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Abstract: In this study, the numerical solution of tenth-order boundary value problems was obtained by employing the 

modified variational iteration method with Hermite polynomials. The correction functional is corrected for the boundary value 

problem (BVP) in this proposed method, and the Lagrange multiplier is optimally constructed using variational theory to 

reduce iteration on the integral operator while minimizing computational time. There was no need for any form of 

discretization or linearization with this method. The proposed modification also includes the generation of Hermite 

polynomials for the given boundary value problem and their use as the approximation's basis function. Four numerical 

examples were also provided to demonstrate the proposed method's effectiveness and reliability. Furthermore, we compared 

the results to some previously published findings. Tables 1, 2, and 3 show that our proposed method produces a better 

approximation to the exact solution than the Kasi Viswanadham & Sreenivasulu method, and Table 4 shows that our proposed 

method produces a better approximation to the exact solution in a few iterations than the Ali, Esra, Dumitru & Mustafa, and 

Iqbal et al. approaches, Rehman, Pervaiz, and Hakeem techniques (as can be seen from the tables of results). The calculations 

were carried out using the Maple 18 software. 
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1. Introduction 

Consider a generalized boundary value problem of the form: 
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����, � � � � �,                     (1) 

with boundary conditions 

���� � �	, ����� � ��,	������ 	� ��	… 	����� � ��	,���� �
�	, ����� � ��, ������ � ��	… ����� � ��	.     (2) 

where �� , ���	, … , ��	are constants, ���� continuous on [a, 

b] and	��	, � � 1,2,3 …" and��	, � � 1,2,3… ". These kinds of 

problems are important in the mathematical modeling of real-

world circumstances like viscoelastic flow, heat transfer, and 

other engineering sciences. Several numerical techniques for 

solving problems of this type have been developed over the 

years. For the solution of tenth order boundary value 

problems Kasi Viswanadham & Sreenivasulu [1] employed 

the Galerkin Method with Septic B-splines. Ali, Esra, 

Dumitru & Mustafa [2] also solved tenth order boundary 

value problem using the reproducing kernel Hilbert space 
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approach. Iqbal., Rehman, Pervaiz & Hakeem [3] solved 

linear tenth-order boundary value problems using polynomial 

and non-polynomial cubic spline approaches. Kasi 

Viswanadham & Reddy [4] solved ninth-order equations 

using the petrov-galerkin method. Reddy [5] solved ninth 

order boundary value problem using the collocation method. 

Akram & Sadaf [6] solved ninth-order boundary value 

problems using the homotopy analysis method. For eight-

order boundary value problems. Noor & Mohyud-Din [7] 

developed the variational iteration decomposition method. 

For solving fifth-order boundary value problems, Noor & 

Mohyud-Din [8] designed and implemented the homotopy 

perturbation approach and the variational iteration method. 

Mohyud-Din & Yildirim [9] also used the homotopy 

perturbation method and variational iteration to solve ninth 

and tenth-order boundary value problems. For solving fifth-

order and other higher-order boundary value problems, Noor 

& Mohyud-Din [10] developed and employed the Adomian 

decomposition approach and the variational iteration method. 

Siddiqi & Iftikhar [11] also solved seventh-order boundary 

value problems using the homotopy perturbation approach 

and the variational iteration method. Njoseh & Mamadu [12] 

recently introduced the power series approximation approach 

(PSAA) as a generalized method for this problem. Mamadu 

& Njoseh [13] also employed the tau technique and the tau-

collocation approximation approach extensively for the 

solution of first and second ordinary differential equations. 

Caglar, Caglar, & Twizellll [14] are also interested in finding 

a numerical solution to a fifth-order boundary value problem 

using a sixth-degree B-spline. In addition, the Adomian 

decomposition method by Adomian [15] is used to solve the 

linear and nonlinear cases of this problems. For twelfth order 

boundary value problems, Yahya & Liu [16] used the 

differential transform method (DTM). Siddiqi & Twizell [17] 

presented spline solution of linear tenth order boundary value 

problem. Also, Siddiqi & Akram [18] used non-polynomial 

spline technique for solving tenth order boundary value 

problems. Abdulla & Mohammed [19] used variational 

iteration method for the solution of seventh order boundary 

value problem. Hamid & Khadigeh [20] proposed a 

computational method for the approximate solution of linear 

and nonlinear two-point boundary value problem using 

Bernstin polynomials. In this study, the variational iteration 

method with Hermite polynomials is used to solve a tenth-

order boundary value problem. The correction functional is 

corrected for the BVP in this suggested method, and the 

Lagrange multiplier is ideally constructed using variational 

theory. The proposed strategy works well, and the findings 

thus far are positive and consistent. Finally, the solution is 

given in the form of an infinite series, which is usually 

convergent. 

2. The Standard Variational Iteration 

Technique 

To illustrate the basic concept of the technique, we 

consider the following general differential equation 

#� � $� − &��� � 0,                          (3) 

where # is a linear operator, $	a nonlinear operator and &��� 
is the inhomogeneous term According to variational iteration 

method, we can construct a correction functional as follows 

��(	 � ����� � ) *�+��
� ,#���+� � $�-�+�. −&�+�/0+	 (4) 

where	*�+� is a Lagrange multiplier, which can be identified 

optimally via variational iteration technique. The subscripts	" 

denote the nth approximation, �-1  is considered as a restricted 

variation. i.e.,	�-2= 0. The relation (4) is called a correction 

functional. The solution of the linear problems can be solved 

in a single iteration step due to the exact identification of the 

Lagrange multiplier. In this method, we need to determine 

the langrange multiplier *�+� optimally and hence the 

successive approximation of solution �  will be readily 

obtained upon using the Langrange multiplier and our �� , 

and the solution is given by 

lim��6 �� � �	                                    (5) 

The Lagrange Multiplier also play an important role in 

determining the solution of the problem, and can be defined 

as follows: 

�−1)� 	
(��	)! (+ − �)��	                       (6) 

3. Hermite Polynomials 

The Hermite polynomials of degree $ is given as 

89(�) = (−1)9:�
 �;
��; :��
                       (7) 

Replacing N with N-1, we have the following: 

89�	(�) = (−1)9�	:�
 �;
�
��;
� :��
               (8) 

Hence, the Hermite polynomials required for this work is 

given below: 

8�,<(�) = 1 

8	,<(�) = 2� 

8�,<(�) = 4�� − 2 

8�,<(�) = 8�� − 12� 

8?,<(�) = 16�? − 48�� + 12 

8A,<(�) = 32�A − 160�� + 120�	               (9) 

4. Modified Variational Iteration Method 

Using Hermite Polynomials 

(MVIMHP) 

Using (2.1) and (2.2), we assume an approximate solution 

of the form 

��,9�	(�) = ∑ ��,9�	8�,9�	(�)9�	�C�              (10) 
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where 8� ,9�	(�)	 are Hermite polynomials, ��,9�	  are 

constants to be determined, and $ the degree of approximant. 

Hence we obtain the following iterative method 

��(	,9�	(�) = ∑ ��,9�	8�,9�	(�)9�	�C� + ) *(+),# ∑ ��,9�	8�,9�	(+)9�	�C� + $∑ ��,9�	8�,9�	(+)9�	�C� /0+�
�            (11) 

5. Numerical Applications 

In this section, we solved four examples using the provided method. The numerical results further demonstrate the proposed 

scheme's accuracy and efficiency. 

5.1. Example 1 

Considers the following tenth order boundary value problem [1] 

�(	�) + � = −10(2�D�"� − 9FGD�), −1 ≤ � ≤ 1                                                 (12) 

�(−1) = �(1) = 0, ��(1) = −��(−1) = 2FGD1, ���(−1) = ���(1) = 2FGD1 − 4D�"1 

����(−1) = −	����(1) = 6FGD1 + 6D�"1, 
�(?)(−1) = �(?)(1) = −12FGD1 + 8D�"1.                                                             (13) 

The exact solution for the problem is � = (�� − 1)FGD�. 
The correction functional for the boundary value problem (12) and (13) is given as 

��(	 = ��(�) + ) *(+) J�(	�) + � + 10(2+D�"+ − 9FGD+)K 0+	�
�                                           (14) 

where, *(+) = (�	)�L(M��)N
<!  is the Lagrange multiplier. 

Using the modified variational iteration approach with Hermite polynomials, we assume an approximation solution of the 

form 

��,<(�) = ∑ ��,<8�,<(�)<�C�                                                                        (15) 

Hence, we get the following iterative formula: 

��(	,9�	(�) = ∑ ��,98�,9(�)9�=0 + ) (+−�)9
9!

�
� O ��L

�M�L ,∑ ��,98�,9(�)9�=0 / + ∑ ��,98�,9(+)9�=0 + 10(2+D�"+ − 9FGD+)P0+        (16) 

��(	,9�	(�) = ��,<8�,<(�) + �	,<8	,<(�) + ��,<8�,<(�) + ��,<8�,<(�) + �?,<8?,<(�) + �A,<8A,<(�) + �Q,<8Q,<(�) + �R,<8R,<(�) +
�S,<8S,<(�) + �<,<8<,<(�) + ) (+−�)9

9!
�
� O ��L

�M�L ,∑ ��,98�,9(�)9�=0 / + ∑ ��,98�,9(+)9�=0 + 10(2+D�"+ − 9FGD+)P 0+             (17) 

As a result of (9), iteration, and application of the boundary conditions (13), the values of the unknown constants can be 

determined as follows 

��,< = −0.5847981771, �	,< = 0, ��,< = 0.0712890626, ��,< = 0, �?,< = −0.01831054688, 	�A,< = 0, �Q,< = 0.00036498264, �R,< = 0 �S,< = −0.0000055222284, 	�<,< = 0 

Consequently, the series solution is given as 

�(�) = 	
	�	Q?A	��?�SS���� ��� + 1.500000000�� − 1.000000000 + 4.79509653610�	?�	S − 1.15185403710�		�	Q +

2.09914644510�<�	? − 2.77660867810�R�	� + 0.00002507716050�	� − 0.001413690470�S + 0.04305555549�Q −0.5416666665�?                                                                                    (18) 

5.2. Example 2 

Considers the following tenth order boundary value problem [1] 

�(	�) − (�� − 2�)� = 10FGD� − (� − 1)�D�"�, 1	 − 1 ≤ � ≤                                                (19) 

with boundary conditions 
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��−1) = 2D�"1, �(1) = 0, ��(−1) = −2FGD1 − D�"1, ��(1) = D�"1, 

���(−1) = 2FGD1 − 2D�"1, ���(1) = 2FGD1, ����(−1) = 2FGD1 + 3D�"1, 

����(1) = −3D�"1, �(?)(−1) = −4FGD1 + 2D�"1, �(?)(1) = −4FGD1.                                      (20) 

The exact solution for the problem is �(�) = (� − 1)D�"�. 

The correction functional for the boundary value problem (19) and (20) is given as 

��(	 = ��(�) + ) *(+)�
0 ,�(	�) − (+� − 2+)� − 10FGD+ + (+ − 1)�D�"+/0+	                             (21) 

where *(+) = (�	)�L(M��)N
<!  is the Lagrange multiplier. 

Using the modified variational iteration approach with Hermite polynomials, we assume an approximation solution of the form 

��,<(�) = ∑ ��,<8�,<(�)<�C�                                                                  (22) 

Hence, we get the following iterative formula 

��(	,9�	(�) = ∑ ��,<8�,<(�)<�C� + ) (M��)N
<!

�
� J ��L

�M�L ,∑ ��,<8�,<(+)<�C� / − (+� − 2+)∑ ��,<8�,<(+)<�C� − 10FGD+ + (+ − 1)�D�"+K 0+ (23) 

��(	,9�	(�) = ��,<8�,<(�) + �	,<8	,<(�) + ��,<8�,<(�) + ��,<8�,<(�) + �?,<8?,<(�) + �A,<8A,<(�) + �Q,<8Q,<(�) + �R,<8R,<(�) +
�S,<8S,<(�) + �<,<8<,<(�) + ) (+−�)9

9!
�
0 J ��L

�M�L ,∑ ��,98�,9(+)9�=0 / − (+� − 2+)∑ ��,98�,9(+)9�=0 − 10FGD+ + (+ − 1)�D�"+K0+ (24) 

As a result of (9), iteration, and application of the boundary conditions (20), the values of the unknown constants can be 

determined as follows 

��,< = 0.3893229167, �	,< = −0.389404297, ��,< = 0.1458333334, ��,< = 0.01622178  

, �?,< = −0.00716145834, 	�A,< = −0.0002034505	�Q,< = 0.000086805557, �R,< = 0.00000116258, �S,< = −7.750495810�R �<,< = −5.382310�< 

Consequently, the series solution is given as 

�(�) = −1.000000� − 3.1410�	� − 	
SA	A	AR��SQ	S�?�� ��� + 2.50521084010�S�		 − 2.50521083410�S�	� − 1.6059446110�	��	� +

1.60590430510�	��	? + 7.647178310�	��	A − 7.6471588110�	��	Q − 2.8115622110�	A�	R − 0.000002755737600�< −0.0001984126925�S + 0.0001984135168�R + 0.00833333343�Q − 0.00833340723�A − 0.166666672�? + 0.166666815�� +1.0000000�� + 2.8114469910�	A�	S + 8.223040810�	S�	< − 4.110291810�	S��� + 4.30604259810�	S��	       (25) 

5.3. Example 3 

Considers the following tenth order boundary value problem [1] 

�(	�) − ��� + �� = (−8 + � − ��):� , 0 ≤ � ≤ 1                                                    (26) 

with boundary conditions 

�(0) = 1, �(1) = 0, ��(0) = 0, ��(1) = −:, ���(0) = −1, ���(1) = −2:, ����(0) = −2, 

����(1) = −3:,	�(?)(0) = −3,	�(?)(1) = −4:.                                                      (27) 

The exact solution of the example is	�(�) = (1 − �):�. 

The correction functional for the boundary value problem (26) and (27) is given as 

��(	 = ��(�) + ) *(+)�
0 ,�(	�) − ��� + �+ − (−8 + + − +�):M/0+	                                      (28) 

where *(+) = (�	)�L(M��)N
<!  is the Lagrange multiplier. 

Using the modified variational iteration approach with Hermite polynomials, we assume an approximation solution of the 

form 

��,<(�) = ∑ ��,<8�,<(�)<�C�                                                                         (29) 

Hence, we get the following iterative formula 
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��(	,9�	(�) = ∑ ��,<8�,<(�)<�C� + ) (M��)N
<!

�
� J ��L

�M�L ,∑ ��,<8�,<(+)<�C� / − �

�M
 ,∑ ��,<8�,<(+)<�C� / + +,∑ ��,<8�,<(+)<�C� / − (−8 + + − +�):MK0+ (30) 

��(	,9�	(�) = ��,<8�,<(�) + �	,<8	,<(�) + ��,<8�,<(�) + ��,<8�,<(�) + �?,<8?,<(�) + �A,<8A,<(�) + �Q,<8Q,<(�) + �R,<8R,<(�) +
�S,<8S,<(�) + �<,<8<,<(�) + ) (M��)N

<!
�
� J ��L

�M�L ,∑ ��,<8�,<(+)<�C� / − �

�M
 ,∑ ��,<8�,<(+)<�C� / + +,∑ ��,<8�,<(+)<�C� / − (−8 + + − +�):MK 0+ (31) 

As a result of (9), iteration, and application of the boundary conditions (27), the values of the unknown constants can be 

determined as follows 

	��,< = 0.642090, �	,< = −0.320964, ��,< = −0.240558	��,< = −0.066842, 	�?,< = −0.011637, �A,< = −0.0014975	�Q,< =−0.00014647, 	�R,< = −0.00001240, 	�S,< = −6.7910�R	�<,< = −4.3010�S  

Consequently, the series solution is given as 

�(�) = 5.18535090310�	Q�	< − 1.24679197510�	A�	S − 2.2516467210�	?�	R − 7.1727752910�	��	Q − 1.07065930310�		�	A −1.49087714310�	��	? − 1.92712662910�<�	� − 2.29650740310�S�	� − 2.50520897710�R�		 − 0.000002408152469�	� −0.001190912000�R − 0.00694054400�Q − 0.03333491200�A − 0.1250121600�? − 0.3333324800�� − 0.4999886400�� +0.000007680000� + 3.283801310�	R��� − 0.0000220160000�< − 0.0001738240000�S + 0.9999976800                    (32) 

5.4. Example 4 

Considers the following tenth order boundary value problem [2, 3] 

�(	�) = −(80 + 19� + ��):�, 0 ≤ � ≤ 1                                                             (33) 

with boundary conditions 

�(0) = 0, �(1) = 0, ��′(0) = 0, ���(1) = −4:, �(?)(0) = −8, �(?)(1) = −16:, 

�(Q)(0) = −24, �(Q)(1) = −36:, �(S)(0) = −48, �(S)(1) = −64:.                                       (34) 

The exact solution of the example is	�(�) = �(1 − �):�. 

The correct functional for the boundary value problem (33) and (34) is given as 

��(	 = ��(�) + ) *(+)�
0 ,�(	�) + (80 + 19+ + +�):M/0+	                                                   (35) 

where *(+) = (�	)�L(M��)N
<!  is the Lagrange multiplier. 

Using the modified Variational iteration approach with Hermite polynomials, we assume an approximation solution of the 

form 

��,<(�) = ∑ ��,<8�,<(�)<�C�                                                                          (36) 

Hence, we get the following iterative formula 

��(	,9�	(�) = ∑ ��,<8�,<(�)<�C� + ) (M��)N
<!

�
0 J ��L

�M�L ,∑ ��,<8�,<(+)<�C� / + (80 + 19+ + +�):MK 0+	      (37) 

��(	,9�	(�) = ��,<8�,<(�) + �	,<8	,<(�) + ��,<8�,<(�) + ��,<8�,<(�) + �?,<8?,<(�) + �A,<8A,<(�) + �Q,<8Q,<(�) +
�R,<8R,<(�) + �S,<8S,<(�) + �<,<8<,<(�) + ) (M��)N

<!
�
0 J ��L

�M�L ,∑ ��,<8�,<(+)<�C� / + (80 + 19+ + +�):MK 0+     (38) 

As a result of (9), iteration, and application of the boundary conditions (34), the values of the unknown constants can be 

determined as follows 

	��,< = −0.320312500, �	,< = −0.1600748750, ��,< = −0.3593750000, ��,< = −0.1668294287, 	�?,< = −0.04036458333, �A,< = −0.0006697591893, �Q,< = −0.0007812500000, 	�R,< =−0.00007866757655, �S,< = −0.000004650297619	�<,< = −3.39085779810�R  

Consequently, the series solution is given as 

�(�) = 	
		?��S	�	SSS�� �	S − 	

����?<<AS<	�� �	R − 	
<�?�A�	�����	Q − 	

QR�Q���?�� �	A − 	
A	S<	S?�� �	? − 	

?�A?AQ�� �	� −	
�<<	QS� �	� − 	

?����� �		 − 	
?A�Q� �	� − 0.0001736119193�< − 0.001190476190�S − 0.006944435253�R −

0.0333333333�Q − 0.1250000441�A − 0.33333333333�? − 0.4999999069�� + 0.999999410�      (39) 
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5.5. Tables 

Table 1. (Error estimates): The result of the proposed method compared Galerkin Method with Septic B-splines [1]. 

x Exact solution Approximate solution Absolute Error by the proposed method GMSB-s Error 

-0.8 -0.2508144153 -0.2508144153 0.000000e-00 5.483627e-06 

-0.6 -0.5282147935 -0.5282147936 1.000000e-10 9.536743e-07 

-0.4 -0.7736912350 -0.7736912350 0.000000e-00 8.702278e-06 

-0.2 -0.9408639147 -0.9408639147 0.000000e-00 2.980232e-07 

0.0 -1.0000000000 -1.000000000 0.000000e-00 1.955032e-05 

0.2 -0.9408639147 -0.9408639147 0.000000e-00 2.920628e-05 

0.4 -0.7736912350 -0.7736912350 0.000000e-00 2.169609e-05 

0.6 -0.5282147935 -0.5282147936 1.000000e-10 7.390976e-06 

0.8 -0.2508144153 -0.2508144153 0.000000e-00 7.450581e-07 

Table 2. (Error estimates): The result of the proposed method compared Galerkin Method with Septic B-splines [1]. 

X Exact solution Approximate solution Absolute Error by the proposed method GMSB-s Error 

-0.8 1.291240964 1.291240962 2.000000e-09 4.649162e-06 

-0.6 0.9034279574 0.9034279578 4.000000e-10 1.329184e-05 

-0.4 0.5451856792 0.5451856802 1.000000e-09 2.050400e-05 

-0.2 0.2384031970 0.2384031975 5.000000e-10 9.477139e-06 

0.0 0.0000000000 -3.140000e-10 3.140000e-10 2.731677e-06 

0.2 -0.1589354646 -0.1589354659 1.300000e-09 1.458824e-05 

0.4 -0.2336510054 -0.2336510066 1.200000e-09 2.110004e-05 

0.6 -0.2258569894 -0.2258569898 4.000000e-10 1.908839e-05 

0.8 -0.1434712182 -0.1434712168 1.400000e-09 1.342595e-05 

Table 3. (Error estimates): The result of the proposed method compared Galerkin Method with Septic B-splines [1]. 

x Exact solution Approximate solution Absolute Error by the proposed method GMSB-s Error 

0.1 0.9946538262 0.9946523875 1.438700e-06 1.537800e-05 

0.2 0.9771222064 0.9771218640 3.424000e-07 4.452467e-05 

0.3 0.9449011656 0.9449020952 9.296000e-07 3.331900e-05 

0.4 0.8950948188 0.8950971305 2.311700e-06 3.552437e-05 

0.5 0.8243606355 0.8243643494 3.713900e-06 9.477139e-06 

0.6 0.7288475200 0.7288525498 5.029800e-06 2.586842e-05 

0.7 0.6041258121 0.6041319544 6.142300e-06 3.975630e-05 

0.8 0.4451081856 0.4451151184 6.932800e-06 3.531575e-05 

0.9 0.2459603111 0.2459676009 7.289800e-06 2.214313e-05 

Table 4. (Error estimates): The result of the proposed method compared with Reproducing Kernel Hilbert Space Method [2, 3]. 

x Exact solution Absolute Error by the proposed method AE (RKHSM) [2] AE (NPCSM) [3] AE (PCSM) [3] 

0.2 0.195424441 1.110000e-08 3.330000e-08 2.433000e-07 3.982000e-04 

0.4 0.358037927 1.810000e-08 7.031000e-08 3.986000e-07 6.663000e-04 

0.6 0.358037927 1.840000e-08 6.076000e-08 4.428000e-07 7.598000e-04 

0.8 0.356086549 1.200000e-08 2.682000e-08 3.328000e-07 5.885000e-04 

 

6. Conclusion 

The modified Variational iteration method using Hermite 

polynomials was effectively employed in this research to 

obtain numerical solutions to tenth-order boundary value 

problems. Hermite polynomials are combined with the 

Variational iteration approach in the modification. The 

approach produces rapidly converging series solutions, 

which are common in physical issues. Tables 1 to 4 show 

that the suggested strategy outperforms methods in the 

literature. Finally, the numerical results demonstrated that 

the current method is a powerful mathematical instrument 

for solving the class of problems under consideration. 
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