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Abstract: Meningococcal meningitis is a significant contributor to increased deaths globally, particularly the vulnerable children 

aged between 0-5 years. This paper formulates a robust two-strain epidemic model for the transmission dynamics of bacterial 

meningitis by incorporating interventions such as treatment and vaccination. The aim of the article is to formulate a meningitis 

epidemic model and study the time dependent dynamics of meningitis in the presence of antibiotic resistance to treatment threats 

while assessing the impact of vaccination proportion. The study uses the 4
th
 order Runge Kutta numerical approach to solve the 

problem and Maple mathematical tool to undertake simulations. The meningitis model qualitative study reveals existence of 

disease-free state when infection dies out and endemic state when disease persist in the community. The disease-free case is found to 

be stable only if effective reproduction number Re < 1 and the community enjoys disease free scenario. Meningitis disease-free state 

reveals a locally asymptotically stable (LAS) transmission dynamics. The endemic equilibrium state i.e., Re > 1 exists and 

persistence occurs in the community. The impact of parameter control measures on the spread of meningitis disease through 

sensitivity study of the key parameter, i.e., Re, which revealed the key target parameters that can wipe out meningitis disease. We 

perform numerical solution of the considered model equations to display the qualitative findings and describe the asymptotical 

transmission dynamics of the disease. The effects of meningitis disease prevention and control approaches are analyzed. Key 

findings are shown using graphs and tables. We obtain a threshold vaccination proportion value beyond which the meningitis 

disease will be perfectly wiped out of the community and below which the disease acquires endemic state. 

Keywords: Meningococcal Meningitis, Effective Reproductive Number, Vaccination Coverage, Endemic Equilibrium, 

Sensitivity Indices, Numerical Simulation 

 

1. Introduction 

Meningitis disease whose causative agent is the bacterium 

Neisseria meningitidis (n.m) is known to be a bacterial disease 

that leads to acute, life threatening and severe illness. 

Meningococcal disease is responsible for high cases of child 

morbidity and mortality in the sub-Saharan Africa region being 

approximately 400 million annually [8]. The incubation of 

meningococcal bacterium takes approximately 3-4 days in the 

mucosal cells to be infectious, with a range of 1 to 10 days. 

Meningococci is mainly spread from one individual to another 

via excretions from respiratory system of an infectious persons 

with asymptomatic and symptomatic stages of meningococcal 

disease [7]. The symptoms visible in bacterial meningitis infected 

individual include: sudden onset of fever, severe headache 

accompanied by a stiff neck, nausea, vomiting, eye sensitivity to 

light (photophobia) etc. see [7, 8]. Meningococcal meningitis 

grows rapidly, even in healthy looking individuals, and 

consequently may lead to increased morbidity and mortality (it 

leads to deaths of an estimated 50%-80% of untreated cases) [6]. 

In as much as, early diagnosis and a prompt treatment may be 

undertaken, still 5% to 10% patients succumb to the disease 

within 24 to 48 hours after the symptoms are seen, while 

survivors approximated at 10%-20% of population may suffer 

longterm effects from meningitis [6, 9]. 

Meningococcal disease is a common form of infectious 

disease in young children under five years. Due to the threat 

posed by meningococcal disease, the discovery of effective 

vaccines for meningococcal diseases is a life-saving 
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achievement to humanity and necessitates that health 

agencies to get guided on decision making in case of an 

outbreak of the disease [7]. Over the years, vaccination has 

proved to be the efficient and effective approach to wipe out 

infectious diseases. Thus, the need to formulate of a 

predictive model capable of recommending an accurate 

vaccine proportion that is enough to eliminate the 

transmission of meningitis disease in the community is 

crucial. In this regard, mathematical computational methods 

employed on epidemic models play a crucial role while 

making numerical solution and predicting the unforeseen 

dynamics of the disease in the community [6]. 

 

Figure 1. Meningitis model flow chart. 

The articles main target is to formulate and analyze a 

meningitis epidemic predictive model that investigates the 

dynamics of meningococcal diseases with antibiotic resistance 

threats in the presence of vaccines. We organized as follows: 

Section 2 was devoted to formulation of a meningitis model 

and indicate the parameters and assumed values. In Section 3, 

we study the model properties qualitatively and identify key 

determinants that shape the dynamics. In section 4, we apply 

the numerical method to get the approximate solutions. 

Section 5 analyzes the computational findings of the study 

using tables and graphs. In Sections 6, was solely used to 

drawing conclusions and areas for further studies. 

2. Meningitis Model 

The model is divided into 5 groups which include: 

Susceptible group (�), Drug sensitive infectives (�), drug 

resistant infectives (	
) and recoveries (	). The model has 

a population fraction � that is vaccinated and a fraction of 

(1 − �) of the total population that become susceptible to the 

diseases. The susceptible individual gets infection through 

contact with drug sensitive infective or through contact with 

drug resistant infectives with an infection rate of 
 =��(�)�����(�)� , where � = �� is the effective infection rate, � 

is the rate getting infected, � is the likelihood of an infective 

person can transmit an infection and Υ is coefficient for the 

drug resistant to cause an infection. 

��
�
��� �� = (1 − �)!" + $	 − (
 + %)����� = 
&� − (' + ( + % + )*)������ = 
(1 − &)� + (� − (+ + % + ),)	
���� = �!" + '� + +	
 − ($ + %)

                          (1) 

subject to the initial conditions �(0) = �-, �(0) = �-, 	
(0) = 	
- and 	(0) = 	- with " = � + � + 	
 + 	. A sum of the 

governing model equations in (1) yields, 

���� = (! − %)" − )*� − ),	
                                  (2) 

which is a varying population size with deaths due to fatal meningitis disease strains. The classes are scaled by population " 

using the following variables, / =  � , 0 = �� , 1
 = ���  and 1 = 
�� which normalizes the population, such that, the new system 

gives; 

���
��
���2�� = (1 − �)! + $1 − 34�40(5) + Υ1
(5)6 + !6/ + )*/0 + ),/1
�7�� = &�40(5) + Υ1
(5)6/ − (' + ( + ! + )*)0 + )*0, + ),01
�8��� = (1 − &)�40(5) + Υ1
(5)6/ + (0 − (+ + ! + ),)1
 + )*01
 + ),1
,�8�� = �! + '0 + +1
 − ($ + !)1 + )*01 + ),1
1

             (3) 

3. Model Properties 

3.1. Feasible Region 

In the absence of deaths due to Meningitis disease, model equations in (1) gives, 
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��

�
≤ (! − %):5, on integration we obtain " = "-exp	(! − %)5  

where "-  is the initial population computed at �(0) = �-, �(0) = �-, 	
(0) = 	
-  and 	(0) = 	- , as 5 → ∞  the total 

population size " → 1 which means that 0 ≤ / + 0 + 1
 + 1 ≤ 1. 

Thus, the feasibility region of equations in (1) is, Ω = B(/, 0, 1
 , 1) ∈ ℝ�E : 0 ≤ / + 0 + 1
 + 1 ≤ 1G                             (4) 

Hence, the meningitis model is epidemiologically and mathematically well stated. 

3.2. Non-negative Variables 

Here, positive solutions of variables and parameters as time changes to reflect the model variables which are a population of 

persons. 

Theorem 1. Let Ω = B(/, 0, 1
 , 1) ∈ ℝ�E : /(0) = /-, 0(0) = 0-, 1
(0) = 1
- and 1(0) = 1- ≥ 0G with solutions B/, 0, 1
 , 1G are 

non-negative for 5 ≥ 0. 

The proof. Given the equations in (3), we consider the first equation; :/:5 = (1 − �)! + $1 − 34�40(5) + Υ1
(5)6 + !6/ + )*/0 + ),/1� :// ≥ −34�40(5) + 11
(5)6 + !6:5 + )*0:5 + ),1�:5, 
On integrating and solving for s (t) we have, 

/(5) = /-exp − IJ� K  �-  J0(5):5 + ΥK  �-   1
(5):5M + !5M + )*K  �-  0:5 + ),K  �-  1�:5 ≥ 0. 
Similarly, it can be shown that, 0(5), 1
(5), 1(5) ≥ 0. clearly, the proof of the Theorem is complete. 

3.3. Model Analysis of Disease-Free State 

The model was analyzed qualitatively in the set Ω. In the case of zero Meningitis disease presence the study reveals that there 

exists a disease-free state, O- = (1 − �, 0,0,0). We compute the Jacobian (PQR) of the equations in (3) at O-as follows; 

PQR = S−! (−� + )*)(1 − �) (−�Υ + ),)(1 − �) $0 &�(1 − �) − a &�Υ(1 − �) 00 x + ( xΥ − b 00 ' + −cW                                      (5) 

with, X = (1 − &)�(1 − �), Y = (' + ( + ! + )*), Z = (+ + ! + ),), [ = ($ + !) 
We compute \PQR − ]�\ = 0, by employing the Jacobian method [16] to get the Threshold value, 	^ known as the effective 

reproduction number that shapes the nature of equilibria. 

	^ = _�(*`a)(b�c�d�ef)+ ��(*`_)(*`a)(g�d�eh) + c_��(*`a)(b�c�d�ef)(g�d�eh)                                  (6) 

By applying Routh-Hurwitz approach [3, 16] which stipulates the criteria to be used to establish and identify whether the 

eigenvalues of a polynomial have negative values. 

We have i(]) = (−] − !)(−] − ($ + !))(], + [*] + [,) = 0, [* = (+ + ! + ),) − &�(1 − �) − (1 − &)�Υ(1 −  �) 
and [, = (' + ( + ! + )*)(+ + ! + ),) − (+ + ! + ),)&�(1 − �) − (' + ( + ! + )*)(1 − &)�Υ(1 − �) − (j�Υ(1 − �) 
Clearly, ]* = −!, ], = −($ + !) . Note that, [, > 0  if 	^ < 1  and [* > 0  only if (+ + ! + ),) > &(1 −  �)� + �(1 −&)Υ(1 − �) , Satisfying the conditions for Routh-Hurwitz approach [3, 16]. This confirms that the disease-free state is 

asymptotically stable locally since that all the negative eigenvalues i.e., 	^ < 1 and it becomes unstable only when 	^ > 1. 

Global analysis study of its stability reveals the set m(/, 0, 1
 , 1) ∈ Ω: �n�� = 0o, with the Lyapunov function p = (+ + ! + ),)0 +(' + ( + ! + )*)Υ1
 , is the disease-free equilibrium. Global asymptotic stability for O-  was determined by using 

Lasalle-Lyapunov theorem [3] 	^ < 1. 

The critical vaccination proportion (�q) is obtained by setting 	^ = 1. 

�q = 1 − (' + ( + ! + )*)(+ + ! + ),)(+ + ! + ),)&� + (' + ( + ! + )*)�Υ(1 − &) + (&�Υ 

Clearly, 	^ < 1 ⟺ � > �q i.e., high vaccination coverage that leads to die out of the disease from the community. 
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3.4. Endemic Equilibrium 

The persistence of an infection in a community leads to endemic state, the model attains the endemic equilibrium, O∗ =
(/∗, 0∗, 1
∗, 1∗) computed by equating the nonlinear system of equations in (3) to zero with /∗ > 0, 0∗ > 0, 1
∗ > 0 and 1∗ > 0. 

Solving gives, /∗ = (b�c�d�ef)7∗`ef7∗h`eh7∗8�∗_�(7∗��8�∗)  and 1∗ = ad�b7∗�g8�∗t�d`ef7∗`eh8�∗ 
Using the second and third equations of system (3) and substituting /∗ and 1∗ gives, 

/∗ = −(0∗ + (+ + ! + ),)1
∗ − )*0∗1
∗ − ),1
∗,(1 − &)�(0∗(5) + Υ1
∗(5)) = (' + ( + ! + )*)0∗ − )*0∗, − ),0∗1
∗&�(0∗(5) + 1
∗  

or −(&0∗ + (+ + ! + ),)&1
∗ − )*&0∗1
∗ − ),&1
∗, = (' + ( + ! + )*)(1 − &)0∗ − )*(1 − &)0∗, − ),(1 − &)0∗1
∗ 
or u0∗, +v0∗ + w − Bx1
∗, +y1
∗ + "G = 0                                   (7) 

were u = )*(1 − &), v = −z(' + ( + ! + )*)(1 − &) + (& + )*&1
∗{, w = 0, x = ),&,y = −z(+ + ! + ),)& + ),(1 − &)0∗{ 
and " = 0. 

From equation (7) we have that |(0∗) + |(1
∗) = 0 which describes a case when the meningitis disease is persistent in the 

community. 

Lemma 1. The non-linear model which has both sensitive and resistant infectious strains will have: 

1) Exactly one endemic state if and only if w is less than zero and "	is	less	than	zero	 ⇔ 	^ > 1. 

2) Exactly one endemic state if v	is	less	than	zero,y is less than zero and w = 0," = 0 or v, − 4uw = 0,y, − 4x" =0. 

3) Exactly 2 endemic states if w > 0,v < 0 with v, − 4uw > 0 and " > 0,y < 0 with y, − 4x" > 0. 

4) None otherwise. 

Now, by Descartes Rule of Signs [15], it follows that there exists one endemic state as proven from equation (7). 

Theorem 2. There exists only one endemic state, O∗ if and only if 	^ is greater than unity. 

4. Application of 4
th

 Order Runge-Kutta 

The non-linear model solution was done using the numerical 4
th

 order Runge-Kutta criteria [12]. 

The system of equations in (3) applied to the numerical 4
th

 order Runge-Kutta becomes: 

�2�� = |(5, /(5), 0(5), 1
(5), 1(5)), �7�� = |(5, /(5), 0(5), 1
(5), 1(5)), �8��� = |(5, /(5), 0(5), 1
(5), 1(5)) and �8�� = |(5, /(5), 0(5), 1
(5), 1(5)) with initial coditions /(0) = /-, 0(0) = 0-, 1
(0) = 1
- and 1(0) = 1-. 

where ℎ = 5��* − 5�, � = 0,1,2, … with the Taylor series of /(5��*) = /��* about /� is given by, 

/(5��*) = /(5�) + ℎ|45�, /(5�)6 + *,! ℎ,|�45�, /(5�)6 + ⋯                                (8) 

Then, the Runge Kutta method [4] for the equation (8) yields, 

/��* = /� + �� (�*/ + 2�,/ + 2��/ + �E/),0��* = 0� + �� (�*0 + 2�,0 + 2��0 + �E0),1
��* = 0� + �� (�*1
 + 2�,1
 + 2��1
 + �E1
),1��* = 1� + �� (�*1 + 2�,1 + 2��1 + �E1),
	                                    (9) 

�*/ = |/(5�, /� , 0� , 1
�, 1�),�*0 = |0(5�, /� , 0� , 1
�, 1�),�*1
 = |1
(5�, /� , 0�, 1
� , 1�),�*1 = |1(5�, /� , 0� , 1
� , 1�),         (10) 

/0�0�Y1��	�,/, �,0, �,1
 , �,1, ��/, ��0, ��1
 , ��1 Y�:	�E/, �E0, �E1
 , �E1,	can be defined using the RK4 scheme. 

with |/ = �2�� , |0 = �7�� , |1
 = �8���  and |1 = �8��. 
The 4

th
 order Runge-Kutta has error of corresponding to 
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ℎ� , this means that accurate solutions while using the 

method can be enhanced through use of small step size of h 

[3, 12]. 

5. Computational Results and Discussion 

Here, the impact of varying vaccination proportion values 

on the transmission of a meningitis infections as elaborated by 

the mathematical equations stated in (3) is investigated. The 

parameter values obtained from published research articles 

and estimated parameter values, together with initial 

conditions (/- = 0.5, 0- = 0.25, 1
- =  0.15  and 1- = 0.1  ) 

of variables used for computations and simulations are shown 

in Table 1. Computations reveal that the critical vaccination 

coverage value, �q = 0.4502. 

 

Figure 2. Population dynamics with time: Case 1	(� = 0.8). 

Table 1. Computations showing the effects of vaccination coverage on disease transmission. 

Case � � � � � �� �  ¡ ¢ £ ¤ ¥¦ Comments 1 0.89 0.15 0.3 0.1 0.2 0.2 0.15 1.2 0.04 0.6 0.9 0.2195 LAS (E0) 2 0.89 0.15 0.3 0.1 0.2 0.2 0.15 1.2 0.04 0.6 0.6 0.8781 LAS (E0) 3 0.89 0.15 0.3 0.1 0.2 0.2 0.15 1.2 0.04 0.6 0.3 1.5367 Unstable (E0) 4 0.89 0.15 0.3 0.1 0.2 0.2 0.15 1.2 0.04 0.6 0.1 1.9758 Unstable (E0) 

Ref. [11] fitted [11] [12, 13] [1] [2, 9] fitted [10] [5, 14] fitted    

 

Figure 2 illustrates how high vaccination proportion i.e., 

q=0.8 influences the meningitis disease transmission in the 

community. The susceptible population decreases 

exponentially with increasing time to a minimum value then 

gradually increases to asymptotically to reach a steady level. 

The decrease occurred because of high vaccination coverage 

leading to increased recruitment to the recovered group. The 

rise after minimum point can be as a result of decreasing 

infective individuals due to treatment. Recovered population 

displays a sharp increase due to recruitment of vaccinated 

susceptible individuals. Notably, with an initial low number 

of resistant infective populations the disease gradually grows 

until it attains a peak value showing that a resistant strain 

needs close monitoring and detection to enable health 

providers to plan for treatment and possible hospital 

beddings needed to gather for rise in infection. The sensitive 

and resistant infectives decreases gradually to attain 

disease-free state asymptotically. The rise of resistant 

infections initially is due to recruitment of susceptible as a 

result of the high force of infection associated with the 

meningitis resistant strain. The sharp decrease from peak to 

disease free state is due to use of prescribed treatment and 

high vaccination coverage (� = 0.8) . The Population 

asymptotically acquires zero infection state. This precisely 

demonstrates that a disease-free state is achievable if and 

only if � > �q. 

Figure 3 investigates a low vaccination proportion case 

scenario on the transmission of meningitis growth present in 

the community. The susceptible group reduces gradually to a 

minimum point then increases gradually with time. 

Thereafter, we note a higher rise of susceptible population as 

compared to case 1. The recovered population gradually 

increased due to recruitment of susceptible individuals to 

reach its highest point and a minimal decrease to a steady 

point. The resistant strain of meningitis displayed a gradual 

rise to attain a peak in less than 5 months showing the high 

infection rate of the strain then decreased gradually to a 

steady state. The sensitive strain showed an exponential 

decrease due to treatment of the infection. However, it is 

important to observe that the infectives may never be wiped 

out in the community and the persistent state will be 

achieved. Hence, low vaccination proportion level, � < �q 

results in endemicity of meningitis in the society. Thus, 

revealing that the number of infectives (sensitive and 

resistant strains) may never vanish as time increases and an 

endemic state persists asymptotically. 
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Figure 3. Population dynamics with time: Case 1	(� = 0.2). 

 

Figure 4. Investigating the impact of vaccination proportion value on drug 

sensitive infectives. 

 

Figure 5. Investigating the impact of vaccination proportion value on 

antibiotic resistant infectives. 

 

Figure 6. Investigating the impact of vaccination proportion value on 

recovered individuals. 

 

Figure 7. Investigating the impact of vaccination proportion value on 

susceptible individuals. 
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Figures 4 and 5 shows case 1-4 and reveals that a rise in 

vaccination value yields a decreasing number of infections 

(sensitive and resistant strains). Figure 6 shows case 1-4 and 

reveals that a rise in vaccination coverage (q) yields a 

corresponding rise in recoveries in the community. Figure 7 

shows case 1-4 and reveals that a rise in vaccination coverage 

yields a reduction to a minimum point then begins to rise. 

6. Conclusions 

The article presents a meningitis epidemic model that analyzes 

and simulates the temporal spread growth of meningitis in a 

varying population and drug resistance threats. The model 

incorporates a varying population, resistant and sensitive 

infectious strains to the community. A qualitative analysis 

reveals zero disease state which has both local and global 

asymptotically stability provided 	^ < 1 otherwise unstable for 

the case 	^ > 1. Runge-Kutta 4
th
 Order numerical integration 

approach was used to determine the solution of the system. The 

findings reveal a solution which converges to disease-free state as 

time increases provided � > �q  and is persistent for the case 

when � < �q. We observe that Runge-Kutta method provided 

findings that agreed with the analytical findings and the solutions 

converged as time increases. The findings of this study can be 

continued by future research studies to include delay differential 

equations to take care of the duration between getting an 

infection and showing visible symptoms. We also note that a 

further study on the optimal control analysis of the model will be 

helpful in comparing the intervention strategies and choosing the 

most cost-effective approach that is economical especially in 

low-income nations. 
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