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Abstract: The monotonic functions were first introduced by S. Bernstein as functions which are non-negative with non-

negative derivatives of all orders. He proved that such functions are necessarily analytic and he showed later that if a function 
is absolutely monotonic on the negative real axis then it can be represented there by a Laplace- Stieitjes integral with non-
decreasing determining function and converse. Somewhat earlier F. Hausdorff had proved a similar result for completely 
monotonic sequences which essentially contained the Bernstein result. Bernstein was evidently unaware of Hausdorff's result, 
and his proof followed entirely independent lines. Since then many studies have been written on monotonic functions. In this 
work, we mainly have proved that a certain function involving ratio of the Euler gamma functions and some parameters is 
completely and logarithmically completely monotonic. Also, we have given the sufficient conditions for this function to be 
respectively completely and logarithmically completely monotonic. As applications, some inequalities involving the volume of 
the unite ball in the Euclidian space Rn are obtained. The established results not only unify and improve certain known 
inequalities including, but also can generate some new inequalities and the given results could trigger a new research direction 
in the theory of inequalities and special functions. 
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1. Introduction 

A function �  is said to be completely monotonic [1] on 

interval � ⊆ ℝ  if it has derivatives of all orders on �  and 

satisfies for all � > 0 and � ∈ ℕ 

0 ≤ �−1��������� < ∞. 
A positive function �  is said to be logarithmically 

completely monotonic (see for example [2]) on an interval 

� ⊆ ℝ if it has derivatives of all orders on � and its logarithm 

ln � satisfies for � ∈ ℕ 

0 ≤ �−1���ln ������ < ∞. 
The class of completely monotonic functions on �0, ∞� 

may be characterized by [1] as: 

���� is completely monotonic for 0 < � < 1 if and only if 

���� = � ����
�

 
!"�#�, 

where "�#� is non-decreasing and the integral converges for 

0 < � < ∞. 

It is proved that � is logarithmically completely monotonic 

if and only if �% is completely monotonic for all & > 0 [3]. 

It is known that any logarithmically completely monotonic 

function must be completely monotonic, but not conversely 

[4]. 

The logarithmically completely monotonic function was 

characterized as the infinitely divisible completely monotonic 

functions [5]. Recently, the completely monotonic or 

logarithmically completely monotonic functions have been 

the subject of intensive research. For more details we refer 

the reader to [6]–[12]. 

The gamma function Γ���  is defined for � > 0  by the 
integral 
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Γ��� = � (��)��*	!(.�
  

The logarithmic derivative of Γ��� , denoted by +��� =,-���,��� , is called the psi or digamma function and the +������ 
for � ∈ ℕ are called the polygamma functions. 

The following results were investigated in [13]: 

The function 

�,��./.)� ,�/.)�⁄ �12�./.)                               (1) 

is decreasing with respect to � ≥ 1 for fixed 4 ≥ 0. 

Consequently, for positive real numbers � ≥ 1 and 4 ≥ 0, 
we have 

�./.)�./.5 ≤ �,��./.)� ,�/.)�⁄ �12
�,��./.5� ,�/.)�⁄ � 1261                     (2) 

The function (1) was proved to be logarithmically 

completely monotonic with respect to � ∈ �0,∞� for 4 ≥ 0 

and so is its reciprocal for −1 < 4 ≤ − )5 [14]. 

Consequently, the inequality (2) is true for ��, 4� ∈�0,∞� × �0,∞� and reversed for ��, 4� ∈ �0,∞� × 8−1,− )59. 
For ��, 4� ∈ �0,∞� × �0,∞� and & ∈ �0,∞�, the function 

�,��./.)� ,�/.)�⁄ �12��./.)�:                              (3) 

was proved in [15] to be strictly increasing (or decreasing, 

respectively) with respect to the single variable � ∈ �0,∞� if 
and only if 0 ≤ & ≤ )5 or (& ≥ −1 respectively), to be strictly 

increasing with respect to 4 on �0,∞� if and only if 0 ≤ & ≤1 and to be logarithmically concave with respect to the tow-
variable 

��, 4� ∈ �0,∞� × �0,∞� if 0 ≤ & ≤ );. 
For given 4 ∈ �−1,∞� and & ∈ �−∞,∞� , we define the 

function 

ℎ%,/��� = =�,��./.)� ,�/.)�⁄ �12��./.)�: , � ∈ �−4 − 1,∞�\?0@)�/.)�: �A�/.)�, � = 0      (4) 

It is clear that the ranges of � , 4  and &  in the function ℎ%,/��� extend the corresponding ones in the functions (1) 

and (3) which were ever discussed in [15]. 

In this work, we prove that the function ℎ%,/���  is 

logarithmically completely monotonic function in some 
cases. 

2. Results 

Our main results are the following: 

Theorem 1. Let 4	 > 	−1. Then 

a The function (4) is logarithmically completely 

monotonic with respect to �−4 − 1,∞� if and only if & ≥ max E1, )/.)F . 
b If & ≤ min E1, )5�/.)�F, the reciprocal of the function (4) 

is logarithmically completely monotonic with respect to � ∈ �−4 − 1,∞�. 
c The necessary condition for the reciprocal of the 

function (4) to be logarithmically completely monotonic 

with respect to � ∈ �−4 − 1,∞� is &	 ≤ 	1. 

The theorem 1 extends and generalizes the logarithmically 

complete monotonicity of the function (1) established in [14] 

and a part of the results in [15]. 

From the theorems 1 we get the following corollary: 

Corollary 1. For ( > 0, 4 + 1 > 0	and � + 4 + 1 > 0, the 
double inequality 

8 �./.)�./.*.)I% < �,��./.)� ,�/.)�⁄ �12
�,��./.*.)� ,�/.)�⁄ � 126J < 8 �./.)�./.*.)IK      (5) 

holds if & ≥ max E1, )/.)F ; and M ≤ min E1, )5�/.)�F. 
The inequality (5) generalizes and extends the inequality 

(2) and the main results in [16, 17] 

For �	 + 	4	 > 	0 and 4	 + 	1	 > 	0 the inequality 

�,��./.)� ,�/.)�⁄ �12
�,��./.5� ,�/.)�⁄ � 1261 < 8 �./�./.)I1N  

is true if � > 1 and reversed if O < 1 and that the power 
)5 is 

the best possible. 

Theorem 2. For any P ∈ ℕ, let ΩR = STN,8).TNI. The following 

inequalities are true 

UR.5R.; < VT6N1 �T6N�W
VT1 TW < UR.5R.;X ,  

)SN �TYN�TW UR.5R.; < VT6N1T
VT1 �TYN�W < )SN �TYN�TW UR.5R.;Z ,  

UR.5R.[ < VT611T61VT1 TW < UR.5R.[X .  
In order to prove our main results, the following lemma is 

needed. 

Lemma 1 [17, 18]. For � ∈ �0,∞� and � ∈ ℕ, we have 

ln � − )� < +��� < ln � − )5�                       (6) 

and 

���)�!�] + �!5�]61 < �−1��.)+������ < ���)�!�] + �!�]61      (7) 

Proof of Theorem 1. For � ≠ 0, taking the logarithm of ℎ%,/��� gives 

ln ℎ%,/��� = _` ,��./.)��_` ,�/.)�� − & ln�� + 4 + 1�.  
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A direct differentiation yields 

aln ℎ%,/���b��� = �!�]61∑ ��)�]Yd�dA�dY1���./.)�e!�ef − ��)�]�! _`�/.)��]61 − ��)�]Y1���)�!%��./.)�]                                 (8) 

for � ∈ ℕ, where +��)��� + 4 + 1� and +� ��� + 4 + 1�stand for ln Γ�� + 4 + 1� and +�� + 4 + 1� respectively. From the 
relation (8) we get 

E��.)aln ℎ%,/���b���Fg = �−1���)�� h�−1���)+����� + 4 + 1� − ���)�!%��./.)�] − �!�/.)�%��./.)�]619. 
Using the relations (7) and (8) we obtain 

���)�!�)�%���./.)�] + �!�) 5⁄ ��/.)�%���./.)�]61 ≤ ��)�]Y1�] E��.)aln ℎ%,/���b���Fg ≤ ���)�!�)�%���./.)�] + �!�)��/.)�%���./.)�]61   

for � ∈ ℕ, � ≠ 0, 4 ∈ �−1,∞� and & ∈ �−∞,∞�. Therefore, 

��)�]Y1�] E��.)aln ℎ%,/���b���Fg i≤ 0 j�	& ≥ 1	kP!	& ≥ )/.)	≥ 0 j�	& ≤ 1	kP!	& ≤ )5�/.)�                                         (9) 

for � ∈ ℕ, 4 > 1	and � ≠ 0. 

For � > 0, the equation (9) means 

E�5�aln ℎ%,/���b�5��)�Fg i≤ 0 j�	& ≥ 1	kP!	& ≥ )/.)	≥ 0 j�	& ≤ 1	kP!	& ≤ )5�/.)�	  
and 

E�5�.)aln ℎ%,/���b�5��Fg i≤ 0 j�	& ≥ 1	kP!	& ≥ )/.)	≥ 0 j�	& ≤ 1	kP!	& ≤ )5�/.)�	  
for � ∈ ℕ. From (8), we get 

lim�→ E��.)aln ℎ%,/���b���Fg = 0                 (10) 

For � ∈ ℕ and 4 > 1. As a result, 

aln ℎ%,/���b�5��)� i< 0 j�	& ≥ 1	kP!	& ≥ )/.)	> 0 j�	& ≤ 1	kP!	& ≤ )5�/.)�       (11) 

and 

aln ℎ%,/���b�5�� i> 0 j�	& ≥ 1	kP!	& ≥ )/.)	< 0 j�	& ≤ 1	kP!	& ≤ )5�/.)�        (12) 

for � ∈ ℕ and � ∈ �0,∞�, that is, 

�−1��aln ℎ%,/���b��� i> 0 j�	& ≥ 1	kP!	& ≥ )/.)	< 0 j�	& ≤ 1	kP!	& ≤ )5�/.)�    (13) 

for � ∈ ℕ  and � ∈ �0,∞� . Hence, the function (4) is 

logarithmically completely monotonic with respect to �  on �0,∞� if & ≥ 1 and & ≥ )/.) and so is the reciprocal of the 

function (4) if either 0 < & ≤ 1 and & ≤ )5�/.)� or & ≤ 0 and 4 > 1. 

If � ∈ �−4 − 1,0�, the equation (9) means 

E��.)aln ℎ%,/���b���Fg i≥ 0 j�	& ≥ 1	kP!	& ≥ )/.)	≤ 0 j�	& ≤ 1	kP!	& ≤ )5�/.)�  
for � ∈ ℕ. By virtue of (10), it follows that 

��.)aln ℎ%,/���b��� i≤ 0 j�	& ≥ 1	kP!	& ≥ )/.)	≥ 0 j�	& ≤ 1	kP!	& ≤ )5�/.)�  
for � ∈ ℕ, which is equivalent to the fact that the equations 

(11) and (12) hold for � ∈ �−4 − 1,0� . As a result, the 

equation (13) is valid for � ∈ ℕ  and � ∈ �−4 − 1,0� . 

Therefore, the function ℎ%,/���has the same logarithmically 

complete monotonicity properties on �−4 − 1,0�  as on �0,∞�. 
Conversely, if ℎ%,/��� is logarithmically completely 

monotonic on �−4 − 1,∞�, then aln ℎ%,/���bg < 0 on�−4 −1,∞�, which can be simplified as 

& ≥ �� + 4 + 1� m )�N∑ ��)�1Yd	�d	A�dY1�	��./.)�e!)ef + _` ,�/.)��N 9                                                                                                 (14) 

= )�N ��� + 4 + 1� ln Γ�4 + 1� − �4 + 1��� + 4 + 1�+�� + 4 + 1�+�� + 4 + 1�5+�� + 4 + 1� − �� + 4 + 1� ln Γ�� + 4 + 1��	 (15) 

= �./.)� h�	A��./.)��_` ,��./.)�� + _` ,�/.)�� 9                                                                                                                         (16) 
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From (6), it is easy to see that lim�→ 6��5+���� = 0                                                                             (17) 

It is known that Γ�� + 1� = �Γ���                                                                                 (18) 

For � > 0. Taking the logarithm on both sides of (18), rearranging and taking limit lead to lim�→ 6�� ln Γ���� = lim�→ 6�� ln Γ�� + 1�� − lim�→ 6�� ln x� = 0                                 (19) 

Taking logarithmic derivatives on both sides of (18) yields 

+�� + 1� = )� + +���  
for � > 0 and so lim�→ 6��+���� = −1 + lim�→ 6��	+�� + 1�� = −1  (20) 

Thus, by utilizing (17), (19) and (20), it is revealed that the 

limit of the function (15) as � → �−4 − 1�. , that is, as � + 4 + 1 → 0. , equals 
)/.) . By L’Hospital’s rule and the 

double inequality (7) for � = 1, we have 

lim�→� �	A��./.)��_`,��./.)�� = lim�→���+g�� + 4 + 1�� = 1.  
Hence, the limit of the function (16) as � → ∞ equals 1. In 

a word, a necessary condition for ℎ%,/��� to be 

logarithmically completely monotonic is & ≥ 1 and & ≥ )/.). 
If the reciprocal of ℎ%,/��� is logarithmically completely 

monotonic, then the inequality (14) is reversed. Since the 

limit of the function (16) equals 1 as 	� → ∞ , as showed 

above, then the necessary condition & ≤ 1 is obtained. 

Proof of Corollary 1. This follows from the monotonicity 

properties established in Theorem 1. 

Proof of Theorem 2. Putting ( = 1, 4 = 0 and � = R5 in (5) 

we get 

R.5R.; < h,8TN.)I9NT
h,8�T6N�N .)I9 NT6N < UR.5R.;,  

and this mean 

UR.5R.; < VT6N1 �T6N�W
VT1 TW < UR.5R.;X .  

By taking 4 = 1, ( = 1 and � = R5 − 1 for P ∈ ℕ in (5) we 

obtain 

)SN �TYN�TW UR.5R.; < VT6N1T
VT1 �TYN�W < )SN �TYN�TW UR.5R.;Z .  

putting ( = )5 , 4 = 0 and � = R5 in (5) we get 

UR.5R.[ < VT611T61VT1 TW < UR.5R.[X .  

3. Conclusion 

We have established the necessary and sufficient 
conditions for a certain function involving ratio of the 
gamma functions to be logarithmically complete 
monotonicity properties. As a consequence, we derived some 
inequalities involving the gamma functions. The established 
results could trigger a new research direction in the theory of 
inequalities and special functions. 
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