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Abstract: The Zakharov-Kuznetsov equation is an important model to describes the nonlinear pulse propagation in plasma 

physics, which guides the characteristic of weakly nonlinear ion-acoustic waves in plasma composed of cold ions and hot 

isothermal electrons in a uniform magnetic field. In the current study, we investigate the generalized trigonometric solutions and 

new travelling wave solutions of the (3+1)-dimensional extended quantum Zakharov- Kuznetsov equation through the 

(G'/G)-expansion method and the Sech-Tanh expansion method. Before applying these, we imply the traveling wave 

transformation to convert the (3+1)-dimensional extended quantum Zakharov- Kuznetsov equation to a nonlinear differential 

equation (NLODE). By the aid of Mathematics software, the dynamical images such as three-dimensional (3D) graphs, two- 

dimensional (2D) graphs and contour surfaces of local solutions are plotted by choosing the appropriate parameters. The 

obtained solutions show the simplicity and efficiency of the two approaches that can be applied for nonlinear equations as well as 

linear ones. Furthermore, the accuracy of the solutions obtained by the two different methods is verified by the Adomain 

decomposition method (ADM) and showed in tables respectively. The study of ADM method in this paper indivates it is an 

effective mathematical tool to calculate the numerical solutions and to verify the accuracy of the solutions. 

Keywords: The (3+1)-dimensional Extended Quantum Zakharov–Kuznetsov Equation, The (G'/G)-Expansion Method,  

The Sech-Tanh Expansion Method, The ADM, The Analytical and Numerical Solutions 

 

1. Introduction 

Since the last century, nonlinear evolution equations have 

become of interest to many scholars. By applying them in the 

simulation of complex nonlinear phenomena, some of the 

difficulties in various areas of nonlinear science have been 

solved. A few decades ago, Zakharov and Kuznetsov 

introduced a kind of equation to describe ion-acoustic waves 

in a magnetized plasma containing cold ions and hot 

isothermal electrons [1]. Besides, Moslem et al. derived the 

quantum of the Zakharov-Kuznetsov equation [2], 

���� � �� � ���� � � �	���	 � 
 ��� � ���
� � ������� � 0  

The nonlinear extended quantum Zakharov-Kuznetsov 

(NLEQZK) equation was first introduced by Sabry et al. They 

applied the reductive perturbation method to the quantum 

hydrodynamical equation and the Poisson equation [3]. 

Many researchers have investigated the NLEQZK by various 

computational techniques such as Hirota method [5], the 

auxiliary equation mapping method [7], the Lie symmetry 

method [6], etc. By these methods, many types of solutions 

have been obtained, such as shock solutions, periodic wave 

solutions and singular solutions. 

The objective of this research is to perform the (G' 

/G)-expansion method [10-13], the Sech-Tanh expansion 

method [14-16] to find new solutions of NLEQZK equation, 

and to apply the Adomain decomposition method [17-20] to 

verify the accuracy of the solutions. Here, the form of 

NLEQZK is as follows [8, 9]: 

���� � ��� � ���� ���� � � �	���	 � 
 ��� � ���
� � ������� � 0,  (1) 

A, B, k, and h are constants that are not zero. x, y, z, t are the 

stretched space-time coordinates. 

For purpose of converting (1) to a nonlinear differential 

equation (NLODE), we imply the traveling wave 

transformation: 
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���, �, �, �� � ����, � � �� � �� � �� − !�.     (2) 

Inserting (2) into (1), we get the following NODE: 

−!�" � ����"" � ������" � #��$ � 
���� � ���%�""" � 0. (3) 

Intergrating (3) for η, we get 

−!� + '����� + '$���$ + #��$ + ℎ���� + ���%�"" + (' = 0, (4) 

where e1 is a constant of integration. 

2. The (G'/G)-Expansion Method 

2.1. Basic Concepts of the (G'/G)-Expansion Method 

This section introduces the detailed description of the 

(G'/G)-expansion method to find traveling wave solutions of 

nonlinear partial differential equation (PDE). 

Step 1 For a given partial differential equation (PDE): 

)#*, *
, *� , *�, *� , *

 , *
� , *��, … % = 0	        (5) 

where u = u(x, y, z, t). We first apply the wave transformation 

*��, �, �, �� = -���, � = �� + �� + �� − !�      (6) 

where α, β, γ and ν are constants to be determined. Then (5) 

is changed to an ordinary differential equation (ODE): 

��-, -", -"", … � = 0	              (7) 

Step 2 Assume the solutions of this ODE can be expressed 

as a polynomial in G'/G as follows: 

-��� = ∑/0 �121 �0                (8) 

ci (i = 1, 2,..., N) are unknown real constants, and by the 

homogeneous balance between the highest order derivatives 

and the nonlinear terms in ODE, the positive integer i can be 

determined. 

The function G(η) satisfies the following second order 

linear ODE  

3"" + 43" + 53 = 0,              (9) 

where λ and µ are constants that can be solved later. 

Step 3 Substitute the solutions of (8) and (9) into (7), and 

an algebraic equation with powers of (G'/G) is obtained. 

Then a series of algebraic equations of /0  is given by 

equating the coefficients of each power of (G'/G) to zero. 

Step 4 Solve the system of algebraic equations for ci. Since 

we are familiar with the general solutions of (9), then 

substitute the general solutions 

121 =

67
777
8
777
79 − :� + ;<=;> , 4� − 4@ = 0
− :� + A:�BCD� E <FGH I�J�>�=;H0K I�LM� >�<H0K INAM�LOP� >Q=;FGH INAM�LOP� >QR ,4� − 4@ > 0
− :� + A:�BCD� E ;FG HNAOTLM�� >QB<H0 KNAOTLM�� >Q

;H0 KNAOPLM�� >Q=;FGH INAOPLM�� >QR ,4� − 4@ < 0

  

into (8), where C, D are unknown constants. We have more 

traveling wave solutions of the nonlinear evolution. 

2.2. Implementation of the (G'/G)-Expansion Method 

In the subsection, we imply the (G'/G)-expansion method to 

the (3+1)- dimensional NLEQZK equation. 

Using the balance principle on 

−!� + '����� + '$���$ + #V�$ + ℎ���� + ���%�"" + (' = 0, (10) 

���� = /W + /' 12�>�1�>�                 (11) 

where c1≠0, c0 are constants. Then, 

�"��� = − FX12�>��1�>�� + FX122�>�1�>�             (12) 

and 

�""��� = �FX12�>�	1�>�	 − $FX12�>�122�>�1�>�� + FX1	�>�1�>�       (13) 

Substituting (11), (12) and (13) into (10) yields an 

algebraic equation about �121 �0 �Y = 0, 1, 2, 3�. B adding the 

coefficients about �121 �0with the same powers and setting 

every item to zero, we get a series of algebraic equations 

about c0, c1, v as follows: 

�12�>�1�>� �W : −!/W + '� ���/W�� + '$ ���/W$� + ℎ���54/' + ℎ���54/' + (' = 0�12�>�1�>� �' : −!/' + 2��$5/' + 2ℎ���5/' + 2ℎ���5/' + 	��$4�/' + ℎ���4�/' + ��/W/' + ��/W�/' = 0,�12�>�1�>� �� : 3��$4/' + 3ℎ���4/' + 3ℎ���4/' + ���/W/' = 0	�12�>�1�>��$ : 2��$/' + 2ℎ���/' + 2ℎ���/' = 0
  

Solve the above algebraic equations, we obtain 
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/' � ± √`ABab	BIb�c�=d��Aeb
/W � Bfb=√`AebABab	BIb�c�=d���eb! � − fb�Ceb � '� #��$ � 
���� � ���%�4@ − 4��

  

where λ and δ are arbitrary. Hence by (11) we have 

���� � Bfb=√`AebABab	BIb�c�=d���eb ±	 	√`ABab	BIb�c�=d��Aeb �12�>�1�>��	                     (14) 

Next, by substituting the general solutions of (9) in Step 4 into (14) respectively, we can obtain the following closed form 

solutions of (10): 

Case 1: When λ2 − 4δ = 0, 

�''��� � Bfb=√`AebABab	BIb�c�=d���eb ± √`ABab	BIb�c�=d��Aeb �− :� � ;<=;>�                   (15) 

 

Figure 1. The 3D gragh, 2D graph and contour surface of (15), where α= 2, β= 0.4, γ= 0.2, B = 2, A = 0.1, h = 2, k = 5. 

Case 2: When λ2 − 4δ > 0, 

���� � Bfb=√`AebABab	BIb�c�=d���eb ± √`ABab	BIb�c�=d��Aeb �− :�� A:�BCD� ⋅ <hijk	NAM�LOP� >Q=;jlmk	NAM�LOP� >Q
<jlmk	NAM�LOP� >Q=;hijk	NAM�LOP� >QR  

i. If C = 0 and D≠0, then 

��'��� � Bfb=√`AebABab	BIb�c�=d��ABCD=:�nomk	�X�>ABCD=:���eb                       (16) 

ii. If C≠0 and D = 0, then 

������ � Bfb=√`AebABab	BIb�c�=d��ABCD=:�hink	�X�>ABCD=:���eb                       (17) 

 

Figure 2. The 3D graph, 2D graph and contour surface of (17), where A = 1, B = 2, α = 1, β = 2, γ = 1, h = −1, k = −4, υ = 3. 
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Case 3: When λ2 − 4δ < 0,  

���� � Bfb=√`AebABab	BIb�c�=d���eb ± √`ABab	BIb�c�=d��Aeb �− :� � A:�BCD� ⋅ ;hij	NAOPLM�� >QB<jlm	NAOPLM�� >Q
;jlm	NAOPLM�� >Q=;hijk	NAOPLM�� >Q  

i. If C = 0 and D≠ 0, then 

�$'��� � Bfb=√`AebABab	BIb�c�=d��ACDB:�hin	�X�>ACDB:���eb 	                        (18) 

ii. If C ≠0 and D = 0, then 

�$���� � fbB√`AebABab	BIb�c�=d��ACDB:�nom	�X�>ACDB:���eb                          (19) 

where η = αx + βy + γz − υt. 

 

Figure 3. The 3D graph, 2D graph and contour surface of (2.15), where A = 2, B = 6, γ = 1, k = −2, α = 1, h = −2, k = 2, λ = 6, δ = 5. 

3. The Sech-Tanh Expansion Method 

3.1. Basic Concepts of the Sech–Tanh Expansion Method 

We suppose that: 

���, �, �, �� � ����, � � �� � �� � �� − !�, 
has the travelling wave solution as follows: 

���� � ∑sech0B'	����t0sech	��� � u0tanh	���� � tW (20) 

where ai, bi, (i = 1, 2,...) are unknown constants, then we will 

figure them out.  

Step 1 Setting the highest-order nonlinear term equal to the 

highest-order linear partial derivative in ODE then the value 

of i (i = 1, 2,...) is determined. 

Step 2 Setting the coefficients of (sech
j
(η) tanh

i
(η)) for i = 0, 

1 and j = 1, 2,... to zero, we have a series of overdetermined 

equations about the a0, ai, bi (i = 1, 2,...). 

Step 3 Using mathematical programming software, we can 

solve the algebraic equations in Step 2. 

3.2. Implementation of the Sech–Tanh Expansion Method 

Utilizing the balance principle on 

−!� � '����2 � '$���$ � #V�$ � 
���� � ���%�"" � 	(' � 0			                   (21) 

taking the homogeneous balance between nonlinear term q
3
 and the highest derivative q'', we have i = 1. With i = 1, (20) has 

the form 

���� = tW + t'sech	��� + u'tanh	���.	                              (22) 

Then, 

�""��� = −t' sech$��� − 2u' sech���� tan h��� + t'sech	���tanh�	���	                  (23) 

substituting (22), (23) into (21) yields an algebraic equation about Sechj Tanhi (η)sech y tanh Y. 
Sech	���: −!t' + ��tWt' = 0, 

Sech�	���: '���t'� + ��tWt'� = 0,  
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Sech$	���: −��$t' � '$��t'	$ � 0, 

 TanhW	SechW	���: −!tW + '���tW� + '$��tW$ = 0, 

TanhSech��� :	A�t'u' + 2��tWt'u' = 0, 

TanhSech�	���: −2��$u' + ��t'	�u' − 2���u'ℎW − 2���u'ℎW = 0. 

Solving the above algebraic equations, we get 

u' = 0, t' = ± A$ab	=$�c�=d��bIeb   

tW = − fb�eb , ! = − f�b�Ceb   

Thus by (22) we have 

��'��� = − fb�eb + A$ab	=$�c�=d��bIeb sech	���                             (24) 

������ = − fb�eb − A$ab	=$�c�=d��bIeb sech���                             (25) 

where η = αx + βy + γz − υt. 

 

Figure 4. The 3D graph, 2D graph and contour surfaces of (3.5) using A = −1, B = 1, γ = 1, k = 2, α = 1, β = −2, k = 2. 

4. Verification of the Accuracy of the 

Solutions 

4.1. Basic Concepts of the Adomian Decomposition Method 

The evaluation of the approximate solutions is achieved by 

employing the Adomian Decomposition Method (ADM) 

whose values are provided by the obtained analytical solutions. 

The method starts at the equation Fu(t) = g(t) in which F 

represents the general nonlinear ordinary differential operator 

including both linear and nonlinear terms, and the linear term 

is further decomposed into L+R where L is invertible and R 

stands for the remainder of the linear operator. In order to 

facilitate the assessment, L can be used as the highest 

derivative, thus avoiding complex integrals when complex 

Green’s function is involved. Therefore, the equation may be 

stated as follows: 

}* + ~* + �* = �, 

where �* represents the nonlinear terms. To solve }*, we 

transform this equation into 

}* = � − ~* − �*. 
Because L is a reversible operation, we apply L

−1
 to both 

sides of this equation 

}B'}* = }B'� + }B'~* − }B'�*.        (26) 

If this equation corresponds to an initial-value problem, the 

integral operator }B'may be regarded as definite integrals 

from �W to t. If } is a second-order operator, }B' is a twofold 

integration operator and }B'}* = * − *��W� − �� −�W�*"��W�. When boundary value problems are involved, we 

use indefinite integrations and evaluate the constans 

according the given conditions. Solving (26) for * yields 

* = � + �� + }B'� − }B'~* − }B'�*.       (27) 

The nonlinear term �*  will be equated to the special 

polynomials ∑�K which will be discussed later, and * will 

be decomposed into ∑*K . When the variable �  in the 

analytical solutions is equal to zero, *W	can	be	obtained. 

∑ 	 *K = *W − }B'~ ∑ 	 *K − }B'∑ 	 �K  
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Consequently, we can write 

*' � −}B'~*W − }B'�W*� � −}B'~*' − }B'�'*$ � −}B'~*� − }B'��  

… 

�W  depends only on *W , �'  depends only on *W  and *', ��  depends on *W, *'  and *� , etc, because the 

polynomials �K are generated for each nonlinear term. 

They are defined by 

�W � ��*W��' � *'��/�*W���*W��� � *���/�*W���*W� � �*'�/2!���*W�	…
  

It follows that the semianalytical solution of (27) can be 

written as * � ∑* � *W � *' � *� �⋯. For further details 

about the ADM, see [17-20]. 

4.2. Implementation of the Adomian Decomposition Method 

Combine equation (16) with the following conditions: α � 1, � � 2, 
 � −1, � � 4, � � 1, � � 4, � � 1, we 

obtain: 

�W � −2,�' � 'C$ ��,  

�� � − �$ �C,�$ � �'� �`,   

… 

Consequently, the semianalytical solution of equation (7) 

can be written as 

���� � ∑ 	 �K � �W � �' � �� � �$ �⋯ � �>�'� − �>O$ � 'C>�$ − 2 �⋯                (28) 

By the same method, with respect to (3.5) and appropriate conditions, we obtain: 

�W � 1,�' � − $� ��,�� � $$� �C,�$ � B$�'��W �`,	…
  

and the semianalytical solution of equation (7) is written in the following form: 

���� � ∑ 	 �K � �W � �' � �� � �$ �⋯ � − $�>�'��W�	 $$� �C − $� �� � 1 �⋯                  (29) 

Next, we substitute � � 0.001, � = 0.002,⋯ , � = 0.01 

into (16) and (24), the exact solutions of equation (7) 

according to the analytical solutions via the�3"/3�-expansion 

method and Sech-Tanh expansion method are obtained. Then 

substitute� = 0.001, � = 0.002,⋯ , � = 0.01  into (28) and 

(29), the approximate solutions of (7) can be obtained by 

applying the ADM. The results are shown in the following 

tables more intuitively. 

Table 1. Exact solutions, approximate solutions and absolute values of error 

with different values of η by ADM. 

Value of η Exact Approximate Error 

0.001 -1.999995 -1.99633 -3.66957×10−3 

0.002 -1.99998 -1.99265 -7.32979×10−3 

0.003 -1.99996 -1.98898 -1.09807×10−2 

0.004 -1.99993 -1.9853 -1.46222×10−2 

0.005 -1.99988 -1.98163 -1.82543×10−2 

0.006 -1.99983 -1.97795 -2.1877×10−2 

0.007 -1.99977 -1.97428 -2.54904×10−2 

0.008 -1.9997 -1.97061 -2.90943×10−2 

0.009 -1.99962 -1.96693 -3.26888×10−2 

0.01 -1.99953 -1.96326 -3.62739×10−2 

 

Value of η Exact Approximate Error 

0.001 0.999999 0.999999 -4.16667×10−8 

0.002 0.999998 0.999998 -1.66667×10−7 

0.003 0.999997 0.999997 -3.75004×10−7 

0.004 0.999994 0.999995 -6.66678×10−7 

0.005 0.999991 0.999992 -1.04169×10−6 

0.006 0.999987 0.999988 -1.50006×10−6 

0.007 0.999982 0.999984 -2.04178×10−6 

0.008 0.999976 0.999979 -2.66685×10−6 

0.009 0.99997 0.999973 -3.3753×10−6 

0.01 0.999963 0.99668 3.282×10−3 

According to Table 1, we see that the solutions of (7) by 

Sech-Tanh expanion method and (G'/G)-expansion method 

are both accurate, the latter has a faster convergence rate and 

higher accuracy. 

5. Conclusion 

In the present study, a new technique is employed to find 

the solutions of the (3+1)-dimensional extended quantum 

Zakharov-Kuznetsov equation by (G'/G)-expansion and the 

Sech-Tanh expansion method. Through implementing the 
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traveling wave transform, the governing equation has been 

converted into a nonlinear differential equation. As for the 

proposed model, various analytical solutions have been 

constructed. The numerical solutions and the accuracy of all 

the solutions can be verified by the Adomain decomposition 

and we show these in tables. Furthermore, the physical 

structure of the results has been analyzed graphically.  
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