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Abstract: Consider a robot that is navigating a graph-based space and is attempting to determine where it is right now. To 

determine how distant it is from each group of fixed landmarks, it can send a signal. We discuss the problem of determining the 

minimum number of landmarks necessary and their optimal placement to ensure that the robot can always locate itself. The 

number of landmarks is referred to as the graph's metric dimension, and the set of nodes on which they are distributed is 

known as the graph's metric basis. On the other hand, the metric dimension of a graph G is the minimum size of a set w of 

vertices that can identify each vertex pair of G by the shortest-path distance to a particular vertex in w. It is an NP-complete 

problem to determine the metric dimension for any network. The metric dimension is also used in a variety of applications, 

including geographic routing protocols, network discovery and verification, pattern recognition, image processing, and 

combinatorial optimization. In this paper, we investigate the exact value of the secure resolving set of some networks, such as 

trapezoid network, Z-(Pn) network, open ladder network, tortoise network and �������  network. We also determine the 

domination number of the networks, such as the twig network Tm, double fan network F2,n, bistar network Bn,n and linear kc4 – 

snake  network. 
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1. Introduction 

All of the graphs G considered are finite, undirected and 

have many edges without loops. A subset S = {u1, u2,..., uk} 

of vertex set V(G) is called a resolving set if, for any vertex x 

∈ V(G), the code of x with regard to S, indicated by CS (x), 

which is defined as CS (x) = (d(u1, x), d(u2, x),.., d(uk, x)), is 

different for distinct x. The dimension of G, represented by 

dim (G), is the minimal cardinality of a resolving set. Slater 

[1] first proposed the idea of metric dimension, which Harary 

and Melter [2] investigated separately. Since then, a lot of 

research has been done on this problem. In several fields of 

science and technology, the metric dimension has several 

uses. 

Security is a concept that is linked to a number of 

different types of sets in a graph. For example, a 

dominating set D of G is secure if there exists u ∈ D such 

that (D − {u}) ∪ {v} is a dominating set for any v ∈ V − D 

[2, 3]. Subramanian et al. [4] introduced secure resolving 

sets and secure resolving dominating sets for several classes 

of graphs. The study of domination is the fastest developing 

topic in graph theory, owing to its numerous and diverse 

applications in domains such as social sciences, 

communications networks, algorithmic designs, and so on. 

Berge [5] in 1958 and Ore [6] in 1962 gave rigorous 

mathematical definitions to the problem of domination. 

Berge used the terms "external stability" and "domination 

number of external stability coefficient" to describe the 

domination. Domination theory has several applications in 

wireless communication networks [7], business networks, 

and decision-making. Khalil [8] demonstrated the 

domination numbers for the helm graph Hn and the web 

graph Wn. Nagabhushana et al. [9] demonstrated the 

domination number for the friendship graph Fn and the 

windmill graph Wd(m,n). Murthy [10] demonstrated the 

dominance number for the tadpole graph Tm,n. Kavitha et al. 

[11] demonstrated the dominance number for the book 

graph Bn and stacked book graph B3,n. Sugumaran et al. [12] 
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discussed the dominating set and domination number of the 

graphs such as fan Fm,2, diamond snake Dn, banana tree B(m, 

n), coconut tree CT (m, n), firecracker F(m, n). 

Our main aim in this paper is to compute the secure 

resolving set of some graphs, including the trapezoid graph, 

the Z-(Pn) graph and the open ladder graph, the tortoise 

graph, 2  n n gP P raph∨ , We also determine the domination 

number of the graphs, such as the twig graph Tm, the double 

fan graph F2,n, the bistar graph Bn,n and the linear kc4 - snake 

graph. 

2. Preliminaries 

We present some definitions and known results in this 

section that are needed to prove our main theorems. 

Definition 2.1 [13]: Trapezoid graphs nT  are intersection 

graphs of trapezoids between two horizontal lines. Interval 

graphs and permutation graphs are subclasses of this subset 

of co-comparability graphs. A graph is called a trapezoid 

graph if there exists a set of trapezoids corresponding to the 

vertices of the graph such that two vertices are connected by 

an edge if and only if the corresponding trapezoids intersect. 

Definition 2.2 [(Z-(Pn)] [14]: In a pair of paths Pn i
th

 vertex 

of path P1 is connected to the i+1
th

 vertex of path P2. It is 

denoted by Z-(Pn). 

Definition 2.3 [15]: An open ladder O(Ln), n ≥ 2 is 

generated from two paths of length n-1 with V(G) = {ui, vi: 

1≤ i ≤ n } and E(G) = {ui ui+1,vi vi+1: 1 ≤ i ≤ n − 1} ∪ {ui vi ∶ 2 

≤ i ≤ n-1}. 

Definition 2.4 Twig graph [16]: A graph G (V,E) derived 

from a path by adding precisely two pendant edges to each of 

the internal vertices of the path is called a twig. A twig Tm 

with “m” internal vertices has 3m+1 edges and 3m+2 vertices. 

Definition 2.5 [17]: The double fan DFn is made up of two 

fan graphs that share a path. In other terms 2.n nDF P K= +  

Definition 2.6 [18]: Bistar Bn,n is the graph obtained by 

connecting the middle (apex) vertices of two copies of K1,n 

by an edge. 

Definition 2.7 [19]: A tortoise G (Tn) is obtained from a 

path v1, v2,…, vn by adding an edge between vi and vn-i+1 for 

i= 1 to 	�
�
 and n ≥ 3. 

Definition 2.8 [20]: The join graph 2  n nP P∨  with 3n 

vertices, is comprised of a simple path P2n with 2n vertices, 

u1, u2,...., u2n and a null graph Nn with n vertices, v1, v2,...., vn 

such that vn∈ N adjacent with u1 and u2n in P2n and vn-1 ∈ Nn 

adjacent with u2 and u2n-1 in P2n and so on. 

3. Secure Resolving Dimension 

In this section, our goal is to find the secure resolving set 

of some special graphs such as trapezoid graph nT , Z-(Pn) 

graph, open ladder graph, tortoise graph and 2  n n gP P raph∨ . 

Theorem 3.1: let G is a trapezoid graph nT with k blocks 

and n vertices, then Sdim ( nT ) = 2. 

 

Figure 1. Trapezoid graph nT . 

Proof: 

We label the trapezoid graph nT as shown in Figure 1. It is 

clear that the number of vertices is n=2k+4 such that k is the 

number of blocks of G. let S ={v1, vn} 

Begin  

          for (i=1; i	� �
� 
 1; i++) do 

                j1= 0, j2=k+1 

                       1 2( , ) ( , )id v S j j=
 

                        j1= j1+1, j2=j2-1 

            end 

                  ���	�
�
, �� � �1, �

��  

           for (i= 
�
� � 1; i	� n; i++) 

                  j1=1 

                  1( , ) ( , )id v S j n i= −
 

                  j1 = j1 +1 

             end 

end 

This completes the proof. 

The algorithm of the proof of Theorem 3.1 includes two 

for-loops, but they are not inner loops; therefore, the method 

complexity is O (n). 

Theorem 3.2: let G be Z-(Pn) graph with k blocks and n 

vertices, then Sdim (Z-(Pn)) = 2. 

1 2 3

 

Figure 2. Z-(Pn) graph. 

Proof: We label the Z-(Pn) graph as shown in Figure 2. It is 

clear that the number of vertices is n=2k+4 such that k is the 

number of blocks of G. let 1 3{ , }kw v v += . 

Begin  

           for (i=1; i	� �
� 
 1; i++) do 

                 j1= 0, j2=k+1 

                        1 2
( , ) ( , )

i
d v S j j=

 
                          j1= j1+1, j2=j2-1 

              end 

                     ���	�
�
, �� � �1, �

�� 

                for (i= 
�
� � 1; i	� n; i++)    

                      j1=1   
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                    1
( , ) ( , )

i
d v S j n i= −

    
                     j1 = j1 +1   

            end            

 end 

This completes the proof. 

The algorithm of the proof of Theorem 3.2 includes two 

for-loops, but they are not inner loops; therefore, the method 

complexity is O(n). 

Lemma 3.3: let G be an open ladder graph with k blocks 

and n vertices, then sdim (O(Ln))= 2. 

Theorem 3.4: If G is a tortoise graph with n vertices, then 

Sdim (Tn) = 2. 

 

Figure 3. Tortoise graph Tn. 

Proof: We label the Tn graph as shown in Figure 3. It is 

clear that the number of vertices is n. let � � ���, ��� 

Begin  

          for (i= ;1
2

n≤ ; i++) do 

                 
( , ) ( 1, 1)

i
d v w i i= − +            

            end 

                  
1

2

( , ) (2,0)nd v w
+

=  

            for (i=  ; in k n− ≤ ; i++) do 

                    j1=1, j2=1  

                 1 2
( , ) ( , )

i
d v w j j=            

                   j1= j1 +1, j2= j2 + 1 

             end 

end   

This completes the proof. 

The algorithm of the proof of Theorem 3.4 includes two 

for-loops, but they are not inner loops; therefore, the method 

complexity is O (n). 

Theorem 3.5: let G is 2n nP P∨  graph with n vertices, then 

Sdim 2( ) 2n nP P∨ =  

 

Figure 4. 2  n n gP P raph∨ . 

Proof: We label 2n nP P∨  graph as shown in Figure 4. It is 

clear that the number of vertices is n and k is the blocks 

number. It is clear that |V(G)| is n = 3k. let � � ���, ������ 

Begin  

            for (i=1;  � �!�
� ;  � �� do 

                 
( , ) ( 1, )

i
d v w i i= −            

            end 

                  1

2

( , ) ( 1, 1)nd v w i i+ = − −  

            for 
3

( ;   ; )
2

n
i i n i

+= ≤ + +  do 

                 
( , ) ( 1, )

i
d v w n i n i= − + −            

             end 

end     

This completes the proof. 

The algorithm of the proof of Theorem 3.5 includes three 

for-loops, but they are not inner loops; therefore, the method 

complexity is O (n). 

4. Domination Number 

Definition 4.1: If every vertex in V - D is neighboring to 

some vertex in D, the set D of vertices in a graph G is called 

a dominating set. The minimum cardinality of the dominating 

set of G is the dominance number ( ).Gγ  

In this section, we propose some identities relating to the 

dominance number of the twig graph Tm, the double fan 

graph F2,n, the bistar graph Bn,n and the linear kC4 - snake 

graph. 

Theorem 4.2: The domination number of the twig graph Tm 

formed from Pm+2 is m 

(Where " � �!�
#  and n is the number of vertices) 

Proof: 

Let G ≅ Tm be a twig graph on 3m+2 vertices with (3m+1) 

edges and let D be the minimum dominating set of graph G. 

By definition, the twig graph is derived from a path by 

adding precisely two pendant edges to each of the internal 

vertices of the path. 

Twig formed from the path with (m+2) vertices Tm, if we 

choose all of the central vertices as a single set, it will 

dominate all the other vertices of G. So we will get a 

minimum dominating set and its cardinality is the domination 

number of graph G. Therefore, the domination number of G 

is m, that is, γ (G) = m. 

Theorem 4.3: The domination number of a double fan 

graph F2,m is 2, where m ≥1 and m is the number of blocks. 

Proof: Let G ≅ F2,m be a fan graph on m+ 3 vertices with 

3m +2 edges and let D be the minimum dominating set of 

graph G. By definition of the double fan graph, the graph 

2.n nDF P K= +  

consists of two fan graphs that have a common path. 

There are m+1 nodes available in path Pm+1 of the fan 

graph, so if we choose any one vertex from path Pm+1, then 

all the other vertices of G are dominated by our chosen 

vertex. So we will get a minimum dominating set and its 

cardinality is the domination number of graph G. 

Hence the dominating set D of G = {1,m+3} 

Therefore, the domination number of graph G is 2. That is, 

γ (G) = 2. 
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Theorem 4.4: The domination number of Bistar Bn,n is 2, 

where n ≥ 2 and n is the number of vertices. 

Proof: Let G ≅ Bn,n be a bistar graph Bn,n with 2(n+1) 

vertices and 2n+1 edges and let D be the minimum 

dominating set of graph G. By definition of the bistar Bn,n, the 

graph is obtained by connecting the middle (apex) vertices of 

two copies of K1,n by an edge. 

If we choose all of the center vertices as a single set, it will 

dominate all the other vertices of 

 G. So we will get a minimal dominating set, and its 

cardinality is the domination number of graph G. 

Therefore, the domination number of G is 2. That is, γ (G) 

= 2. 

Lemma 4.5: The domination number of linear kC4 - snake 

graph is k +1, where k ≥1 and k is the number of blocks. 

5. Conclusion 

Domination in graphs is a branch of graph theory that has 

received a lot of attention. In this paper, we have presented 

some theorems of the secure resolving set of some special 

graphs such as the trapezoid graph, Z-(Pn) graph, the open 

ladder graph, the tortoise graph Tn, 2  n n gP P raph∨ . Also, we 

presented some theorems related to domination number in 

various families of graphs. 
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