh	�� + �� 
�* = ���, �, 0� = cosh	�� + �� 

D�:	�� = ��$��E��*�jj + ��*��� + ��* − ��*	 + ��*�*F 
�� = E�2 + �� sinh�� + �� − � sinh	�� + �� + � sinh�� + �� cosh�� + ��F �>�

1���0��  

�� = ��$��E��*�jj + ��*��� + ��* − ��*	 + ��*�*F 
�� = E�2 + �� cosh�� + �� − � cosh	�� + �� + � sinh�� + �� cosh�� + ��F �>�

1���0��  

D	:	�	 = ��$��E����jj + ������ + ��� − 2��*�� + ��*�� + ��*��F 
�	 = ��$��E����jj + ������ + ��� − 2��*�� + ��*�� + ��*��F 

. 

. 

. 

���, �, 
� = limK→�∑ Dn�n)n9* = �* + �� + �	 +⋯  

���, �, 
� = limK→�∑ Dn�n)n9* = �* + �� + �	 +⋯  

���, �, 
� ≅ sinh�� + �� + E�2 + �� sinh�� + �� − � sinh	�� + �� + � sinh�� + �� cosh�� + ��F �>�
1���0��  

���, �, 
� ≅ cosh�� + �� + E�2 + �� cosh�� + �� − � cosh	�� + �� + � sinh�� + �� cosh�� + ��F �>�
1���0��  

Table 2 shows the approximate solution of fractional 

nonlinear reaction diffusion system in two dimension, it is 

noted that only the second order of the Hopotopy perturbation 

solution. Figure 4 and Figure 5: The surface of system 

diffusion equation in two dimension be affected when 

changed order equation between fractional and ordinary, in 
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Figure 6: we get small difference between ordinary order with 

multiple fractional orders. 

 

Figure 4. Graphical presentation of system with non-fractional order. 

 

Figure 5. Graphical presentation of system with fractional order. 

 

Figure 6. Comparison between derivative orders system. 

Table 2. The result with time 0.001, the length 10 � � 1, � = 1, � = 2, � =0.01,� = 1, � = 2	&	� = 0.02. 
z 

{| = {} = | {| = {} = ~.�	 
��z, �, �� ��z, �, �� ��z, �, �� ��z, �, �� 

1.0e+010 *     

0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

0.0000 -0.0001 -0.0001 -0.0001 -0.0001 

0.0000 -0.0009 -0.0009 -0.0009 -0.0009 

0.0000 -0.0064 -0.0063 -0.0064 -0.0063 

0.0000 -0.0470 -0.0468 -0.0470 -0.0468 

0.0000 -0.3474 -0.3457 -0.3474 -0.3457 

0.0000 -2.5673 -2.5544 -2.5673 -2.5544 

1.0e+010 *     

 

Example 4.3: Fractional nonlinear reaction diffusion system in three dimension 

����� = �jj + ��� + ��� + �� − ��	 + ��� 

����� = �jj + ��� + ��� + �� − ��	 + ��� 

BCs: ���, �, �, 0� = � + � + �, 

���, �, �, 0� = ���, 0 ≤ � ≤ l 

Define the HPM 

����� = D3�jj + ��� + ��� + �� − ��	 + ���4 

����� = D3�jj + ��� + ��� + �� − ��	 + ���4 
Integration both sides, we obtain 

��$������� = D��$��3�jj + ��� + ��� + �� − ��	 + ���4 

��$������� = D��$��3�jj + ��� + ��� + �� − ��	 + ���4 
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���, �, �, 
� − ∑ �7
8!

#$�89* m7=�j,�,�,*�
m�7 = D��$��3�jj + ��� + ��� + �� − ��	 + ���4  

���, �, �, 
� − ∑ �7
8!

#$�89* m7P�j,�,�,*�
m�7 = D��$��3�jj + ��� + ��� + �� − ��	 + ���4  

Now define ���, �, �, 
� = ∑ Dn�n)n9* , ���, �, �, 
� = ∑ Dn�n)n9*  & 0 < ��, �	 ≤ 1 

∑ Dn�n = ���, �, �, 0� + D)n9* ��$��E∑ Dn∇	�n)n9* + �∑ Dn�n)n9* − ��∑ Dnnn9* �n�	 + ��∑ Dnnn9* �n��∑ Dnnn9* �n�F  

∑ Dn�n = ���, �, �, 0� + D)n9* ��$��E∑ Dn∇	�n)n9* + �∑ Dn�n)n9* − ��∑ Dnnn9* �n�	 + ��∑ Dnnn9* �n��∑ Dnnn9* �n�F  

coefficients of D 

D*:	�* = ���, �, 0� = � + � + � 

�* = ���, �, 0� = xyz 

D�:	�� = ��$��E��*�jj + ��*��� + ��*��� + ��* − ��*	 + ��*�*F 
= E��� + � + �� − ��� + � + ��	 + ������ + � + ��F �>�

1���0��  

�� = ��$��E��*�jj + ��*��� + �*��� + ��* − ��*	 + ��*�*F  

= E���� − ��	�	�	 + ������ + � + ��F �>�
1���0��  

D	:	�	 = ��$��E����jj + ������ + ������ + ��� − 2��*�� + ��*�� + ��*��F 
�	 = ��$��E����jj + ������ + ������ + ��� − 2��*�� + ��*�� + ��*��F 

. 

. 

. 

���, �, �, 
� = limK→�∑ Dn�n)n9* = �* + �� + �	 +⋯  

���, �, �, 
� = limK→�∑ Dn�n)n9* = �* + �� + �	 +⋯  

���, �, �, 
� ≅ � + � + � + E��� + � + �� − ��� + � + ��	 + ������ + � + ��F �>�
1���0��  

���, �, 
� ≅ ��� + E���� − ��	�	�	 + ������ + � + ��F �>�
1���0��  

 

Figure 7. Graphical presentation of system with non-fractional order. 

 

Figure 8. Graphical presentation of system with fractional order. 
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Figure 9. Comparison between derivative orders system. 

Table 3. The result with time 0.001, the length 10 � � 8, � = 4, ,� =1, � = 2, � = 0.01, � = 1, � = 2	&	� = 0.02. 
z 

{| = {} = | {| = {} = ~.�	 ��z, �, �� ��z, �, �� ��z, �, �� ��z, �, �� 
0.0000 8.2398 0.0000 8.2398 0.0000 

1.0000 9.2685 16.3985 9.2685 16.3985 
2.0000 10.2969 32.4339 10.2969 32.4339 

3.0000 11.3250 48.1062 11.3250 48.1062 
4.0000 12.3528 63.4154 12.3528 63.4154 

5.0000 13.3804 78.3615 13.3804 78.3615 

6.0000 14.4076 92.9444 14.4076 92.9444 
7.0000 15.4346 107.1643 15.4346 107.1643 

8.0000 16.4613 121.0211 16.4613 121.0211 

9.0000 17.4877 134.5147 17.4877 134.5147 
10.0000 18.5138 147.6453 18.5138 147.6453 

Table 3 shows the approximate solution of fractional 

nonlinear reaction diffusion system in three dimension, it is 

noted that only the third order of the Hopotopy perturbation 

solution. Figure 7 and Figure 8: The surface of system diffusion 

equation in three-dimension is convergence between fractional 

order and ordinary order, in Figure 9: we get small difference 

between ordinary order with multiple fractional orders. 

6. Conclusions 

Homotopy perturbation Method (HPM) has been 

successfully applied to obtains analytical approximate 

solution for fractional nonlinear reaction diffusion systems. It 

is easy to recognize that HPM is powerful mathematical tool 

for solving different kinds of linear and/or nonlinear fractional 

partial differential equations the HPM is no need to use 

Adomian's polynomials to calculate the nonlinear terms. The 

mathematical models is very important step to solve physical 

problem, we have concluded that the fractional derivative of 

reaction diffusion systems are more accurate than ordinary 

derivative order. From all numerical results, we can concluded 

the efficiency of the proposed method for solving different 

types of nonlinear fractional partial differential equations so 

we recommended researchers would use Homotopy 

perturbation Method when derivation the mathematical 

models for fractional derivatives phenomena. 
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