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Abstract: In this work we considered nonlinear dynamical system to study the dynamics of two-strain Tuberculosis 

epidemic in Ethiopia. We proved that the solution of the considered dynamical system is positive and bounded. We found that 

the considered dynamical system has disease free and endemic equilibrium points. We proved that the local and global stability 

of disease free equilibrium point and endemic equilibrium point. We found the effective reproduction number of the dynamical 

system. Also, the effective reproduction number of the dynamical system which experience drug sensitive strain and the 

effective reproduction number of the dynamical system which experience multi drug resistance strain. Using real data collected 

from different health sectors from Ethiopia we found that the numerical value of the effective reproduction number of the drug 

sensitive tuberculosis is 1.03 and the effective reproduction number of the drug resistance tuberculosis is 4.78 and the effective 

reproduction number of the dynamical system max{1.03, 4.78}=4.78. So that MDR strain is spreads strongly than DS strain. 

Numerical simulation is also done to illustrate the influence of different parameters on the effective reproduction number. 

Using sensitive analysis we identify the most influential parameter to change the behavior of the solution of the considered 

dynamical system is the number of effective contacts of susceptible or vaccinated individuals make with an infectious 

individual. 

Keywords: Drug-sensitive Tuberculosis, Drug Resistance Tuberculosis, Effective Reproduction Number,  

Sensitivity Analysis, Numerical Analysis 

 

1. Introduction 

Tuberculosis is among the most ancient diseases. German 

Microbiologist Robert Koch discovered the causative 

organism Mycobacterium tuberculosis on 24
th

 March 1882. 

World Health Organization (WHO) declared tuberculosis as 

global epidemic in 1993 [1, 2]. The lifetime risk of TB 

reactivation for a person with documented Latent 

Tuberculosis Infection (LTBI) is estimated to be 5%-10%, 

with the majority developing TB disease within the first five 

years after initial infection the risk of developing TB disease 

following infection depends on several factors [1, 3]. There is 

a huge TB-latent human; this increased its average 

probability of re-activation due to the emergence and growth 

HIV and TB drug-resistant strains [1]. One of the biggest 

health challenges facing the world is tied in to the dramatic 

increases in the levels of drug resistance TB, particular in 

hospital settings [1, 4]. In 2016, the World Health 

Organization (WHO) reports roughly 9.4 million new cases 

(incidence) per year, an active-TB prevalence of 14 million, 

and 1.6 to 1.9 million deaths per year, a number that includes 

400,000 deaths coming from HIV positive individuals each 

year. Most active-TB cases are concentrated in South East 

Asia, African and Western Pacific regions [1, 5]. In Ethiopia 

there were in average of 177 TB cases per 100,000 TB in 

2016 [5, 6,  7, 8]. 

Currently, WHO recommends that, the countries use three 

major categories of health interventions for TB prevention: 
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treatment of LTBI; prevention of transmission of 

Mycobacterium tuberculosis through infection control; and 

vaccination of children with the Bacille Calmette-Guérin 

(BCG) vaccine. In 2016, 154 countries reported providing 

BCG vaccination as a standard part of these Programmes, of 

which 111 reported coverage above 90% [5]. Results of field 

trials of the BCG vaccine have differed widely, some 

indicating protection rates as high as 70% to 80%, others 

indicating the vaccine was completely ineffective in 

preventing TB [4]. 

Drug Susceptibility Sesting (DST) is very important to 

provide information about which drugs a person is 

resistant to. Treatment of tuberculosis disease is not 

simple and Drug Susceptible Tuberculosis (DS-TB) 

requires a multiple drug regimen taken for at least six 

months. But the treatment will only be successful if the 

drugs are taken exactly as required for the entire length of 

time [5]. The currently recommended treatment for cases 

of drug-susceptible TB must be faithfully carried out over 

6-9 months regimen of four first-line drugs: isoniazid, 

rifampicin, ethambutol and pyrazinamide and is a source 

of concern due the fact that a number of TB-active 

individuals do not complete treatment giving rise to the 

emergence of drug resistance TB strains [1, 5]. Treatment 

for rifampicin-resistant TB (RR-TB) and multidrug-

resistant tuberculosis (MDR-TB) is longer, and requires 

more expensive and more toxic drugs [5]. 

Multi-drug-resistant (MDR) tuberculosis is a form of 

tuberculosis caused by bacteria that do not respond to, at 

least, isoniazid and rifampicin, which are the two most 

powerful, standard anti-tuberculosis drugs [3, 9, 10]. 

According to the world health organization (WHO) global 

TB report in 2017, it is estimated that there will be 490,000 

new cases of Multi-Drug Resistant Tuberculosis (MDR-TB) 

in 2016, in addition, 110,000 new patients who resistant to 

rifampicin meet the treatment conditions of multi drug 

resistance tuberculosis [5, 11]. A combination of poor 

compliance and poor medical supervision or when the anti-

TB drugs are mismanaged (incomplete course of treatment) 

or misused (wrong dose or time length to complete the 

drugs) can result multi-drug resistance. However some 

acquire MDR-TB by being infected with a multi-drug 

resistant strain. MDR-TB is transmitted in the same way as 

the normal drug sensitive strain [3, 11, 12]. Drug-resistant 

TB has a higher mortality rate, among them, multi-drug 

resistant tuberculosis (MDR-TB) is more prominent, and 

has become another new serious problem [11]. Multi-drug-

resistant tuberculosis (MDR-TB) treatment regimens are 

significantly longer, cause serious side effects and are very 

expensive. The latest data reported to WHO show a 

treatment success rate for multi-drug resistant tuberculosis 

(MDR-TB) of 54%, globally, reflecting high rates of loss to 

follow-up, unevaluated treatment outcomes and treatment 

failure [5, 12] and TB treatment outcomes in Ethiopia have 

been assessed only in small and fragmented observational 

studies [13]. 

In this work we present a non-linear dynamical system to 

study the spread and control of the dynamics of tuberculosis 

in Ethiopia which describes the infectious disease of two 

strains tuberculosis. The interventions: vaccination, screening 

and treatments are incorporated in our model. Based on the 

Ethiopia context we introduced the model assumptions, 

construct flow chart of the model and develop the 

corresponding dynamical system. We investigated disease 

free equilibrium point, endemic equilibrium points and 

effective reproduction number. We showed that their local 

and global stability. Numerical simulations of the results are 

done by real data collected from different health sectors in 

Ethiopia. Finally we suggest our recommendation based on 

the finding of our work which is MDR strain is spreads 

strongly than DS strain. 

2. The Initial Model 

In the work [14], the total population �(�) was divided in 

to eight classes: Susceptible S (t),; Vaccinated V (t), early 

stage with high risk of developing active tuberculosis ��(�) 

and Later (Long) stage with low risk of developing active 

disease ��(�), individuals who screened and treating at early 

latent stage tuberculosis  	(�) , Infectious individuals with 

tuberculosis 
(�) , treating infectious  
�(�)  and Recovered 

individuals �(�) , recruitment of the population Λ  with the 

proportions � of which are vaccinated to protect them against 

tuberculosis infection and the remaining proportion are 

susceptible, force of infection rate � = �� � ��� and � is the 

probability that an individual is infected by one infectious 

individual, and c is the contact rate. The proportion � of class ��  have got a chance of screened. The proportion �  and (1 − �) of individuals of the early latent/exposed individuals 

for tuberculosis who do not get chance for screened will go 

to  ��  and 
 respectively at the rate �. Individual leaves class �� at the rate � in which, the proportion � goes to class 
; the 

proportion (1 − �) recovers naturally and enter to recovered 

class R. The proportion � of individuals in class 
 goes for 

treatment in 
�  and the remaining proportion (1 − �) enters 

to class �  at the rate  � . Individuals leave the screened 

class 	 and treating class 
�  at the rates  , and ! respectively, 

and go to recovered class. " is the reduction in susceptibility 

of recovered individual. Natural death at the rate µ  while 

infectious individuals in 
 are die due to tuberculosis diseases 

at the rate $. 

The corresponding dynamical system of the figure 1 is 

%&%' = �Λ − ((� + * + +),                  (1) 

%-%' = (1 − �)Λ + *, − (� + +).         (2) 

%/0%' = �(. + (, + "�) − (� + +)��    (3) 

%10%' = ��(1 − �)�� − (� + +)��          (4) 

%�%' = ���� − ( + +)	                        (5) 

%�%' = ���� + �(1 − �)(1 − �)�� − (� + + + $)
 (6) 

%�2%' = ��
 − (! + +)
�                          (7) 
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%3%' =  	 + (1 � ���
 ) �1 � ����� � �"� ) +�� (8) 

With the total population at a given time t is ���� �.��� ) ,��� ) ����� ) ����� ) 
��� ) 	��� ) ����. 

We extend the model in [26] by introducing additional 

assumptions as follows: 

 

Figure 1. Flow chart of the dynamical system of tuberculosis. 

3. The extended Model 

3.1. Model Assumptions 

In this study, we introduce a deterministic TB model by 

disaggregating the mycobacterium tuberculosis in to two 

strains (DS-TB, MDR-TB). The total population ����  is 

divided in to ten disjoint classes depending on the 

epidemiological status of individuals such as: Susceptible .��� , who have never exposed to any strain of the 

Mycobacterium tuberculosis, Vaccinated ,��� , who have 

taken BCG vaccine against mycobacterium tuberculosis, an 

early stage infected with high risk of developing active drug 

sensitive tuberculosis �-��� and Later (Long) stage infected 

with low risk of developing active drug sensitive tuberculosis �-���, Infectious individuals with drug sensitive tuberculosis 
-���, Latently infected individuals with multi-drug resistant 

tuberculosis 4��� , Infectious individuals with multi-drug 

resistant tuberculosis 
����, Screened Early latently infected 

with drug sensitive tuberculosis 	-��� , Screened latently 

infected with multi-drug resistant tuberculosis 	����  and 

Recovered individuals ����. 

Assume that individuals are recruited into the population by 

a constant rate Λ  with the proportions �  of which are 

vaccinated to protect them against tuberculosis infection. 

Furthermore, that the vaccine has a waning effect over time 

(after a time 
5
6 vaccinated individuals become susceptible again) 

and reduces due to expiration of duration of vaccine efficacy. 

We assume that vaccinated individuals may infect with the rate 

of inefficacy of vaccine (7  [0, 1]. Susceptible population 

increases due to the coming in of new births not vaccinated 

against the infection and those who were vaccinated but lose 

their immunity. When some susceptible individuals come into 

contact with infectious individuals, they get infected and 

progress to latently infected classes of drug susceptible and 

multi-drug resistant tuberculosis at a force of infection rates �- 

and �� respectively where �8 � ��8 ��9�� , ; � <, = and �8 is the 

probability that an individual is infected by one infectious 

individual, and c is the number of effective contacts. 

The proportion � of the high risk latently drug susceptible 

TB infected developed active TB and the remaining proportion 

enters to long latent with drug sensitive TB at the rate �. The 

proportion �  and �1 � �� of individuals of the early 

latent/exposed individuals for drug susceptible tuberculosis 

who do not get chance for screened will go to  �-  and 
 

respectively at the rate �. Thus, the proportion �, ��1 � �� and �1 � ���1 � �� of individuals in the class �- is transferred to 

classes 	-, �- and 
- respectively at a rate �. Individual leaves 

class �-  at the rate � in which, the proportion > goes to 

class  
-  and; the remaining proportion  �1 � >� recovers 

naturally and enter to recovered class R. 

Individuals in �- and, �-can also be infected by MDR TB 

(primary infection) if there is effective contact with 

individuals in 
�  class. Individuals leave 
-  class at the 

rates  �-  that the proportion �  of individuals in infectious 

classes of drug susceptible tuberculosis progress to the 

recovered class while the remaining �1 � ��  proportion of 

individuals with active drug sensitive TB may develop MDR 

TB because of improper treatment. 

The proportion ? of the latently infected multi-drug resist 

tuberculosis are screened for treatment and the remaining 

proportion developed active drug resist tuberculosis and 

leaves E class at the rate of �. Individual in 
�  class recovers 

at the rate  �� and goes to R class. Individuals leave the 

screened classes 	-  and 	� at the rates  , and ! respectively, 

and go to recovered class, where  @ !. 

Due to the nature of the disease, the infection will only kill 

individuals whose TB progresses to the infectious stage. 

Moreover, individuals in the recovered class are temporarily 

recovered. Soon they revert back to the latently infected 

classes �-  and  4,  after been re-infected by either drug 

sensitive class and multi-drug resistant strain at the rate "�- 

and "��  respectively, where "  is the reduction in 
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susceptibility due to prior endogenous infection of 

tuberculosis. We assume that each class conforms to natural 

death at the rate + while infectious individuals in 
-  and 
�  are 

die due to TB diseases at the rate $-  and $�  respectively. 

State variables and parameters in the dynamical system listed 

in the following table. 

Table 1. Symbols and there description for state variables and parameters. 

Symbols Description , Vaccinated individuals against tuberculosis disease. . Susceptible individuals for the disease �- Early latently infected with drug sensitive tuberculosis �- Long latently infected with drug sensitive tuberculosis 
- Infectious individuals with drug sensitive tuberculosis 	- Screened Early latently infected with drug sensitive tuberculosis 4 Latently infected with multi-drug resistant tuberculosis 
� Infectious individuals with multi-drug resistant tuberculosis 	� Screened Latently infected with multi-drug resistant tuberculosis 

R Recovered Individuals Λ Recruitment of population � Proportions new born vaccinated + Natural death rate ( the rate of inefficacy of vaccine individuals * the rate of vaccine waning �8�; �  <, =� Force of infection (< =DS strain, = =MDR strain) �8�; �  <, =� Probability of acquiring TB infections per contact with one infectious individual (< =DS strain, = =MDR strain) � Number of effective contacts susceptible or vaccinated individuals makes with infectious individuals. � The rate of progression of individuals from early latently infected with DS-TB. $8�; �  <, =� Death rate due to the disease (< = DS strain, = =MDR strain) � Proportion of latently infected DS- TB at early stage for treatment � Proportion of individuals who do not get chance for screened at  �- and will go to  �- class.   Rate of individuals move from 	- to R � Proportion of infectious individuals with DS-TB who enters to recovered class. � Progression rate from Long latently infected with DS-TB strain. � Progression rate from latency MDR-TB. ! Rate of individuals move from 	� to R > The portion of �- enter in to 
- ? The portion of 4 enter in to 
� �8�; �  <, =� The recovery rate infectious individuals (< =DS strain, = =MDR strain). " Acquired immunity due to previous treatment. 

Based on the above assumptions we do have the following flow chart: 

 

Figure 2. Flow diagram of the dynamical system (9)-(18). 

Based on the assumptions and the above flow chart we develop the following nonlinear dynamical system. 

%&
%' � �Λ � �(��- ) ��� ) * ) +�,                                                                    (9) 

%-
%' � �1 � ��Λ ) *, � ��- ) �� ) +�.                                                                 (10) 
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%/A%' � �-�. ) (, ) "�� � �� ) �� ) +��-                                                              (11) 

%1A%' � ���1 − �)�- − (�� + � + +)�-                                                                    (12) 

%�A%' = �>�- + �(1 − �)(1 − �)�- − (�- + + + $-)
-                                                      (13) 

%�A%' = ���- − ( + +)	-                                                                                (14) 

%B%' = ��(. + �- + �- + (, + "�) + (1 − �)�-
- − (� + +)4                                                   (15) 

%�0%' = (1 − ?)�4 − (�� + + + $�)
�                                                                  (16) 

%�0%' = ?�4 − (! + +)	�                                                                           (17) 

%3%' = ��-
- + ��
� + �(1 − >)�- +  	- + !	� − ("(�- + ��) + +)�                                     (18) 

With the total population at a given time t: �(�) = ,(�) + .(�) + �-(�) + �-(�) + 
-(�) + 	-(�) + 4(�) + 
�(�) + 	�(�) + �(�) 

3.2. Positivity of Solutions of the Dynamical System (9) - (18) 

Theorem-1: 

Let the initial data for the model (9)-(18) be  ,(0) > 0, .(0) > 0, �-(0) > 0, �-(0) > 0, 
-(0) > 0, 	-(0) > 0, 4(0) >0, 
�(0) > 0, 	�(0) > 0 and �(0) >  0. Then, the solutions ,(�), .(�), �-(�), �-(�), 
-(�), 	-(�), 4(�), 
�(�), 	�(�) and �(�) of 

the model (9)-(18) will be remain positive for all time � > 0. 

Proof:  

Let �E = <F�G� > 0: ,(0) > 0, .(0) > 0, �-(0) > 0, �-(0) > 0, 
-(0) > 0, 	-(0) > 0, 4(0) > 0, 
�(0) > 0, 	�(0) >0 and �(0) >  0 L7M0, �N. 
From the dynamical system (9) – (18) of the system, we solve for the state variable: 

,(�) = ,(0)O5 + O5 P �ΛQR� S+� + *� + P (((�- + ��)(T))$TU
V W $�'E

V > 0 

Where O5 = QR� − X+� + *� + Y ((�- + ��)(T)$T'EV Z > 0 

.(�) = .(0)O[ + O[ Y ((1 − �)Λ + *,(�)) Y ((1 − �)Λ + *,(�))eR� ]+� + Y (�- + ��)(T))$TÛV _ $�'EV'EV > 0, 

Where O[ = QR� − ]+� + Y (�- + ��)(T))$T'EV _ > 0 

�-(�) = �-(0)O` + O` P M(�-.(�) + (�-,(�) + "�-�(�))(��E + +�E + P ��(T)$T'E
V )N$�'E

V > 0 

Where O` = QR� − M��E + +�E + Y ��(T)$T'EV N > 0 

�-(�) = �-(0)Oa + Oa P ��(1 − �)�-QR� b��E + +�E + P ��(T)$T'E
V c $�'E

V > 0 

Where Oa = QR� − ]��E + +�E + Y ��(T)$T'EV _ > 0 


-(�) = 
-(0)Od + Od P M�>�- + �(1 − �)(1 − �)�-NQR�M�-�E + $5�E + +�EN $�'E
V > 0 

Where Od = QR� − M�-�E + $5�E + +�EN > 0 

	-(�) = 	-(0)Oe + Oe Y �� �-QR�M �E + +�EN $�'EV > 0, Where Oe = QR� − M �E + +�EN > 0 
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4��E� � 4�0�Of ) Of Y M������. ) �- ) �- ) (, ) "�� ) �1 − �)�-
-NQR�M!�E + +�EN $�'EV > 0, 

where Of = QR� − M��E + +�EN > 0 


�(�) = 
�(0)Og + Og P M(1 − ?)�4 NQR�M���E + +�E + $[�EN$�'E
V > 0 

Where Og = QR� − M���E + +�E + $[�EN > 0 

	�(�) = 	�(0)Oh + Oh Y M?�4NQR�(!�E + +�E)'EV > 0, Where Oh = QR� − (!�E + +�E) > 0 

�(�) = �(0)O5V + O5V Y M��-
- + ��
� + �(1 − >)�- +  	- + !	� NQR� ]+� + " Y (�- + ��)(T)$T'EV _ $�'EV > 0, 

Where O5V = QR� − ]+� + " Y (�- + ��)(T)$T'EV _ > 0 

Therefore all of the state variables of the dynamical system (9)-(18) are positive for all t > 0, given any positive initial 

conditions. 

3.3. Positively Invariant 

Theorem-2: 

The dynamical system (9) - (18) is positively invariant in the closed invariant set Ω = X(,, ., �- , �-, 
- , 	-, 4, 
� , 	� , �) ∈ℝl5V: � ≤ noZ. 

Proof 

Consider the biologically feasible region, Ω and observe that the rate of change of the total population obtained by adding all 

the equations (9)-(18) of the model. 
%�%' = p − +� − ($-
- + 
�$�) . For � > no  we do have  %�%' < 0 . Furthermore using a 

standard comparison theorem 
%�%' ≤ Λ − μN it follows that Y %�tuo� ≤ Y $� ⟺ − 5o wx(p − +�) ≤ � + � where c is a constant ⟺ −+� ≥ zQuo', where z = Qu{o is a constant. And then applying the initial condition �(0) we do have Λ − μN(0) ≥ A that is N(0) ≤ n μ . Then from the inequality  Λ − μN ≥ AQuo'  and taking  A = Λ − μN(0) , we get �(�) ≤ nμ − }μ Quo' ≤ no −

~n μ − N(0)� Quo' . For time � > 0  we do have lim'→� �(�) ≤ �(0)Quo' − no Quo' + no ≤ no  (Since,  �(0) ≤ no  ). Hence if 

�(0) ≤ no, as � → ∞ the population size �(�) → no which implies that 0 ≤ �(�) ≤ no. Therefore all feasible solutions of the 

dynamical system with initial conditions in Ω = X(,, ., �-, �- , 	-, 
-, 4, 
� , 	� , �) ∈ ℛl5V: � ≤ noZ do remain in Ω for all � > 0. 

That is the set Ω is positively invariant. 

3.4. Existence of Disease Free Equilibrium Point �� = ���, ��, ���, ���, ���, ���, ��, ���, ���, ��� 

The disease free equilibrium point of the dynamical system (9)-(18) is obtained by setting 
%&%' = %�%' = %/A%' = %1A%' = %��%' =%��%' = %B%' = %�0%' = %�0%' = %3%' = 0 and since there is no disease we do have 
- = 
� = 0. Then the disease free equilibrium of the 

dynamical system (9)-(18) is, 

4V = �,V, .V, �-V, �-V, 
-V, 	-V, 4V, 
�V, 	�V, , �V�. = � �nol6 , (6l(5u�)o)no(ol6) , 0, 0, 0, 0, 0, 0, 0, 0�. 

3.5. Effective Reproduction Number ���� 

We compute the effective reproduction number ���� using next generation operator method. In the dynamical system (9) - 

(18) the rate of appearance of new infections ℱ and the transfer rate of individuals � at the disease free equilibrium point �,V, .V, �-V, �-V, 
-V, 	-V, 4V, 
�V, 	�V, �V� = � �nol6 , (6l(5u�)o)no(ol6) , 0, 0, 0, 0, 0, 0, 0, 0� are given as: 

ℱ =
���
��00000

 0  0  0  0  0 
 { A�¡ (.V + (,V) 0000

00000
0000 { 0�¡ (.V + (,V)¢££

£¤  and � =
���
�� (� + +)−��(1 − �)−�(1 − �)(1 − �)00

 0  (� + +) −�>  0  0 
 0 0(�- + + + $-)−(1 − �)�-0

000(� + +)−(1 − ?)�
0000 (�� + + + $�)¢££

£¤
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And the inverse of the matrix � is: 

 �u5 �
��
��
�¥55¥5[¥5`¥5a¥5d

 ¥[5  ¥[[  ¥[`  ¥[a  ¥[d 
 ¥`5 ¥`[¥``¥`a¥`d

¥a5¥a[¥a`¥aa¥ad

¥d5¥d[¥d`¥da ¥dd¢££
£¤
, 

Where  

¥[5 = ¥[a = ¥`5 = ¥`[ = ¥a5 = ¥a[ = ¥a` = ¥d5 = ¥d[ = ¥d` = ¥da = 0,  ¥55 = 5(¦lo), ¥5[ = ¦§(5u¨)(¦lo)(©lo), ¥5` = �¦§(5u¨)©ªl¦(©lo)(5u§)(5u¨)�(¦lo)(©lo) («Alol%A) , ¥[[ = 5(©lo), ¥[` = ©ª(©lo) («Alol%A), ¥5a =  (5u¬)«AM©ª¦§(5u¨)l¦(5u§)(5u¨)(©lo)N(¦lo)(©lo)(«Alol%A)(­lo)(«0lol%0) , ¥`` =5(«Alol%A), ¥`a = (5u¬)«A(«Alol%A)(­lo), ¥aa = 5(­lo), 
¥5d = (5u¬)«A�¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)�(¦lo)(©lo)(«Alol%A)(«0lol%0) , 

¥[d = ©ª(5u¬)«A (©lo)(«Alol%A)(«0lol%0), ¥dd = 5(«0lol%0), 
¥`d = (5u®)­(5u¬)«A(«Alol%A)(­lo)(«0lol%0),  and  ¥ad = (5u®)­ (­lo)(«0lol%0). 

The spectral radius of ℱ,u5 is the required effective reproduction number ����   and obtained as: 

���� = max °����(DS), ����(MDR)µ Where, 

����(DS) = ��- � ¶�ol(6l(5u�)o)6lo � �¦§(5u¨)©ªl¦(©lo)(5u§)(5u¨)�(¦lo)(©lo)(«Alol%A) , 

����(MDR) = ��� � ¶�ol(6l(5u�)o)6lo � (5u®)­ (­lo)(«0lol%0) . 
3.6. Local Stability Analysis of the Disease Free Equilibrium Point 

Theorem-3: 

The disease free equilibrium point � �nol6 , (6l(5u�)o)no(ol6) , 0, 0, 0, 0, 0, 0, 0, 0�  of the dynamical system (9)-(18) is locally 

asymptotically stable if ����(DS) < 1 and ����(MDR) < 1; and 4V is unstable otherwise. 

Proof: The Jacobean matrix of the dynamical system (9)-(18) at any disease free equilibrium point 4V = � �nol6 , (6l(5u�)o)no(ol6) , 0, 0, 0, 0, 0, 0, 0, 0� is 

·(4V) =

��
��
��
��
��
��
��
��
��
� ¸�¹�B¡�¸&¸�º�B¡�¸&¸�»�B¡�¸&¸�¼�B¡�¸&¸�½�B¡�¸&¸�¾�B¡�¸&¸�¿�B¡�¸&¸�À�B¡�¸&¸�Á�B¡�¸&¸�¹¡�B¡�¸&
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¸�¹(B¡)¸�A¸�º(B¡)¸�A¸�»(B¡)¸�A¸�¼(B¡)¸�A¸�½(B¡)¸�A¸�¾(B¡)¸�A¸�¿(B¡)¸�A¸�À(B¡)¸�A¸�Á(B¡)¸�A¸�¹¡(B¡)¸�A

¸�¹(B¡)¸�A¸�º(B¡)¸�A¸�»(B¡)¸�A¸�¼(B¡)¸�A¸�½(B¡)¸�A¸�¾(B¡)¸�A¸�¿(B¡)¸�A¸�À(B¡)¸�A¸�Á(B¡)¸�A¸�¹¡(B¡)¸�A

¸�¹(B¡)¸B¸�º(B¡)¸B¸�»(B¡)¸B¸�¼(B¡)¸B¸�½(B¡)¸B¸�¾(B¡)¸B¸�¿(B¡)¸B¸�À(B¡)¸B¸�Á(B¡)¸B¸�¹¡(B¡)¸B

¸�¹(B¡)¸�0¸�º(B¡)¸�0¸�»(B¡)¸�0¸�¼(B¡)¸�0¸�½(B¡)¸�0¸�¾(B¡)¸�0¸�¿(B¡)¸�0¸�À(B¡)¸�0¸�Á(B¡)¸�0¸�¹¡(B¡)¸�0
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Where  Â5 = −(* + +), Â[ = −(��-,V/�V, 

Â` = − ¶{ 0&¡�¡ , Âa = { A�¡�¡ , Âd = − { 0�¡�¡ , Âe = −(� + +), 

Âf = { A��¡l¶&¡��¡ , Âg = ��(1 − �), Âh = −(� + +), 

Â5V = �(1 − �)(1 − �), Â55 = −(�- + + + $-), Â5[ = −( + +), Â5` = (1 − �)�-, Â5a = −(� + +), 

Â5d = { 0��¡l¶&¡��¡ , Â5e = (1 − ?)�, 

Â5f = −(�� + + + $�), Â5g = −(! + +), Â5h = �(1 − >). 

The corresponding characteristic equation is obtained by 

Ä
Ä
ÄÂ5 − �*00000000

 
0−+ − �00000000

 
00ÂeuÅÂgÂ5V��0000

 
000Âh − ��>0000Â5h

 
Â[ÂaÂf0Â55 − �0Â5`00��-

 
00000Â5[ − �000 

 
000000Â5a − �Â5e?�0

 
Â`Âd0000Â5dÂ5f − �0��

 
00000000Â5g − �!

 
000000000−+ − �Ä

Ä
Ä

= 0  

Or (� + +)[(Â5 − �) (Â5[ − �)(Â5g − �)M�[ − (Â5a + Â5f)� + Â5aÂ5f − Â5dÂ5eNM−�` + (Âe + Âh + Â55)�[ − (ÂeÂh +ÂeÂ55 + ÂhÂ55 + ÂfÂ5V)� + ÂeÂhÂ55 + �>ÂfÂg − ÂfÂ5VÂhN = 0 

Thus, the roots of the characteristic equation are �5 = −+ ,  �[ = −+ ,  �` = Â5 = −(* + +) , �a = Â5[ = −( + +) ,  �d = Â5g = −(! + +)  and/or �[ − (Â5a + Â5f)� + Â5aÂ5f − Â5dÂ5e = 0  or �` − (Âe + Âh + Â55)�[ + (ÂeÂh + ÂeÂ55 +ÂhÂ55 + ÂfÂ5V)� + ÂeÂhÂ55 − �>ÂfÂg + ÂfÂ5VÂh = 0 

The Routh-Hurwitz conditions simplifies to Æ5 > 0, Æ[ > 0, �5 > 0, �[ > 0, �` > 0 and �5�[ > �` . That is, the necessary 

conditions for Routh-Hurwitz, Æ[ > 0 and �` >  0 is true if ����(MDR) < 1 and ����(MDR) < 1 respectively. The sufficient 

condition for the Routh-Hurwitz criteria is: �5�[ − �` = (3+ + � + � + �- + $-)M(� + +)(� + +) + (� + +)(�- + + + $-) +(� + +)(�- + + + $-)N − (� + +)(� + +)(�- + + + $-)È1 − ����(DS)É > 0. Thus �5�[ − �` > 0 if and only is ����(DS) < 1. 

Therefore all of the eigenvalues of the Jacobean matrix have negative real parts when ����(DS) < 1 and ����(ÊË�) < 1. 

Hence, the disease free equilibrium 4V, of the model system (9)-(18) is locally asymptotical stable whenever ����(DS) < 1 

and ����(MDR) < 1 and unstable otherwise that is unstable if ���� > 1. 

3.7. Global Stability of Diseases Free Equilibrium Point 

Theorem-4: 

The diseases free equilibrium point � �nol6 , (6l(5u�)o)no(ol6) , 0, 0, 0, 0, 0, 0, 0, 0� of the dynamical system (9) - (18) is globally 

asymptotically stable in Ω if ����(DS) < 1 and ����(MDR) < 1, and unstable otherwise. 

Proof: We apply a matrix-theoretic method using the Perron eigenvector to prove the global stability of the disease-free 

equilibrium as in [15]. The dynamical system (9)-(18), the drug sensitive TB disease compartment of is R5 = (�-, �- , 
- )�7ℝ` 
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and non-disease (drug sensitive TB) compartment Ì57ℝf. R5Í = (Î5 − ,5)R5 − Ï5(R5, Ì5) 

Where, the non-negative matrix Î5, of the new drug sensitive TB infection terms, and the matrix ,5, of the transition terms of 

drug sensitive TB and Ï5(R5, Ì5) = (���- , ���-, 0, )� 

,5u5Î5 = ��-
���
��0 0 5¦lo0 0 ¦§(5u¨)(¦lo)(©lo)0 0 ¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A) ¢££

£¤
 . 

Hence, �55 = �5[ = 0 and �5` = ¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A)  are eigenvectors of ,5u5Î5 . Let, �5� = (F5, F[, F`) be the left 

eigenvector of ,5u5Î5 corresponding to �5` = ¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A)  

Thus, �5�,5u5Î5 =  ��<(F1, F2, F3) Ñ∆ 0 1�++0 ∆ ��(1−�)(�++)(�++)0 0 0
Ó  

Where, ∆= − ��(1−�)�>+�(1−�)(1−�)(�++)(�++)(�++)��<+++%A� . i.e, �5� = (0,0, 1)  is the left eigenvector of ,5u5Î5  corresponding to the eigenvalue �5` = ¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A) . 

Lets’ define a function Ô5(�- , �-, 
-) as:  

Ô5 = �5�,5u5R5 =  ¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A) �- + ©ª©lo �- + 5(«Alol%A)  
- . 

The derivative of Ô5 with respect to time: Ô5Í = �5�,5u5R5Í , [Since, R5Í = (Î5 − ,5)R5 − Ï5(R5, Ì5)] = �5�È�����(DS) − 1�R5 − ,5u5Ï5(R5, Ì5)É. 
= �5������(DS) − 1�R5 − ,5u5Ï5(R5, Ì5) . 

Since �5� > 0, ,5u5 > 0 and Ï5(R5, Ì5) ≥ 0, Ô5Í < 0, if ����(Ë.) < 1. 

The drug resistance TB disease compartment of the dynamical system (9)-(18) is R[ = (4, 
�  )�7ℝ[ and non-disease (drug 

resistance TB) compartment Ì[7ℝg. R[Í = (Î[ − ,[)R[ − Ï[(R[, Ì[) 

Where, the non-negative matrix Î[, of the new drug resistance TB infection terms, and the matrix ,[, of the transition terms 

of drug resistance TB and Ï[(R[, Ì[) = (0, 0, )�. 

Therefore, 

,[u5Î[ = Õ 5(­lo) 0­(5u®)(­lo)(«0lol%0) 5(«0lol%0)Ö ×0 00 ���Ø  = ��� Õ0 5(­lo)0 ­(5u®)(­lo)(«0lol%0)Ö . 

Hence, �[5 = 0 and �[[ = ­(5u®)(­lo)(«0lol%0) are eigenvectors of ,[u5Î[. Let, �[� = (Ù5, Ù[, ) be the left eigenvector of ,[u5Î[ 

corresponding to �[[ = ­(5u®)(­lo)(«0lol%0) 
Therefore,�[� = (0, 1) left eigenvector of ,[u5Î[ corresponding to �[[ = ­(5u®)(­lo)(«0lol%0). 
Lets’ define a function Ô[(4, 
�) as: 

Ô[ = �[�,[u5R[  = �(1 − ?)(� + +)(�� + + + $�) 4 + 1(�� + + + $�) 
�  

The derivative Ô[ with respect to time: Ô[Í = �[�,[u5R[Í , Since, R[Í = (Î[ − ,[)R[ − Ï[(R[, Ì[) 
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� �[�������MDR� � 1�R[ and Since �[� > 0, then Ô[Í < 0, if ����(MDR) < 1 

Now we can define a Lyapunov function Ô(�- , �-, 
- , 4, 
�) as: Ô(�-, �- , 
-, 4, 
�) = z5�- + z[�- + z`
- + za4 + zd
�  

where, z5 = ¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A) , z[ = ©ª©lo,  
z` = 5(«Alol%A) , za = ­(5u®(­lo)(«0lol%0), and zd =  5(«0lol%0) 

That is, 

Ô = Ô5 + Ô[  = ¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A) �- + ©ª©lo �- + 5(«Alol%A)  
-  + ­(5u®(­lo)(«0lol%0) 4 + 5(«0lol%0) 
�   

Differentiate Ô with respect to time: 

ÔÍ =  ¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A) �-Í + ©ª©lo �-Í +  5(«Alol%¹)  
-Í  + ­(5u®(­lo)(«0lol%0) 4Í + 5(«0lol%0) 
�Í  . 
Substituting the derivatives and simplify: 

ÔÍ =  �����(DS) − 1�
- + �����(MDR) − 1�
� − �� �¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A) �- + ©ª©lo  �-�. 

Hence, ÔÍ < 0 , if ����(DS) < 1  and ����(MDR) < 1 . When ÔÍ = 0 , we must have that �����(DS) − 1�
- + �����(MDR) − 1�
� = �� �¦§(5u¨)©ªl¦(5u§)(5u¨)(©lo)(¦lo)(©lo)(«Alol%A) �- + ©ª©lo  �-� . And ÔÍ = 0 , at the disease free 

equilibrium point. By LaSalle’s invariant principle, every solution to the model equations (9) – (18) with initial conditions in Ω, 

tends to 4V  as � ⟶∞. Hence, since the region Ω is positively-invariant, the disease free equilibrium point, 4V  is globally 

asymptotically stable in Ω if ���� < 1. 

4. Existence of Endemic Equilibrium Point 

4.1. The Drug Sensitive TB-strain Only Equilibrium 

This is obtained by setting ��= 0 and � = 1 (that treatment of active drug sensitive TB is 100% effective) in the dynamical 

system (9)-(18). The drug sensitive TB only equilibrium in terms of the equilibrium value of the force of infection �-∗
 is given 

as: 45 = (,∗, .∗, �-∗, �-∗, 
-∗, 	-∗, 0,0,0, �∗) where 

,∗ = �n¶ÅA∗l6lo, .∗  = nÈ(5u�)¶ÅA∗l6l(5u�)oÉ�ÅA∗lo��¶ÅA∗l6lo� ,  

�-∗ = (� + +)(�- + + + $-)�>��(1 − �) + �(� + +)(1 − �)(1 − �) 
-∗ 

�-∗ = ¦§(5u¨)(«Alol%A)©ª¦§(5u¨)l¦(©lo)(5u§)(5u¨) 
-∗, 

	-∗ = ¦¨(©lo)(«Alol%A)(Ülo)M©ª¦§(5u¨)l¦(©lo)(5u§)(5u¨)N 
-∗, 

�∗ = 5�ÝÅA∗lo� Þ �- + ©(5uª)¦§(5u¨)(«Alol%A)M©ª¦§(5u¨)l¦(©lo)(5u§)(5u¨)N+ Ü¦¨(©lo)(«Alol%A)(Ülo)M©ª¦§(5u¨)l¦(©lo)(5u§)(5u¨)Nß 
-∗.   

4.1.1. Local Stability of Drug Sensitive TB-strain Only Equilibrium Point, �à 

Theorem-5: 

The drug sensitive TB only equilibrium 45 of the dynamical system (9)-(14), (18) when � = 1 is locally asymptotically 

stable if ����(DS) > 1 > ����(MDR) and �∗ < n(%Alo){ AÝo . 

Proof: The Jacobean matrix of the model system (9)-(14), (18) at equilibrium is given by: 
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·�45� �
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Where, 

å∗ =  ¶u(¶ol6lo)é¹éº3êëë(ì�)¶é¹éº3êëë(ì�) , ä5 = −((å∗ + * + +), ä[ = −(å∗ + +), ä` = −(� + +), äa = −(� + +), äd = −(�- + + +$-), äe = −( + +), äf = −("å∗ + +), Â5 = o(6lo)nM¶�ol(6l(5u�)o)N, Æ5 = (��-,∗/�∗, 

Â[ = nÝ{ Ao Þ�- + ©(5uª)¦§(5u¨)(«Alol%A)M©ª¦§(5u¨)l¦(©lo)(5u§)(5u¨)N +
Ü¦¨(©lo)(«Alol%A)(Ülo)M©ª¦§(5u¨)l¦(©lo)(5u§)(5u¨)N ß, 

Æ[ = ��-,∗/�∗ and Ù =  { Aon (.∗ + ( ,∗ + " �∗) 

The characteristic equation of ·(45) denoted by |·(45) − �
| = 0, and given by: 

Ä
Ää5 − �*(å∗0000

 
0ä[ − �å∗0000

 
00ä` − ���(1 − �)�(1 − �)(1 − �)��0

 
000äa − ��>0�(1 − >)

 
Æ5Æ[Ù0äd − �0�-

 
00000äe − � 

 
00"å∗000äf − �Ä

Ä = 0 

Now we apply the Gershgorin circle theorem, [16] to determine the sign of the eigenvalues of the characteristic 

equation |·(45) − �
| = 0. The matrix ·(45) is a strictly column diagonally dominant matrix. And also all diagonal elements of ·(45)  are negative. Therefore, using the Gershgorin circle theorem, the radius of the disc less than the magnitude of 

corresponding element if �∗ < n(%Alo){ AÝ o . We can show that all eigenvalues of ·(45) has negative real part if ����(DS) > 1 >����(MDR)  and  �∗ < n(%Alo){ AÝ o . Hence, the drug resistance TB only equilibrium 45  is locally asymptotically stable if ����(DS) > 1 > ����(MDR) and �∗ < n(%Alo){ AÝ o . 

4.1.2. Global Stability of Drug Sensitive TB only Endemic Equilibrium Point, �à 

Theorem-6: 

The drug sensitive TB only equilibrium 45 of Model (9)-(14), (18) is globally asymptotically stable if � = 1,  ����(DS) >1 > ����(MDR). 

Proof: We use a graph-theoretic method as in [15] to construct a Lyapunov function. 

We define functions: Ë5 = , − ,∗ − ,∗wx &&∗, Ë[ = . − .∗ − .∗wx ��∗, 
 Ë` = �- − �-∗ − �-∗wx /A/A∗, Ëa = �- − �-∗ − �-∗wx 1A1A∗ 

Ëd = 	- − 	-∗ − 	-∗wx �A�A∗, Ëe = 
- − 
-∗ − 
-∗wx �A�A∗, 
 Ëf = � − �∗ − �∗wx 33∗  

Differentiating the functions Ë8  for i = 1,..., 7 with respect to time, and using the inequality 1 − R + wxR ≤  0, for all R > 0 

and the values at the endemic equilibrium point 45 that: 

Ë5ï ≤ (�-∗,∗ ð−wx 
-
-∗ + wx ,∗, − ,∗, + 
-
-∗ñ = Â5dò5d 

Ë[ï ≤ *,∗ ð.∗. − 2 − wx ,.∗,∗. + ,,∗ñ + ��-�∗ .∗
-∗ ð−wx 
-
-∗ + wx .∗. − .∗. + 
-
-∗ñ = Â[5ò[5 + Â[dò[d 
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Ëï̀ ≤ �-∗.∗ ð 
-.
-∗.∗ � 
-
-∗ � wx ..∗ñ  + (,∗�-∗ ð 
-,,∗
-∗ − 
-
-∗ − wx ,,∗ñ + "�∗�-∗ ð 
-��∗
-∗ − 
-
-∗ − wx ��∗ñ
+ (.∗ + (,∗ + "�∗)�-∗ ð 
-
-∗ − �-�-∗ + wx �-�-∗ − wx 
-
-∗ñ 

=: Â`[ò`[ + Â`5ò`5 + Â`fò`f + Â`dò`d 

Ëaï ≤ ��(1 − �)�-∗ ð− �-�-∗ + wx �-�-∗ − wx �-�-∗ + �-�-∗ñ = Âa`òa` 

Ëdï ≤ �>�-∗ �− �A�A∗ + wx �A�A∗ − wx 1A1A∗ + 1A1A∗� + �(1 − �)(1 − �)�-∗ �− �A�A∗ + wx �A�A∗ − /A/A∗ + /A/A∗�  

=: Âdaòda + Âd`òd` 

Ëeï ≤ ( + +)	-∗ ~ �-�-∗ − wx �-�-∗ − 	-	-∗ + wx 	-∗	- �  =: Âe`òe` 

Ëfï ≤ �-
-∗ � �A�A∗ − wx �A�A∗ + wx 33∗ − 33∗� + �(1 − >)�-∗ �− 33∗ + wx 33∗ − wx 1A1A∗ + 1A1A∗� +  	-∗ �− 33∗ + wx 33∗ − wx �A�A∗ + �A�A∗�  +"
-∗�∗ � 33∗ − 2 − wx 33∗ �A�A∗ + �A�A∗�  

=: Âfaòfa + Âfeòfe + Âfdéòfdé + Âfdóòfdó . 

Where,  Â5d = Â`5 = (,∗�-∗
, Â[5 = *, Â[d = Â`[ = .∗�-∗

, Â`f = "�∗�-∗
, Â`d = (.∗ + (,∗ + "�∗)�-∗

, Âa` = ��(1 − �)�-∗, Âda = �>�-∗, Âe` = ( + +)	-∗, Âd` = �(1 − �)(1 − �)�-∗, Âfa = �-
-∗, Âfe = �(1 − >)�-∗, Âfdé =  	-∗, Âfdó = "�-∗�∗ and all other Â8ô = 0. 

The associated weighted digraph G (A) has seven vertices. Along each cycle: 

ò`d + òd` = � �A�A∗ − /A/A∗ + wx /A/A∗ − wx �A�A∗� + �− �A�A∗ + wx �A�A∗ − /A/A∗ + /A/A∗� = 0 and 

ò`d + òa` + òda = � �A�A∗ − /A/A∗ + wx /A/A∗ − wx �A�A∗� + �− 1A1A∗ + wx 1A1A∗ − wx /A/A∗ + /A/A∗� + �− �A�A∗ + wx �A�A∗ − wx 1A1A∗ + 1A1A∗� = 0. And the 

other cycles ∑ ò8ô ≤ 0, if 
&&∗ , ��∗ , 33∗ ≤ 1 and 

/A/A∗ ≤ �A�A∗ . By Proposition 1.3 of [15], there exists  �8 > 0, ; = 1, … ,7 such that Ë = ∑ �8Ë8e8÷5  is a Lyapunov function for equations (9)-(14),(18). The relations between �8’s can be derived from Theorems 3.3 

and 3.4 of [15] such that: 

Â`[ > 0 and $l(2) = 1 implies �` = �[ (éº¹léº½)é»º . 

Â5d > 0 and $u(1) = 1 implies �5 = �[ �éº¹é»ºlé»¹(éº¹léº½)é»ºé¹½ �. 
Âa` > 0 and $u(4) = 1 implies �a = �d é½¼é¼». 

Â`f > 0 and $l(7) = 1 implies �f = �[ é»¿(ùº¹úùº½)é»º(é¿¼lé¿½ùlé¿½ûlé¿¾). 
Âfe > 0 and $l(6) = 1 implies �e = �[ é¿¾é»¿(ùº¹úùº½)é»º(é¾½lé¾»)(é¿¼lé¿½ùlé¿½ûlé¿¾). 

Therefore, Ë =  �5Ë5 + �[Ë[ + �`Ë` + �aËa + �dËd + �eËe + �fËf is a Lyapunov function for (9)- (14), (18). Therefore, 45 is globally asymptotically stable in the interior of Ω when ����(DS) > 1 > ����(MDR). 

4.2. The Drug Resistant TB Strain only Equilibrium Point, �ý 

This equilibrium solution is obtained by setting �- = 0 in equations (9)-(18) of the model. The drug resistant TB expressed 

only in terms of the equilibrium value of the force of infection ��∗
 is given by: 
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4[ � �,∗, .∗, 0, 0, 0,0, 4∗, 
�∗, 	�∗, �∗) 

Where, ,∗ = �n¶Å0∗l6lo, .∗ = nÈ(5u�)¶Å0∗l6l(5u�)oÉ�Å0∗lo�È¶Å0∗l6loÉ , 4∗ = («0lol%0)(5u®)­  
�∗, 	�∗ = ®­(«0lol%0)(þlo)(5u®)­  
�∗ and �∗ = «0(þlo)(5u®)­lþ®­(«0lol%0)�ÝÅ0∗lo�(þlo)(5u®)­   
�∗ . 

4.2.1. Local stability of the Drug Resistant TB Strain only Equilibrium Point, �ý 

Theorem-7: 

The drug resistance TB only equilibrium 4[ of Model (9), (10), (15)-(18) is locally asymptotically stable if ����(DS)  < 1 <  ����(MDR) and �∗ < n(ol%0){ 0Ýo . 

Proof: The Jacobean matrix of the dynamical system (9),(10), (15)-(18) at equilibrium 4[ is given by: 

·(4[) =
á
ââã

Ï5*(x∗000
 

0Ï[x∗000
 

00Ï̀(1 − ?)�?�0
 
Â5Â[ÌÏa0��

 
0000Ïd!

 
00"x∗00Ïe

 
æ
ççè 

Where, x∗ = o¶(5lÝ)lÝ(6lo)u3êëë(�ì3)�¹ÝM�º(o¶l6lo)l¶N¶Ý(3êëë(�ì3)�¹�ºu5) , Q5 = o(6lo)M¶�ol(6l(5u�)o)N , Q[ = M«0(þlo)(5u®)­lþ®­(«0lol%0)N{ 0o(þlo)(5u®)­ , Ï5 =−((x∗ + * + +), ä[ = −(x∗ + +), Ï̀ = −(� + +), Ïa = −(�� + + + $�), Ïd = −(! + +), Ïe = −("x∗ + +), Â5 = − ¶{ 0&∗�∗ , Â[ = − { 0�∗�∗  and Ì =  { 0on (.∗ + ( ,∗ + " �∗). 

The characteristic equation of the matrix ·(4[) is given by |·(4[) − �
| = 0: 

ÄÄ
Ï5 − �*(x∗000

 
0Ï[ − �x∗000

 
00Ï̀ − �(1 − ?)�?�0

 
Â5Â[ÌÏa − �0��

 
0000Ïd − �!

 
00"x∗00Ïe − �

 ÄÄ = 0 

Now we apply the Gershgorin circle theorem, [16] to determine the sign of the eigenvalues of the characteristic 

equation  |·(4[) − �
| = 0 . In the matrix ·(4[) , |�88| > ∑ �8ôe8÷58�ô , for � = 1, … ,6 , and �∗ < n(ol%0){ 0Ýo  then ·(4[)  is a strictly 

column diagonally dominant matrix and also all diagonal elements of ·(4[) are negative. Hence, all eigenvalues of ·(4[) has 

negative real part if ����(DS) < 1 < ����(MDR) and �∗ < n(ol%0){ 0Ýo . Therefore, the drug resistance TB only equilibrium 4[ is 

locally asymptotically stable if ����(DS) < 1 < ����(MDR) and �∗ < n(ol%0){ 0Ýo . 

4.2.2. Global Stability of Drug Resistant TB only Endemic Equilibrium Point 

Theorem-8: 

The drug resistance TB only equilibrium 4[ of Model (9), (10), (15)-(18) is globally asymptotically stable if ����(DS) <1 < ����(MDR). 

Proof: We use a graph-theoretic method as in [15] to construct a lyapunov function. 

We define functions: 

O5 = , − ,∗ − ,∗wx &&∗, O[ = . − .∗ − .∗wx ��∗, 
 O` = 4 − 4∗ − 4∗wx BB∗, Oa = 
� − 
�∗ − 
�∗wx �0�0∗, 
Od = 	� − 	�∗ − 	�∗wx �0�0∗, Oe = � − �∗ − �∗wx 33∗ 

Where 4[ = (,∗, .∗, 4∗, 	�∗, 
�∗, �∗ ) is the drug resistant TB only endemic equilibrium. 

Differentiating the functions O8  for i = 1,..., 6 with respect to time, and using the inequality 1 − R + wxR ≤  0, for all R > 0 

and the values at the endemic equilibrium point 4[ that: 

O5 ≤ ≤ (,∗��∗ � �0�0∗ − wx &∗& − �0&�0∗&∗� =: Æ5aO5a. 

O[  ≤  *,∗ �−2 − wx &&∗ − wx �∗� + �∗� + &&∗� =: Æ[5O[5 . 
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O` ≤ � �0�0∗ −  BB∗ − wx �0�0∗ + wx BB∗� + ��∗.∗ � �0��0∗�∗ − �0�0∗ − wx ��∗� +  (��∗,∗ � �0&�0∗&∗ − �0�0∗ − wx &&∗�  + "��∗�∗ � �03�0∗3∗ − �0�0∗ − wx 33∗� . 

=: Æ`aO`a + Æ`5O`5 + Æ`[O`[ + Æ`eO`e . 

Oa ≤ �1 − ?��4∗ � BB∗ − �0�0∗ − wx BB∗ + wx �0�0∗�  =: Æa`Oa` . 

Od ≤  ?�4∗ � BB∗ − �0�0∗ − wx BB∗ + wx �0�0∗� =: Æd`Od` . 

Oe ≤ ��
�∗ � �0�0∗ − wx �0�0∗ + wx 33∗ − 33∗� + !	�∗ � �0�0∗ − wx �0�0∗ + wx 33∗ − 33∗� + "��∗�∗ �−wx 33∗ − wx �0�0∗ − 2 + 33∗ + �0�0∗� . 

=: ÆeaOea + ÆedéOedé + ÆedóOedó 

Where, Æ5a = Æ`[ = (��∗,∗, Æ[5 = *,∗,  Æ`5 = ��∗.∗, Æ`a = ���∗.∗ ) (��∗,∗ ) "��∗�∗�,  Æ`e = Æedó =  "��∗�∗, Æa` =  �1 − ?��4∗, Æd` = ?�4∗, Æea = ��
�∗, Æedé = !	�∗, and all other Æ8ô = 0. 

The associated weighted digraph G (Q) has six vertices. Along each cycle ò`a + òa` = � �0�0∗ −  BB∗ − wx �0�0∗ + wx BB∗� +� BB∗ − �0�0∗ − wx BB∗ + wx �0�0∗� = 0 and the other cycles ∑ ò8ô ≤ 0, if 
&&∗ , ��∗ , 33∗ ≤ 1 and 

BB∗ ≤ �0�0∗. By Proposition 1.3 of [15], there 

exists  �8 > 0, ; = 1, … ,6 such that O = ∑ �8O8e8÷5  is a Lyapunov function for equations (9), (10), (15)–(18). The relations 

between �8’s can be derived from Theorems 3.3 and 3.4 of [15] such that: Æ[5 > 0and $l�1� = 1 implies �[ = �5 ó¹¼óº¹. Æ`[ > 0and $l�2� � 1 implies �` = �5 ó¹¼ó»º. Æ`e > 0and $l�6� � 1 implies �e = �5 ó¹¼ó»º �ó»¼ló»¹ló»ºló»¾�
ó½»

ó»¾�ó¾¼l ó¾½ùl ó¾½û�. Æd` > 0and $u�5� � 1 implies �d =�5 �ó¾½ùló¾½ù�ó½» ó¹¼ó»º �ó»¼ló»¹ló»ºló»¾�ó½» ó»¾
�ó¾¼l ó¾½ùl ó¾½û�. Æa` > 0 and $u�4� = 1 implies �a = �5 5ó¼» �Æ5a + ó¹¼ó»¼ó»º + ó¹¼�ó»¼ló»¹ló»ºló»¾�ó»ºó½» ó»¾ó¾¼

�ó¾¼l ó¾½ùl ó¾½û��. 

Therefore, O =  �5O5 + �[O[ + �`O` + �aOa + �dOd + �eOe is a Lyapunov function for (9), (10), (15)–(18). Therefore, 4[ 

is globally asymptotically stable in the interior of Ω when �����MDR� > 1. 

4.3. Endemic Equilibrium Point where Both TB Strains Co-exist, �� 

The endemic equilibrium where both TB strains co-exist is given as: 4` = (,∗, .∗, �-∗, �-∗, 
-∗, 	-∗, 4∗, 
�∗, 	�∗, �∗), 
Where,  ,∗ = �n¶�ÅA∗lÅ0∗�l6lo, .∗ = nÈ(5u�)¶�ÅA∗lÅ0∗�l6l(5u�)oÉ�ÅA∗lÅ0∗lo�È¶�ÅA∗lÅ0∗�l6loÉ ,  �-∗ = �Å0∗l©lo�(«Alol%A)©ª¦§(5u¨)l�Å0∗l©lo�¦(5u§)(5u¨) 
-∗, 

�-∗ = ¦§(5u¨)�Å0∗l©lo�(«Alol%A)©ª¦§(5u¨)l�Å0∗l©lo�¦(5u§)(5u¨) 
-∗, 	-∗ = ¦¨�Å0∗l©lo�(«Alol%A)(Ülo)È©ª¦§(5u¨)l�Å0∗l©lo�¦(5u§)(5u¨)É 
-∗, 
4∗ = Å0∗(�∗l/A∗l1A∗l¶&∗lÝ3∗)l(5u¬)«A�A∗(­lo) , 	�∗ = ®È(«0lol%0) �0∗É(þlo)(5u®) , �∗ = 5�Ý�ÅA∗lÅ0∗�lo� ��- + ©(5uª)¦§(5u¨)(«Alol%A)�Å0∗l©lo�©ª¦§(5u¨)l�Å0∗l©lo�¦(5u§)(5u¨) +Ü¦¨(«Alol%A)�Å0∗l©lo�(Ülo)È©ª¦§(5u¨)l�Å0∗l©lo�¦(5u§)(5u¨)É� 
-∗ + 5�Ý�ÅA∗lÅ0∗�lo� X�� + þ®M(«0lol%0)N(þlo)(5u®) Z  
�∗ . 

4.3.1. Local Stability of Endemic Equilibrium Point where Both TB Strains Co-exist, �� 

Theorem-9: 

The endemic equilibrium point where both TB strains co-exist 4` of the dynamical system (9)-(18) is locally asymptotically 

stable if ����(DS) > 1, ����(MDR) > 1 and �∗ < å;x Xn(ol%A){ AoÝ , n(ol%0){ 0oÝ Z. 
Proof: The Jacobian matrix of the dynamical system (9)-(18) at endemic equilibrium where both TB strains co-exist 4` is 

given by: 

·(4`) =
á
ââ
ââ
ââ
ã $5*(�-∗000(��∗000

 
0$[�-∗000��∗000

 

00$`ℎ6ℎ7����∗000

 
000$a�>0��∗00�(1 − >)

 
Q5Q[Q0̀$d0ℎ800��-

 
00000$e000 

 
000000$f(1 − ?)�?�0

 

ℎ5
ℎ[
ℎ`
ℎa00
ℎd$g0��

 
00000000$h!

 
00"�-∗000"��∗00$5V

 
æ
çç
çç
çç
è

 

Where, 
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$5 = −(((�-∗ + ��∗) + * + +), $[ = −(�-∗ + ��∗ + +), $` = −(��∗ + � + +), $a = −(��∗ + � + +), $d = −(�- + + + $-), $e = −( + +), $f = −(� + +), $g = −(�� + + + $�), $h = −(! + +), $5V = −("(�-∗ + ��∗) + +), Q5 = −(��-,∗/�∗, Q[ = −��-.∗/�∗,  Q` =  { A�∗ (.∗ + ( ,∗ + " �∗�, 

ℎ5 = − ¶{ 0&∗�∗ , ℎ[ = − { 0�∗�∗ , ℎ` = − { 0�∗ �-∗, ℎa = −  { 0�∗ �-∗, ℎd =  { 0�∗ (.∗ + ( ,∗ + �-∗ + �-∗ + " �∗�, ℎe = ��(1 − �), ℎf = �(1 − �)(1 − �) and ℎg = (1 − �)�<. 
The characteristic equation will be: 

Ä
Ä
Ä$5 − �*(�-∗000(��∗000

 
0$[ − ��-∗000��∗000

 
00$` − ���(1 − �)�(1 − �)(1 − �)����∗000

 
000$a − ��>0��∗00�(1 − >)

 
Q5Q[Q0̀$d − �0(1 − �)�-00��-

 
00000$e − �000 

 
000000$f − �(1 − ?)�?�0

 

ℎ5ℎ[ℎ`ℎa00ℎd$g − �0��

 
00000000$h − �!

 
00"�-∗000"��∗00$5V − �Ä

Ä
Ä

 = 0 

Now we apply the Gershgorin circle theorem [16] to determine the sign of the eigenvalues of the characteristic 

equation |·(4`) − �
| = 0. The matrix ·(4`) is a strictly column diagonally dominant matrix. And also all diagonal elements of ·(4`)  are negative. Hence, all eigenvalues of ·(4`)  has negative real part if  ����(DS) > 1 , ����(MDR) > 1  and  �∗ <å;x Xn(ol%A){ AoÝ , n(ol%0){ 0oÝ Z. Therefore, the endemic equilibrium point where both TB strains co-exist 4` is locally asymptotically 

stable if ����(DS) > 1, ����(MDR) > 1 and �∗ < å;x Xn(ol%A){ AoÝ , n(ol%0){ 0oÝ Z. 
4.3.2. Global Stability of Endemic Equilibrium Point where Both TB Strains Co-exist, �� 

Theorem-10: 

The endemic equilibrium point where both TB strains co-exist 4` of the system (9)-(18) is globally asymptotically stable if ����(DS) > 1, ����(MDR) > 1. 
Proof: We use a graph-theoretic method as in [15] to construct a lyapunov function. 

Define the functions: 


5 = , − ,∗ − ,∗wx &&∗, 
[ = . − .∗ − .∗wx ��∗, 

` = �- − �-∗ −�-∗wx /A/A∗, 
a = �- − �-∗ − �-∗wx 1A1A∗ 


d = 
- − 
-∗ − 
-∗wx �A�A∗, 
e = 	- − 	-∗ − 	-∗wx �A�A∗, 

f = 4 − 4∗ − 4∗wx 44∗ , 
g = 	� − 	�∗ − 	�∗wx 	�	�∗ 


h = 
� − 
�∗ − 
�∗wx �0�0∗, 
5V = � − �∗ − �∗wx 33∗ 
Where 4` = (,∗, .∗, �-∗, �-∗, 	-∗, 
-∗, 4∗, 	�∗, 
�∗, �∗ � is the endemic equilibrium 

Differentiating the function 
8 , ; = 1, … ,10 with respect to time we get: 


5Í = �1 − &∗& � ,Í , 
[Í = �1 − �∗� � <Í, 
 Í̀ = �1 − /A∗/A ��-Í , 
aÍ = �1 − 1A∗1A � �-Í , 
dÍ = �1 − �A∗�A � 
-Í , 
eÍ = �1 − �A∗�A � 	-Í , 
fÍ =�1 − B∗B � 4Í , 
gÍ = �1 − �0∗�0 � 
�Í  
hÍ = �1 − �A∗�A � 	-Í , and 
5VÍ = �1 − 3∗3 � �Í  
Substituting their derivatives using the inequality 1 − R + wxR ≤  0, for all R > 0 and the endemic equilibrium point 4`we 

have: 
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5Í ≤ (,∗�-∗ �−wx �A�A∗ + wx &∗& − &∗& + �A�A∗� + (,∗��∗ � �0�0∗ − wx &∗& − �0&�0∗&∗� =: Â5dò5d + Â5gò5g . 


[Í ≤ *,∗ ð.∗. − 2 − wx ,.∗,∗. + ,,∗ñ + .∗�-∗ ð−wx 
-
-∗ + wx .∗. − .∗. + 
-
-∗ñ + .∗��∗ ð−wx 
�
�∗ + wx .∗. − .∗. + 
�
�∗ñ = Â[5ò[5 + Â[dò[d + Â[gò[g 


 Í̀ ≤  �-∗.∗ � �A��A∗�∗ − �A�A∗ − wx ��∗�  + (,∗�-∗ � �A&&∗�A∗ − �A�A∗ − wx &&∗� + "�∗�-∗ � �A33∗�A∗ − �A�A∗ − wx 33∗� + (.∗ + (,∗ + "�∗)�-∗ � �A�A∗ −/A/A∗ + wx /A/A∗ − wx �A�A∗� + ��∗�-∗ � /A/A∗ − 1 − /A/A∗ Å0Å0∗ + Å0Å0∗� . =: Â`[ò`[ + Â`5ò`5 + Â`5Vò`5V + Â`dò`d + Â`gò`g 


aÍ ≤ ��(1 − �)�-∗ �− 1A1A∗ + wx 1A1A∗ − wx /A/A∗ + /A/A∗� + ��∗�-∗ � 1A1A∗ − 2 − wx 1A1A∗ Å0Å0∗ + Å0Å0∗�  =: Âa`òa` + Âagòag. 


dÍ ≤ �>�-∗ �− �A�A∗ + wx �A�A∗ − wx 1A1A∗ + 1A1A∗� + �(1 − �)(1 − �)�-∗ �− �A�A∗ + wx �A�A∗ − wx /A/A∗ + /A/A∗� . 

=: Âdaòda + Âd`òd` 


eÍ ≤ ( + +)	-∗ ~ �-�-∗ − wx �-�-∗ − 	-	-∗ + wx 	-∗	- �  =: Âe`òe` 


fÍ ≤ ��∗(.∗ + (,∗ + "�∗ + �-∗ + �-∗) ð 
�
�∗ −  44∗ − wx 
�
�∗ + wx 44∗ñ + ��∗.∗ ð 
�.
�∗.∗ − 
�
�∗ − wx ..∗ñ
+  (��∗,∗ ð 
�,
�∗,∗ − 
�
�∗ − wx ,,∗ñ + "��∗�∗ ð 
��
�∗�∗ − 
�
�∗ − wx ��∗ñ + ��∗�-∗ ð 
��-
�∗�-∗ − 
�
�∗ − wx �-�-∗ñ+ ��∗�-∗ ð 
��-
�∗�-∗ − 
�
�∗ − wx �-�-∗ñ + (1 − �)�-
-∗ ð 
-
-∗ − 44∗ − wx 
-
-∗ + wx 44∗ñ 

=: Âfgòfg + Âf[òf[ + Âf5òf5 + Âf`òf` + Âfaòfa + Âf5Vòf5V + Âfdòfd 


gÍ  ≤ (1 − ?)�4∗ ð 44∗ − 
�
�∗ − wx 44∗ + wx 
�
�∗ñ  =: Âgfògf 


hÍ ≤  ?�4∗ � BB∗ − �0�0∗ − wx BB∗ + wx �0�0∗� =: Âhfòhf . 


5VÍ ≤ �-
-∗ ð 
-
-∗ − wx 
-
-∗ + wx ��∗ − ��∗ñ + �(1 − >)�-∗ ð− ��∗ + wx ��∗ − wx �-�-∗ + �-�-∗ñ  +  	-∗ ð− ��∗ + wx ��∗ − wx 	-	-∗ + 	-	-∗ñ 

+"�-∗�∗ ð ��∗ − 2 − wx ��∗ 
-
-∗ + 
-
-∗ñ + ��
�∗ ð 
�
�∗ − wx 
�
�∗ + wx ��∗ − ��∗ñ + !	�∗ ð 	�	�∗ − wx 	�	�∗ + wx ��∗ − ��∗ñ
+ "��∗�∗ ð−wx ��∗ − wx 
�
�∗ − 2 + ��∗ + 
�
�∗ñ 

=: Â5Vdéò5Vdé + Â5Vaò5Va + Â5Veò5Ve + Â5Vdóò5Vdó+ Â5Vgéò5Vgé + Â5Vhò5Vh + Â5Vgóò5Vgó. 

Where, Â5d = Â`5 = (,∗�-∗
, Â5g = Âf5 =  (,∗��∗

, Â[5 = *,∗, Â[d = Â`[ = .∗�-∗, Â[g = Âf[ =  .∗��∗
, Â`5V = "�∗�-∗

, Â`d = (.∗ + (,∗ + "�∗)�-∗, Â`g = Âf` = ��∗�-∗, Âa` = ��(1 − �)�-∗, Âag = Âfa = ��∗�-∗, Âda = �>�-∗, Âd` = �(1 − �)(1 − �)�-∗, Âe` = ( + +)	-∗, Âf5V = "��∗�∗, Âfd = (1 − �)�-
-∗, Âgf = (1 − ?)�4∗, Âhf = ?�4∗, Â5Vdé = �-
-∗, Â5Va = �(1 − >)�-∗, Â5Ve =  	-∗, Â5Vdó = "�-∗�∗, Â5Vgé = ��
�∗, Â5Vh = !	�∗, Â5Vgó = "��∗�∗ and all other Â8ô = 0. 
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Along each cycle of the associated weighted digraph G(B): 

ò`d + òd` = � �A�A∗ − /A/A∗ + wx /A/A∗ − wx �A�A∗� + �− �A�A∗ + wx �A�A∗ − /A/A∗ + /A/A∗� = 0, 

ò`d + òa` + òda = � �A�A∗ − /A/A∗ + wx /A/A∗ − wx �A�A∗� + �− 1A1A∗ + wx 1A1A∗ − wx /A/A∗ + /A/A∗� + �− �A�A∗ + wx �A�A∗ − wx 1A1A∗ + 1A1A∗� = 0, 

ò`a + òa` = � �0�0∗ − BB∗ − wx �0�0∗ + wx BB∗� + � BB∗ − �0�0∗ − wx BB∗ + wx �0�0∗� = 0.  

By Proposition 1.3 of [15], there exists �8 > 0, ; = 1, … ,10 such that 
 = ∑ �8
85V8÷5  is a Lyapunov function for equations 

(9)-(18). The relations between �8’s can be derived from Theorems 3.3 and 3.4 of [15] such that: 

Âhf > 0, $l(7) = 1 implies �h = �f. Â5Ve > 0, $l(6) = 1 implies �5V = �e (é¹¡½ùlé¹¡¼lé¹¡¾lé¹¡½ûl é¹¡Àùlé¹¡Álé¹¡Àû�é¹¡¾ . 

Âgf > 0, $u(8) = 1 implies �g = {¹é¹Àl{ºéºÀl{»é»Àl{¼é¼Àl{¿é¿Àl{¹¡(é¹¡Àùlé¹¡Àû)éÀ¿  

Therefore, 
 =  �5
5 + �[
[ + �`
` + �a
a + �d
d +�e
e + +�f
f + �5V
5V + �h
h + +�5V
5V  is a Lyapunov 

function for (9)- (18). Therefore, 4`  is globally 

asymptotically stable in the interior of Ω when ����(DS) > 1 

and ����(MDR) > 1. 

5. Numerical Simulations 

We perform some numerical experimentation on the 

tuberculosis model (9)-(18). This is done by using a set of 

parameter values whose sources are mainly from Federal 

Democratic Republic of Ethiopia Ministry of Health (EMH), 

Ethiopia Demographics Profile (EDP), world health 

organization (WHO) reports and other related literatures as 

well as estimation in order to have more realistic simulation 

results. We take initial condition from the data of Ministry of 

Health of Ethiopia [17]: ,(0) = 9436405, 
-(0) = 42139 , 	-(0) = 83546 , 4(0) =
8098, 
�(0) = 774, 	�(0) = 468 and R(0) = 3597.  We 

assumed that more than half of the population (62%) belongs 

to susceptible class .(0) = 62355690  and that a big 

percentage about 33% is infected with TB in latent stage that 

is �-(0) = 3,000000, and �-(0) = 30000000, . This is 

justified from the fact that “about one third of the world’s 

population has latent TB”, as it is indicated from the 

webpage of the World Health Organization (WHO, 2017). 

5.1. Estimation of Parameters 

Table 2. Model parameter estimation. 

Descriptions Symbols Value Data Source 

Recruitment of the population Λ 3845257 [18] 

Proportions new born vaccinated � 0.49 [18], [17] 

Natural death rate + 0.0077 [18] 

the rate of inefficacy of vaccine individuals ( 0.2 [19] 

the rate of vaccine waning * 0.0667 [19] 

Probability of acquiring TB infections per contact with one active drug sensitive TB �- 0.2 [20] 

Probability of acquiring TB infections per contact with one active MDR TB �� 0.3 [21] 

Number of effective contacts susceptible or vaccinated individuals makes with infectious individuals per year. � 11 [22] 

The rate of progression of individuals from early latently infected with drug sensitive TB. � 0.5 [19] 

Death rate due to the drug sensitive strain disease $- 0.00025 [22, 23] 

Death rate due to the MDR strain disease $� 0.105 [23, 24] 

Proportion of  �- move to 	- � 0.2 [17] 

The portion of �- enter in to 
- > 0.5 [19] 

Progression rate from  �- � 0.1 [19] 

Progression rate from latency multi-drug resistant tuberculosis. � 0.55 [17] 

Proportion of individuals who do not get chance for screened at  �- and will go to  �- class. � 0.9 [19] 

The recovery rate infectious individuals drug sensitive strain, �- 0.83 [17] 

The recovery rate infectious individuals MDR strain. �� 0.498 [23, 24] 

Proportion of infectious individuals with DSTB who enters to R. � 0.18 [17] 

The portion of 4 who screened for treatment ? 0.065 [17] 

Rate of individuals move from 	- to R   0.94 [17] 

Rate of individuals move from 	� to R ! 0.88 [17] 

Acquired immunity due to previous treatment. " 0.06 [25] 

 

5.2. Numerical Simulation for the Reproduction Number 

We discussed on the relation between effective 

reproduction number and the parameters involved in it. Now 

we consider the parameters that involve in both ����(DS) and ����(MDR) and discuss on their impact on the 

transmission of DS-TB and/or MDR-TB strains. Here five 
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parameters are involve in common for both effective 

reproduction numbers ����(DS� and �����MDR�. 

Let us consider the parameter, the number of effective 

contacts c as a variable and keeping all other parameters 

constant and written the reproduction numbers as a function 

of c, �����DS���� � 0.0934�  and �����MDR���� �
0.4348� . Consider the rate of inefficacy of vaccine 

individuals ( as a variable and keeping all other parameters 

as constant, the reproduction numbers can be written as a 

function of ( : �����DS��(� � 0 . 0547( ) 1.0164  and 

�����MDR��(� � 0.2549( ) 4.7355 

In the figure 3 the lines  �����DS���� � 0.0934�  and 

�����MDR���� � 0.4348�  intersect with �����MDR� �
�����DS� � 1 intersect at the values of � � 10.7 and � � 2.3 

respectively. Thus, �����Ë.� q 1  when the contact rate, 

� q 10.7 and �����DS� @ 1 when � @ 10.7. For the value of 

2.3 q � q 10.7  only MDR-TB spread in the society. 

Whereas �����MDR� q 1  when the number of effective 

contacts, � q 2.3  and �����MDR� @ 1  when � @ 2.3 . This 

implies the TB disease spreads in the community when 

� @ 2.3 and eliminate if � q 2.3. Figure 4 shows that both 

�����DS��(�  and �����MDR��(�  are above �����DS� �
�����MDR� � 1, thus for every values of ( the both strains 

of the TB disease spread in the society. Of course the 

transmission of MDR-TB is higher than DS-TB. 

Consider the rate of vaccine waning * as a variable and 

keeping all other parameters as constant, the reproduction 

number can be written as a function of * : �����DS��*� �
V.VVdl5.Vf5[6

6lV.VVff  and �����MDR��*� � a.hg[a�6lV.VVaf�
6lV.VVff . Consider 

the proportions new born vaccinated �  as a variable and 

keeping all other parameters as constant, the reproduction 

number can be written as a function of �: �����DS���� �
1.0744 � 0.0895� and �����MDR���� � 4.9904 �
0.4159�. 

 

Figure 3. Graph of the reproduction number versus the number of effective contacts c. 

 

Figure 4. The reproduction number versus the rate of inefficacy of vaccine. 
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Figure 5. Graph of the reproduction numbers ����(Ë.) and ����(ÊË�) 
versus the rate of vaccine waning *. 

 

Figure 6. Graph of the reproduction numbers ����(Ë.) and ����(ÊË�) 
versus Proportions new born vaccinated �. 

In figure 5 the curve ����(DS� = V.VVdl5.Vf5[66lV.VVff  and the line ����(DS� = 1  intersect at * � 0.038 , then �����DS� < 1 

when * q 0.038  and �����DS� > 1  when * @ 0.038 . But 

the curve �����ÊË��(*) = a.hg[a(6lV.VVaf�6lV.VVff  is above ����(MDR� � 1. This implies the MDR-TB spreads in the 

community for every value of * . And for the value of 

* q 0.038  the DS-TB does not spread in the society. In 

figure 6 the curve �����DS���� and the line �����DS� � 1 

intersect at � � 0.8, then �����DS� q 1 when � @ 0.8 and 

�����DS� @ 1  when � q 0.8 . And �����MDR� @ 1  for all 

values of �. This shows that the MDR-TB exist always, but 

DS-TB spreads for � q 0.8. 

Consider the Proportion of latently infected drug sensitive 

TB at early stage for treatment � as a variable and keeping all 

other parameters as constant, the reproduction number can be 

written as a function of  � : �����DS���� � 1.2941�1 � �� . 

Again, consider the recovery rate infectious individuals DS-

TB strain disease �-  as a variable and keeping all other 

parameters as constant, then the reproduction number can be 

written as a function of �-: �����DS���-� � V.gd`f
«AlV.VVfhd 

 

Figure 7. Graph of the reproduction number �����Ë.�  versus the 

Proportion of latently infected DS TB at early stage for treatment �. 

 

Figure 8. Graph of the reproduction number �����Ë.� versus the parameter 

�-. 

In figure 7 the curve �����DS���� � 1.2941�1 � �� and 

the line �����DS� � 1  intersect at � � 0.22 , �����DS� q 1 

when � @ 0.22 and �����DS� @ 1 when � q 0.22. In figure 

8 the curve �����DS���-� � V.gd`f
«AlV.VVfhd  and the line 

�����DS� � 1  intersect at  �- � 0.85 , �����DS� q 1  when 

�- @ 0.85 and �����DS� @ 1 when �- q 0.85. 

The reproduction number �����MDR� can also be given as 

a function of the recovery rate infectious MDR-

TB individuals ��: keeping all other parameters as constant, 

�����MDR����� � [.h5g5
«0lV.55[f. And the reproduction number 

�����MDR� can also be given as a function of the portion of 

4 enter in to 
� , ?: keeping all other parameters as constant, 

�����MDR��ν� � 5.1225�1 � ?�. 

 

Figure 9. Graph of the reproduction number �����ÊË��  versus the 

parameter ��. 
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Figure 10. Graph of the reproduction number ����(ÊË�)  versus the 

parameter ?. 

In figure 9 the curve ����(MDR����� � [.h5g5
«0lV.55[f and the 

line �����MDR� � 1  intersect at  �� � 2.8 , �����MDR� q 1 

when �� @ 2.8and �����MDR� @ 1 when �� q 2.8. In figure 

10 the curve �����MDR��?� � 5.1225�1 � ?�  and the line 

�����MDR� � 1 intersect at ? � 0.8, �����MDR� q 1 when 

? @ 0.8 and �����MDR� @ 1 when ? q 0.8. 

5.3. Sensitivity Analysis 

We apply the normalized forward sensitivity index of the 

effective reproduction number ����  to a parameter is the 

ratio of the relative change in the variable to the relative 

change in the parameter [26]. 

If �����DS� @  �����MDR�, then we have: 

���� � åÂR°�����DS�, �����MDR�µ  � �����DS� 

� ��- ��6l�5u��o�lo¶�
�ol6� � �¦§�5u¨�©ªl¦�©lo��5u§��5u¨��

�¦lo�
�©lo� 
�«Alol%A�  . 

 Therefore, we evaluate the nonzero sensitivity indices of �����Ë.� with respect to the parameters as follows: 

Π{
3êëë���� �  Π A

3êëë���� � 1, Π�
3êëë���� �  o��¶u5�

6lolo��¶u5� q 0, Π�3êëë����  � ��o
6lol�o�¶u5� @ 0, Π%A

3êëë���� � � %A
�«Alol%A� q 0, 

Π6
3êëë���� � �o��5u¶�

�ol6�M6lolo��¶u5�N @ 0, Π¦
3êëë���� � o

¦lo @ 0, 

Π¨
3êëë���� � � ¨

5u¨ q 0,Π«A
3êëë���� � � «A

«Alol%A
q 0,  Π©

3êëë���� � � �¦§�5u¨�ªl¦�5u§��5u¨��©
�¦§�5u¨�©ªl¦�©lo��5u§��5u¨�� � ©

�©lo� �  @ 0 , Π§
3êëë���� �

§�5u¨��©ªu�©lo��
�§�5u¨�©ªl�©lo��5u§��5u¨�� q 0,  

Πª
3êëë���� � ª§©

�§©ªl�©lo��5u§�� @ 0  

If �����MDR� @  �����DS�, then we have 

���� � åÂR°�����DS�, �����MDR�µ � �����MDR� � �¶�ol�6l�5u��o�
�ol6� � { 0�5u®�­ 

�­lo�
�«0lol%0� . 

Therefore, we evaluated the nonzero sensitivity indices of �����ÊË�� with respect to the parameters as follows: 

Π{
3êëë����� � Π 0

3êëë����� � 1, Π�
3êëë����� � o��¶u5�

�6l�5u��o�lo¶� q 0 

Π�3êëë����� � o��
M6l�5u��o�l¶�N @, Π®

3êëë����� � � ®
5u® q 0, 

Π6
3êëë����� � ��o�5u¶�

�ol6�M6l�5u��olo¶�N @ 0, Π­
3êëë����� � o

�­lo� @ 0, 

Π«0
3êëë����� � � «0

�«0lol%0� q 0, Π%0
3êëë����� � � %0

�«0lol%0� q 0, 

Using the data in table 2 the resulting sensitivity indices of 

�����DS� and �����MDR� to the different parameters which 

involve in the reproduction numbers �����DS�  and 

�����MDR� respectively are shown in table 3 with the order 

from most sensitive to the least: 

Table 3. Sensitivity indices of �����ÊË�� and �����ÊË�� with respect to 

each parameter involved in �����ÊË�� and �����ÊË�� respectively. 

Parameters 
Sensitivity index 

of �������� 
Parameters 

Sensitivity index 

of ��������� 

� 1 � 1 

�- 1 �� 1 

Parameters 
Sensitivity index 

of �������� 
Parameters 

Sensitivity index 

of ��������� 

�- �0.99 �� �0.82 

� �0.93 $� �0.17 

> 0.81 ? �0.07 

� �0.25 � �0.042 

� �0.11 * 0.038 

� 0.058 � 0.014 

* 0.038 ( 0.011 

� 0.015   

( 0.011   

$- �0.0003   
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6. Discussion 

In this work we considered non-linear dynamical system to 

study the dynamics of a two strain Tuberculosis disease. The 

effective reproduction number is: ���� = � � ¶�ol(6l(5u�)o)6lo � × åÂR X A�¦§(5u¨)©ªl¦(©lo)(5u§)(5u¨)�(¦lo)(©lo)(«Alol%A) ,  0(5u®)­ (­lo)(«0lol%0)Z. Then 

the numerical value of ���� = åÂRG1.03, 4.78L = 4.78. In 

the figure 3, ����(DS) < 1 when the number of contact of 

susceptible individuals with an infectious, � < 10.7  and ����(DS) > 1  when  � > 10.7 . Moreover, ����(MDR) < 1 

when number of contact of susceptible individuals with an 

infectious, � < 2.3 and ����(MDR) > 1 when � > 2.3. Thus 

the only MDR TB spreads in the society when the value 

of  2.3 < � < 10 ; both strains spread in the society if � > 10.7  and both strains do not spread in the society 

if  � < 2.3 . Figure 4 shows that both ����(DS) > 1 and ����(MDR) > 1 for every values of (, therefore both strains 

of the TB disease spread in the society what ever the value of (  is. Ofcourse the transmision of MDR-TB is higher than 

DS-TB. 

In figure 5 shows that ����(DS) < 1 when * < 0.038 and ����(DS) > 1 when * > 0.038. But ����(MDR) > 1 for all 

values of  * . This implies the MDR-TB spreads in the 

community for every value of * . And for the value of * < 0.038 the DS-TB does not spread in the society. That is, 

if * < 0.038 the only MDRTB spreads in the community and 

boths DSTB and MDRTB spreads in the community when * > 0.038 . From figure 6 we observe that ����(DS) < 1 

when � > 0.8  and ����(DS) > 1  when � < 0.8  while, ����(MDR) > 1  for all values of  � . This shows that the 

MDR-TB spreads in the society for all values of �, but DS-

TB spreads for � < 0.8. Implies both strain spreads in the 

community if � < 0.8  and only MDRTB spreads in the 

community if  � > 0.8 . This indicates that giving BCG 

vaccine has no significant impact in the control of MDRTB; 

however we can reduce DSTB by BCG vaccine. 

From figures (3-10) and the sensitivity index of effective 

reproduction number (Table 3) we observe that the 

parameters contact rate c, the rate of inefficacy of vaccine 

individuals (, the rate of vaccine waning *, the probability 

of transmission �-  and �� , the rate of progression of 

individuals from early latently infected with drug sensitive 

TB �, the progression rate from Long latently infected DS-

TB strain � , the portion of �-  enter in to  
- , >  and the 

progression rate from latency MDR-TB  �  have positive 

contribution in the transmission of TB disease. While, the 

proportions new born vaccinated �, natural death rate +, the 

proportion of individuals who do not get chance for 

screened at  �- and will go to  �- class �, the Proportion of 

latently infected drug sensitive TB at early stage for 

treatment  � , the recovery rates infectious individuals �- 

and ��, the induced death rates $- and $�; and of the portion 

of 4  enter in to  
� , ?  have negative impact on the 

transmission of TB disease. 

From table 3 for the parameters of which the sensitivity 

index of ����(DS)  and ����(MDR)  has positive sign the 

effective reproduction number increase as those 

parameters increase and vise verse, while for those 

parameters of which sensitivity index of ����(DS)  or ����(MDR)  has negative sign then the effective 

reproduction number increase as the parameters decrease 

and vise versa. The number of effective contact of 

susceptible or vaccinated individual with an infectious 

individual of both strains c, the probability of transmission 

followed by the recovery rates infectious individuals are 

the most influential parameters in the spread and control 

of tuberculosis disease, this is because of that magnitude 

of the sensitivity indices Π{3êëë , Π A3êëë , Π«A3êëë , Π 03êëë are, 

Π«03êëë are maximum compared to others. The result of this 

study indicates that reducing the number of effective 

contact and increasing recovery rate have great role to 

control tuberculosis disease. 

7. Conclusion 

In this study we have presented and analyzed the two 

strain TB model with interventions: vaccination of newly 

born babies, screening of latently infected and treatments of 

infectious individuals for both strains of tuberculosis (drug 

sensitive and multi-drug resistance tuberculosis). We found 

that  
 
 ����(DS) = ��- � ¶�ol(6l(5u�)o)6lo � �¦§(5u¨)©ªl¦(©lo)(5u§)(5u¨)�(¦lo)(©lo)(«Alol%A)  and ����(MDR)  = ��� � ¶�ol(6l(5u�)o)6lo � (5u®)­ (­lo)(«0lol%0) 

the effective reproduction numbers of drug sensitive and 

multi-drug resistance tuberculosis respectively. And, thus ���� = åÂR°����(DS), ����(MDR)µ  is the effective 

reproduction number of the system (9)-(18). We have 

discussed on the existence of disease free equilibrium point, 

endemic equilibrium (drug-sensitive TB only endemic 

equilibrium, drug-resistance TB only endemic equilibrium 

and endemic equilibrium when both strains exist) points and 

presented the conditions that the local and global stability of 

those equilibrium points. We evaluated the numerical value 

of the reproduction numbers. Consequently, ����(DS) =1.03 and ����(MDR) = 4.78, which show that the disease of 

both strain tuberculosis spread in the community and 

MDRTB spreads vastly in the society. The sensitivity 

analysis shows that the number of effective contact of 

susceptible or vaccinated individual with an infectious 

individual of both strains is the most influential parameter to 

change the reproduction number respectively. 

8. Recommendation 

In order to decrease the spread of both strains in the 

society, we recommend that the number of contact of 

susceptible individuals, c should be less than two. The 
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second influential parameter to reduce the transmission of 

tuberculosis in Ethiopia is the recovery rate infectious 

individuals, ��. In order to control the spreads of MDR-TB it 

needs to raise the value of ��  over 2.8. The result of this 

study indicates that reducing the number of contact of 

susceptible or vaccinated individuals with an infectious and 

increasing recovery rate have great role to control 

tuberculosis disease. 
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