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Abstract: Fractal interpolation methods became an important method in data processing, even for functions with abrupt
changes. In the last few decades it has attracted several authors because it can be applied in various fields. The advantage
of these methods are that we can generalize the classical approximation methods and also we can combine these methods for
example with Lagrange interpolation, Hermite interpolation or spline interpolation. The classical Lagrange interpolation problem
give the construction of a suitable approximate function based on the values of the function on given points. These method
was generalized for more than one variable functions. In this article we generalize the so-called algebraic maximal Lagrange
interpolation formula in order to approximate functions on a rectangular domain with fractal functions. The construction of the
fractal function is made with a so-called iterated function system. This method it has the advantage that all classical methods can
be obtained as a particular case of a fractal function. We also use the construction for a polynomial type fractal function and we
proof that the Lagrange-type algebraic minimal bivariate fractal function satisfies the required interpolation conditions. Also we
give a delimitation of the error, using the result regarding the error of a polynomial fractal interpolation function.

Keywords: Fractal Interpolation, Lagrange Interpolation, Fractal Surfaces

1. Introduction
A function f : [a, b] → R, defined on the real interval

is named by Barnsley a fractal function if the Hausdorff
dimension of the graph is noninteger. Barnsley introduced
the notion of a fractal interpolation function (FIF) [1]. He
said that a fractal function is a (FIF) if it possess some
interpolation properties, it means that the fractal function is
constrained to go throw on a distinct set of points (xi, yi) ∈
R2, i = 1, 2, ..., N . In the last few decades the methods
of fractal interpolation methods was applied successfully in
many fields of applied sciences. It has the advantage that it
can be also combine with the classical methods or real data
interpolation [4–6, 14]. Hutchinson and Rüschendorf gave
the stochastic version of the fractal interpolation function [9].
In order to obtain fractal interpolation functions with more
flexibility Wang and Yu use instead of a constant scaling
parameter a variable vertical scaling factor [15]. Barnsley
introduced the notion of local iterated function systems which
are an important generalization of the global iterated function

systems [3] . Massopust introduced the fractal surfaces using
an iterated function system [10]. He considered the case when
the domain was triangular. Than was studied the bivariate
fractal functions on grids [8]. Recently was introduced a
new construction of fractal interpolation functions on surfaces
using the bivariate Hermite interpolation method [12]. The
construction of the so-called minimal and maximal Lagrange
type interpolation formula is also known [7]. Using this
classical formula and the method used for the construction of a
bivariate fractal interpolation function, in this paper we study
the fractal version of the Lagrange-type algebraic maximal
interpolation formula.

2. Fractal Interpolation Functions

Let {(xi, yi) ∈ R2, i = 0, 1, · · · , N} be given, I =
[x0, xN ] and X = I × [a, b] with Euclidean metric d, In =
[xn−1, xn], un : I → In, n ∈ {1, 2, ..., N} are contractiv
homeomorphism such that
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un(x0) := xn−1, un(xN ) := xn, ∀n ∈ {1, · · · , N}.

|un(c1)− un(c2)| ≤ l|c1 − c2|, c1, c2 ∈ I, 0 ≤ l < 1

vn : X → [a, b] continuous, with

vn(x0, y0) := yn−1, vn(xN , yN ) := yn, ∀n ∈ {1, · · · , N}.

|vn(c, d1)− vn(c, d2)| ≤ q|d1 − d2|, c ∈ I, d1, d2 ∈ [a, b], 0 ≤ q < 1.

Let wn : X → X, n ∈ {1, 2, ..., N}
wn(x, y) = (un(x), vn(x, y)).

{X,wn : n = 1, 2, ..., N} is an iterated function system
(IFS) but may not be hyperbolic. The functions f : I →
R,which interpolate the data according to f(xi) = yi, i =
0, 1, ..., N , and whose graphs are attractors of IFS are fractal
interpolation functions

Theorem 2.1 (Barnsley) For the IFS {X,wn : n =
1, 2, ..., N} defined above, there is a metric d equivalent to the
Euclidean metric, such that the IFS is hyperbolic with respect
to d. The unique attractor G of the IFS is the graph of a
continuous function f : I → R which interpolates the date
set {(xi, yi) ∈ R2, i = 0, 1, · · · , N}

The function f is the fixed point of the Read-Bajrakterovic
operator R on C(I):

(Rg)(t) = vn(u
−1
n (t), g ◦ u−1n (t)), t ∈ In, n ∈ N.

The fractal function f which interpolate the data set

{(xi, yi) ∈ R2, i = 0, 1, · · · , N}

is a unique function that satisfies the functional equation

f(t) = vn(u
−1
n (t), f ◦ u−1n (t)),∀t ∈ In, n ∈ NN .

The most frequently used iterated function system is
determined by the following functions

un(t) = ant+ bn, vn(t, x) = αnx+ qn(t),

where qn : I → R are continuous functions such that

qn(t) = f ◦ un(t)− αnf ◦ c(t)

and c is an increasing continuous function such that c(t0) =
t0, c(tN ) = tN . For example for the function c on the
interval [0, 1] we can consider the family of functions c(t) =
(eλt − 1)/(eλ − 1).

3. Lagrange-type Algebraic Maximal
Approximation Formula

Let D ⊂ R2 and f : D → R. We suppose that we know
the value of the function f on a given set of distinct points
(xi, yj) ∈ D, i = 1, .., n, j = 1, ...,m. If we keep y fixed we
can write the following Lagrange-type approximation

f(x, y) =

n∑
i=0

li(x)f(xi, y) +
p(x)

(n+ 1)!
f (n+1,0)(ξ, y) (1)

where p(x) =
∏n
i=0(x− xi) and ξ ∈ (α1, β1), α1 = min{x0, x1, ..., xn}, β = max{x0, x1, ..., xn}.

Now let x be fixed, and we have

f(x, y) =

m∑
j=0

l̃j(y)f(x, yj) +
t(y)

(m+ 1)!
f (0,m+1)(x, η) (2)

where t(y) =
∏m
j=0(y − yj) and η ∈ (α2, β2), α2 = min{y0, y1, ..., ym}, and β2 = max{y0, y1, ..., ym} and li, l̃j are the

well-known fundamental Lagrange-polynomials

li(x) =

∏n
k=0,k 6=i(x− xk)∏n
k=0,k 6=i(xi − xk)

, l̃j(y) =

∏m
k=0,k 6=j(y − yk)∏m
k=0,k 6=j(yj − yk)

.

We use the following notations Lxn, L
y
m are the Lagrange interpolation operators with regard to the variable x and y, and

Rxn, R
y
m are the corresponding remainder operators. Then the algebraic maximal approximation formula is:

f = LxnL
y
mf +Rxn ⊕Rymf.

This interpolation formula is a discreet(punctual) interpolation since
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(LxnL
y
mf)(xi, yj) = f(xi, yj), i = 0, ...n; j = 0, ...,m.

Considering the corresponding remainder terms of the formulas (1), (2) we have

(Rxn ⊕Rymf)(x, y) =
p(x)

(n+ 1)!
f (n+1,0)(ξ, y) +

t(y)

(m+ 1)!
f (o,m+1)(x, η)− p(x)t(y)

(n+ 1)!(m+ 1)!
f (n+1,m+1)(ξ, η).

So, we have the following Lagrange-type algebraic maximal approximation formula of he function f

f(x, y) =

n∑
i=0

m∑
j=0

li(x)l̃j(y)f(xi, yj) +
p(x)

(n+ 1)!

m∑
j=0

l̃(y)f (n+1,0)(ξ, yj)

+
t(y)

(m+ 1)!

n∑
i=0

li(x)f
(0,m+1)f(xi, η) +

p(x)p(y)

(n+ 1)!(m+ 1)!
f (n+1,m+1)(ξ, η).

4. Generalization of Algebraic Maximal
Lagrange Interpolation Formula by
Fractal Interpolation

Let us consider a set of equidistant set of data x0 < x1 <
... < xm, y0 < y1 < ... < ys, and suppose that the value of
the function f(xi, yj), i = 0, 1, ...,m; j = 0, 1, ..., s are given.
Theorem 4.1 Let be given a ≤ x0 < x1 < ... < xm ≤ b, c ≤
y0 < y1 < ... < ys ≤ d, a set of equidistant data also the
value of the function f(xi, yj), i = 0, 1, ...,m; j = 0, 1, ..., s
are given. The vertical scaling factors αi, i = 1, 2, ...,m and
βj , j = 1, 2, ..., s such that |α|∞, 1, and |β|∞ < 1. Than for a
fixed i, i = 0, 1, ...,m and j, j = 0, 1, , , , .s there exist a fractal
function Lαim and Lβjs such that

Lαim(xi) = Lim(xi), for all i = 0, 1, ...,m (3)

Lβjs(yj) = Ljs(yj), for all j = 0, 1, ..., s. (4)

Proof We proof the conditions of the theorem of Barnsley
for un, vn. The function un is a contractive homeomorphism
and un(x0) = xn−1, un(xm) = xn and Lxm(xn) = fn, n =
0, 1, ...,m.

vn(x0, f0) = αnf0 + qn(x0)

= αnf0 + Lxm ◦ un(x0)− αnLxm ◦ c(x0)
= αf0 + Lxm(xn−1)− αf0 = fn−1

vn(xm, fm) = αnfm + qn(xm)

= αnfm + Lxm ◦ un(xm)− αnLxm ◦ c(xm)

= αfm + Lxm(xn)− αfm = fn

We will consoder the Read-Bajrakterovic operator defined
on C([a, b]x[c, d]) regarding with the variable x

Rαf(·, y) = vn(u
−1
n (t), f ◦ u−1n (x).

This is a contraction on the second variable , therefore it has

a unique fixed point, Lxαm .

Lxαm (x) = αnL
xα
m ◦ u−1n (x) + qn ◦ u−1n (x), x ∈ In,

Lxαm (x) = Lxm + αn(L
xα
m − Lxm ◦ c) ◦ u−1n (x), x ∈ In.

Lxαm interpolates the points (xn, fn):

Lxαm = vn(u
−1
n (xn), L

xα
m ◦ u−1n (xn))

= vn(xm, L
xα
m (xm)) = vn(xm, fm) = fn.

Lim
xα is the corresponding Lagrange type fractal function

in the direction x. In the same way we can give the
construction of the fractal function Lyβs im the y direction. The
IFS for Lyβjs is given by {R2, ωym : s = 1, 2, ..., s}, were

ujs
y(t) = ajt+ bj

vjs
y(t, x) = βjx+ Ljs(ujs(t))− βjLjs(c(t))

where aj = (yj−yj−1)/(ys−y0), bj = (ysyj−1−y0yj)/(ys−
y0) and c is an increasing continuous function which satisfies
the following conditions: c(y0) = y0, c(ys) = ys.

Definition 4.1 The Lagrange-type algebraic minimal
bivariate fractal interpolation function is given by

Lα,βms f(x, y) =

m∑
i=0

s∑
j=0

Lαim(x)Lβjs(y)f(xi, yj)

Remark 4.1 When the vertical scaling vectors α = 0 and
β = 0 we obtain the classical bivariate algebraic maximal
Lagrange interpolation function.

5. Delimitation of the Error

Theorem 5.1 Let f ∈ C([a, b] × [c, d]) be the function
approximated by the Lagrange-type algebraic minimal
bivariate fractal interpolation function Lα,βMN , where the
vertical scaling parameters α, β are satisfying ‖α‖∞ <
1, ‖β‖∞ < 1, then
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‖ f − Lα,βMNf‖∞ ≤ ‖f − LMN‖∞ + ‖f‖∞
M∑
m=0

N∑
n=0

(
2‖α‖∞

1− ‖α‖∞
+

2‖β‖∞
1− ‖β‖∞

)
‖lm‖∞‖ln‖∞

Proof

‖f − LαβMN‖∞ ≤ ‖f − LMN‖∞ + ‖LMN − LαβMN‖∞

‖LMN − LαβMN‖∞ = max
(x,y)∈[a,b]×[c.d]

|LMN (x, y)− LαβMN (x, y)|

= max |
M∑
m=0

N∑
n=0

lm(x)ln(y)f(xM , yn)−
M∑
m=0

N∑
n=0

lαm(x)lβn(y)f(xM , yn)|

≤ max

M∑
m=0

N∑
n=0

|lm(x)ln(y)− lαm(x)lβn(y)| · ‖f‖∞

≤ max

M∑
m=0

N∑
n=0

|lm(x)ln(y)− lαm(x)ln(y) + lαm(x)ln(y)− lαm(x)lβn(y)| · ‖f‖∞

≤
M∑
m=0

N∑
n=0

(‖lm − lαm‖∞ · ‖lm‖∞+ + ‖lm‖∞ · ‖ln − lβn‖∞
)
‖f‖∞

≤ ‖f‖∞
M∑
m=0

N∑
n=0

(
2‖α‖∞

1− ‖α‖∞
‖lm‖∞‖ln‖∞+ +

2‖β‖∞
1− ‖β‖∞

‖lm‖∞‖ln‖∞
)

= ‖f‖∞
M∑
m=0

N∑
n=0

(
2‖α‖∞

1− ‖α‖∞
+

2‖β‖∞
1− ‖β‖∞

)
‖lm‖∞‖ln‖∞,

where in the last inequality we use the result form regarding
the error of a fractal interpolation function [11]. If fα is the
fractal interpolation function of a polinomial function f , than
the uniform disatnce between them verifies

‖fα − f‖∞ ≤
‖α‖∞

1− ‖α‖∞
‖f‖∞.

6. Conclusion
The present paper give a method to construct a bivariate

Lagrange-type fractal function in the case of a rectangular
domain. The advantage of these method is that it is easy to
construct and to implement for the approximation of different
shapes. The constructed shape can be modified by the scaling
vectors, in this way we can obtain various surfaces for the
graph of the FIF. So it can be a very effective tool in computer
graphics, data visualization and CAGD.
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