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Abstract: An evacuation planning problem provides a plan for existing road topology that sends maximum number of 
evacuees from risk zone to the safe destination in minimum time period during disasters. The problems with different road 
network attributes have been studied, and solutions have been proposed in literature. Evacuation planning problems with 
network contraflow approach, reversing the direction of traffic flow on lanes, with the same transit time on anti-parallel arcs have 
also been extensively studied. The approach, due to its lane-direction reversal property, can be taken as a potential remedy to 
mitigate congestion and reduce casualties during emergencies. In this paper, we propose a mathematical optimization contraflow 
model for the evacuation problem with the case where there may exist different transit time on anti-parallel arcs. We also propose 
analytical solutions to a few variants of problems, such as maximum dynamic contraflow problem and earliest arrival contraflow 
problem in which arc reversal capability is allowed only once at time zero. We extend the solution to solve the problems with 
continuous time settings by applying the natural relation between discrete time flows and continuous time flows. The solution 
procedures are based on application of temporally repeated flows (TRFs) on modified network, and they solve the problems 
optimally in strongly polynomial time. 
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1. Introduction 

An evacuation planning problem, important notion during 
the response phase of disaster management, attempts to find 
an optimal evacuation plan with a realistic flow model where 
each evacuee is supposed to be evacuated in a minimal time 
period from a risky site (source) to a safe site (sink). An 
efficient evacuation plan minimizes human casualties and 
their property during natural and human-created disasters, 
and also applicable in mitigation of rush-hour traffic in the 
crowded urban area. 

The reversibility of direction of traffic flow in one or more 
lanes of roadways for fixed time period is termed as 
contraflow. The contraflow approach reconfigures the 
network identifying ideal direction and reallocating available 
capacity for each arc to improve the flow egress time and/or 
improve the number of flow units from source to destination. 
The approach, due to its lane-direction reversal property, can 
be taken as a potential remedy to mitigate congestion during 

emergencies by increasing outbound evacuation route 
capacity. It significantly reduces the total evacuation time 
and/or increase the number of evacuees sent from risk zone 
to safety. Studies show that reversing one lane of a four-lane 
dual highway increases the evacuation road capacity by 
approximately 30% and reversing all the inbound lanes, it 
increases by 67% [1]. 

Despite the long history of studies of evacuation problems 
with contraflow approach, there is limited implementation in 
real emergency evacuations due to difficulty in using 
commonly employed methods to duplicate traffic conditions 
of real contraflow lane during an emergency [1]. However, 
they have been adapted for evacuating some major 
metropolitan regions threatened by disasters. It was first 
applied during Hurricane Floyd in the United States in 1999 
with mixed, though overall positive, results [2]. Contraflow 
was also implemented during hurricanes Katrina and Rita in 
the United States in 2005. However, it was criticized as 
unplanned contraflow orders and as failure to use contraflow 
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lanes [3]. Contraflow approach is primarily important for 
emergency evacuations, nonetheless, its applications are not 
limited to these. This is commonly used for accommodating 
directionally imbalanced traffic associated with daily 
commuter in big cities as well as consequences due to 
religious gathering, concerts, tournaments, etc. 

Maximum dynamic flow problem that sends the maximum 
amount of flow from the source to the sink within the given 
time horizon was due to Ford and Fulkerson [4]. Various 
applications of this problem including evacuation planning 
problems are considered in the literature, e.g., [5-7]. 
Evacuation problems that allow evacuees to be held at 
temporary shelters at intermediate spots have also been 
studied in [8-10]. 

 The first mathematical optimization model for contraflow 
problem is due to Rebennack et al. [11]. They have 
investigated analytical solution of maximum contraflow 
problem with polynomial time complexity for both static and 
dynamic networks. Their solution idea is based on 
transformation of given network into one at which the 
existing algorithms are applicable. There is extensive study 
of dynamic network flow problems with continuous time 
setting, e.g., [12-17]. The continuous time dynamic network 
contraflow problems have been considered in [18] and [19]. 
The earliest arrival flow (EAF) problem that ask to maximize 
flow into the sink at each time points within the time horizon 
have also been considered widely in the literature, e.g., 
[20-25]. The EAF problem for two terminal series parallel 
(TTSP) network without and with contraflow approach have 
been studied and proposed polynomial time solutions in [26] 
and [27], respectively. Contraflow approach has been 
incorporated in network flow model to study facility location 
problem in [28] and the notion of abstract flow has been 
applied to network contraflow problems in [29]. The partial 
contraflow approach over the abstract network setting has 
been introduced in [30]. 

Time parameter plays a vital role in designing evacuation 
planning models. Therefore, it is important to be careful 
about its nature: discrete or continuous, adapted in the model. 
Optimization contraflow models developed so far are based 
on equal transit time settings on anti-parallel arcs and these 
models do not allow multiple arcs of different transit time. 
We call the two directed arcs ‘anti-parallel' if they join the 
same pair of nodes, but in opposite directions. It is crucial, in 
case of uneven road architecture, for example, to take 
contraflow models on networks with not necessarily equal 
transit time on anti-parallel arcs into account for preparing 
evacuation tasks. 

 In this paper, we propose mathematical optimization 
contraflow model with assumption where the transit time on 
anti-parallel arcs may have different values. Discrete as well 
as continuous aspect of transit time are considered in the 
model, whereas capacities and transit time on arc are time 
independent and behave symmetrically during the reversal of 
direction of arcs. 

Remaining part of the paper is organized as follows. 
Mathematical formulation of the contraflow problems are 

given in Section 2. Section 3 contains solution of maximum 
dynamic contraflow problem with discrete time setting and 
with continuous time setting in Subsection 3.1 and 3.2, 
respectively, and that of earliest arrival contraflow problem 
in Subsection 3.3. Section 4 concludes the paper. 

2. Problem Formulation 

Consider an evacuation network � � ��, �, c�e	, τ�e	, �	 
where � is the set of nodes � denoting the crossing of routes 
from dangerous place, the source 
, to safer place, the sink � 
and � is the set of route segments, arc �	 � ��, �	 joining 
any two different nodes �, �	 ∈ 	� . Let �:	�	 → 	���  be a 
capacity function denoting the upper bound for flow units to 
pass the arc at a time slot and �:	�	 → 	��� be the transit time 
function denoting the time required for a flow unit to travel the 
arc. Moreover, we assume that the network �  with not 
necessarily equal transit time on anti-parallel arcs. However, 
the transit time behave symmetrically during contraflow 
process. The total evacuation time period is denoted by � and 
we call it time horizon. An evacuation network has been 
depicted in Figure 1. 

 

Figure 1. An evacuation network N with source node 
 and sink node �. 

First and second numbers next to each arc are capacities and transit time, 

respectively. 

The flow of evacuees, say �, on the network � defined as 
�:	� �	 �0, �	 	→ 	���  satisfies the following conditions: 
Flow units travelling along arc �  cannot exceed the arc 
capacity ���	 for any time within given time horizon �. That 
is, 

0  ���, !	  	c�e		∀	�	 ∈ �	and ∀	! ∈ �0, �	.     (1) 

Flow units that enter into node �  for all �	 ∈ 	�\%
, �	& 
must exit from it within given time horizon. That is, 

∑ ( ���, !	�!)*+�,	
�,∈-.�/	 � ∑ ( ���, !	�!)

� ,,∈-0�/	   

	∀	�	 ∈ �\%
, �&.               (2) 

where 1*��	 and 12��	 denote for the set of arcs entering 
into the node � and leaving from it, respectively. 

A dynamic 
 3 � -flow on �  that satisfies capacity 
constraints (1) is a feasible 
 3 � -flow. For a dynamic 
network N � �V, E, c�e	, τ�e	, 
, �, �	 , the objective of 
maximum dynamic 
 3 � -contraflow problem with 
continuous time setting is to maximize a net feasible 



232 Phanindra Prasad Bhandari and Shree Ram Khadka: Evacuation Contraflow Problems with Not Necessarily  
Equal Transit Time on Anti-parallel Arcs 

continuous dynamic flow, say �7 , from 
  to �  within the 
given time horizon �, if the direction of the arcs on �	can be 
reversed. The net flow �7 is given by 

89 ≔	 ; <���, !	�!
)

�,∈-0�=	
− ; <���, !	�!

)

�,∈-.�=	
 

=	∑ ( ���, !	�!)
>?�,∈-.�@	 − ∑ ( ���, !	�!)

>?�,∈2�@	   (3) 

If one wishes to send packets of flow units at discrete time 
points into the arcs instead of sending flow at continuous flow 
rates, the time horizon � is to be discretized into the time 
steps {0,1, … , �}. In discrete time flow model, the flow units 
sent into an arc � = ��, �	 at time ! totally reach the target 
node � at time ! + τ�e	, for �:	�	 → 	���. In discrete time 
setting, the flow function � defined as �:	� × {0, 1, … , �} 	→
	��� satisfies the capacity constraint in the form: 

0 ≤ ���, !	 ≤ 	c�e		∀	�	 ∈ �	&	∀	! ∈ {0,1, … , �}     (4) 

and the flow conservation constraint in the form: 

∑ ∑ ���, !	)*+�,	
>?�,∈-.�/	 = ∑ ∑ ���, !	)>?�,∈-0�/	  (5) 

A dynamic 
 − �-flow satisfying capacity constraints (4) is 
a feasible 
 − �-flow for discrete time setting. For a dynamic 
network � and �	being discretized, the maximum dynamic 

 − � contraflow problem maximizes the net feasible discrete 
dynamic flow, say 8@ , from 
 to �  within the given time 
horizon �, if the direction of the arcs on � can be reversed. 
The net flow 8@ is given by 

8E ≔ ; ; ���, !	)
>?�,∈-0�=	

− ; ; ���, !	)
>?�,∈-.�=	

 

= ∑ ∑ ���, !	)>?�,∈-.�@	 −∑ ∑ ���	!	)>?�,∈-0�@	 . (6) 

A maximum dynamic 
 − � -contraflow problem is also 
known as a maximum dynamic contraflow (MDCF) problem 
for single-source-single-sink network. Obviously, the flow 
value before and after the time horizon � is zero and all flow 
units leave the network within it in both discrete and 
continuous cases. 

For given network � = ��, �, c�e	, τ�e	, s, d, �	, earliest 

arrival contraflow (EACF) problem, if the direction of the arcs 
on � are allowed to reverse, maximizes the feasible net flow 
from 
 to � at each time points θ ∈ [0, T	. 

3. Solution Discussion 

Authors in [11] studied maximum dynamic contraflow 
problem with equal transit time on anti-parallel arcs. Their 
model is with discrete time setting and arc reversal capability 
has been allowed only once at time zero. In this section, we 
consider maximum dynamic contraflow problems on dynamic 
networks in which there may be unequal transit time on 
anti-parallel arcs with discrete as well as continuous time 
settings in which arc reversal capability is allowed only once 
at time zero. We also discuss the solution procedure for 

earliest arrival contraflow problem with these settings for two 
terminal series parallel (TTSP) network. 

3.1. Maximum Dynamic Contraflow with Discrete Time 

Setting 

Consider the discrete time maximum dynamic contraflow 
(DT-MDCF) problem on network 
N = �V, E, c�e	, τ�e	, 
, �, �	  with not necessarily equal 
transit time on anti-parallel arcs and with integer inputs. In the 
following, we propose a solution procedure to this problem 
when the arc reversibility is allowed only once at time zero. 

Algorithm 1: Algorithm DT-MDCF 

1. Given network N = �V, E, c�e	, τ�e	, 
, �, �	  with not 
necessarily equal transit time on anti-parallel arcs and 
with integer inputs. 

2. Transform network �  into 
�2 = ��2, 	�2, c�e2	, τ�e2	, 
, �, �	  where �2 = � ∪
	�K such that �K = {��LLLLLM: ��, �	 ∈ �}  and �2 =
{��, ��LLLLLM	, ���LLLLLM, �	: �, �	 ∈ �, ��LLLLLM 	 ∈ �K	&	��, �	 ∈ �}  
with capacities ���, ��LLLLLM	 = ���,�	 , ����LLLLLM, �	 = ∞ 
and transit time ���, ��LLLLLM	 = ���, �	, ����LLLLLM, �	 = 0. 

3. Transform network �2  into its auxiliary network �2O  
as in [11]. 

4. Compute the discrete dynamic, temporally repeated flow 
on network NP for time horizon T. 

5. Perform the flow decomposition into chain and cycle 
flows of the maximum flow obtained from step-4 and 
remove all cycle flows. 

6. Arc eQL 	 ∈ E is reversed if and only if the flow along arc 
eLR 	 ∈ E	is greater than c�e	 or if there is non-negative 
flow along arc e ∉ E. 

7. Get discrete time maximum dynamic contraflow on � 
for time horizon �. 

The procedure (cf. Algorithm 1) is based on the network 
transformation. In contrast to the case of equal transit time on 
the arcs, addition of capacities of anti-parallel arcs, while 
constructing the auxiliary network, is no longer possible in the 
case of unequal transit time. We propose an alternative, a more 
general, way of constructing the auxiliary network for the 
latter case. Network 	�  with unequal transit time and 
capacities on the arcs is transformed into new network by 
introducing an artificial node for each arc that separates it into 
two different arcs. Each arc on � is split into two arcs: real 
arc and artificial arc, in the auxiliary network �2. Artificial 
arcs have infinite capacities and zero transit time, whereas the 
real arcs have the original arc capacities and transit time. We 
denote artificial node that splits arc ��, �	 ∈ � by ��LLLLLM, see 
Figure 2. Then the solution procedures that solves the MDCF 
problem with equal transit time on anti-parallel arcs, given in 
[11], is applicable on transformed network �2 . Their 
algorithm is based on reduction of given network � into its 
auxiliary network �P. We denote eLR ∈ � for an arc �v, w	 in 
which the flow unit is sent from the node � to the node � 
and eQL ∈ � for an arc �w, v	 in which the flow unit is sent 
from the node �  to the node �  for all v,w	 ∈ V . 
Replacement of eLR	by eQL  is known as the arc reversal. For 
network � with equal transit time on anti-parallel arcs, its 
auxiliary network is NP = �V, �V, c��̃	, τ��̃	, s, d, T	  where 
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EP � 	 %eX � eLR	or	eQL	&  with c��̃	 � ��eLR	 C c�eQL	 , and τ��̃	 �
���		 if 	e ∈ E	 and 	τ��̃	 � τ�eQL	  otherwise. Any known 
technique can be applied to solve the maximum dynamic flow 
problem on NP, which ultimately, solves the original maximum 
dynamic flow problem with contraflow approach. 

 

Figure 2. Transformed network �2 of the network N depicted in Figure 1. 

An optimal solution to minimum cost circulation (MCC) 
problem can be turned into a maximal discrete dynamic flow 
using the notion of temporally repeated flows (TRFs), [4]. The 
TRF is obtained by sending as much flow as possible along 
each path from source to sink at time zero and continue on 
them as long as there is enough time left within time horizon 
� to arrive at the sink �. To set the MCC problem on �, 
interpret the transit time ���	 as cost coefficients for each arc 
� ∈ �. Also, it is desired to maximize dynamic flow on � so 
that the cost of circulation is minimum and that all flow arrives 
at the sink within time �. Thus, it is required to model time 
horizon � in the solution techniques of MCC problem to be 
allowed to transfer the results of this problem to maximum 
dynamic flow problem. For this, an additional arc ��, 
	 from 
the sink � to the source 
 with sufficient capacity and transit 
time – �� C 1	, is inserted on original network �. 

We assign infinite capacity to the artificial arc in the 
transformed network �2. However, flow along it is regulated 
by its adjacent real arc with capacity equal to that of the arc 
before it was split. Also, being zero transit time on this arc, the 
optimal MDCF computed on �2  is not different with the 
optimal MDCF on original network � . The MDCF 
computation idea of [11] is applicable on �2  that gives 
optimal solution and runs in strongly polynomial time. The 
order of time complexity of the algorithm is not affected by 
the increment of the size of the transformed network. 
Moreover, network transformation process in step 2 can be 
accomplished in linear time. Thus, for network N �
�V, E, c�e	, τ�e	, 
, �, �	  with not necessarily equal transit 
time on anti-parallel arcs and with integer inputs, Algorithm 1 
solves discrete time maximum dynamic contraflow problem 
optimally in polynomial time, if the direction of the arcs are 
allowed to reverse only once at time zero. 

Applying Algorithm 1 for the evacuation network � 
depicted in Figure 1. for time horizon � � 10, the maximum 
dynamic contraflow with discrete time setting is of value 52, 
whereas the maximum dynamic flow without contraflow is of 
value 30. 

3.2. Maximum Dynamic Contraflow with Continuous Time 

Setting 

Notion of natural transformation is helpful to generalize a 
discrete dynamic flow on a network 
N � �V, E, c�e	, τ�e	, 
, �, �	 as a continuous dynamic flow 
[15]. The notion states that the amount of flow that arrives at 
node �  through arc � � ��, �	 ∈ �  at time step !	 in 
discrete time setting is equal to the amount of flow arriving at 
�  through arc � � ��, �	  during unit interval of time 
�!, ! C 1	 , i.e., 	�@��, !	: � �7��, �!, ! C 1		  for all ! ∈
%0, 1, . . . , � 3 1& . Here, capacity constraints for continuous 
dynamic flow �7 are obviously obeyed, since �@��, !	  c�e	 
implies �7��, �!, ! C 1		  c�e	  for all time points in the 
interval �!, ! C 1	. This transformation is a bidirectional, if � 
and all transit time are integral [25]. We propose a solution 
procedure based on this notion for continuous time maximum 
dynamic contraflow (CT-MDCF) problem modeled on 
network �  with not necessarily equal transit time on 
anti-parallel arcs and with integer inputs, if the direction of the 
arcs are allowed to reverse only once at time zero. The 
procedure has been summarized in Algorithm 2. 

Algorithm 2: Algorithm CT-MDCF 

1. Given network N � �V, E, c�e	, τ�e	, 
, �, �	  with not 
necessarily equal transit time on anti-parallel arcs and 
with integer inputs. 

2. Transform network � into �2 as in Algorithm 1. 
3. Transform network �2  into its auxiliary network �2O  

as in [11]. 
4. Compute the discrete dynamic, temporally repeated flow 

on network NP for time horizon T 3 1. 
5. Transform the discrete dynamic flow into continuous 

dynamic flow using the natural transformation 
f]�e, θ	 ≔ f^�e, �θ, θ C 1		 for all θ	 ∈ %0, 1,⋯ , T 3 1&. 

6. Perform the flow decomposition into chain and cycle 
flows of the maximum flow obtained from step 4 and 
remove all cycle flows. 

7. Arc eQL 	 ∈ E is reversed if and only if the flow along arc 
eLR 	 ∈ E	is greater than c�e	 or if there is non-negative 
flow along arc e ∉ E. 

8. Get continuous time maximum dynamic contraflow on 
� for time horizon �. 

Only the step 5 is additional effort in Algorithm 2 while 
comparing it with Algorithm 1. Since the transformation of 
�� 3 1	-horizon discrete time maximum dynamic flow yields 
a �-horizon continuous time maximum dynamic flow [15], 
the time complexity of finding a temporally repeated 
continuous flow is same to that in discrete case. Thus, for 
network N � �V, E, c�e	, τ�e	, 
, �, �	  with not necessarily 
equal transit time on anti-parallel arcs and with integer inputs, 
Algorithm 2 solves continuous time maximum dynamic 
contraflow problem optimally in polynomial time, if the 
direction of the arcs are allowed to reverse only once at time 
zero. 

Applying Algorithm 2 for the evacuation network � given 
in Figure 1. for time horizon � � 10, the maximum dynamic 
contraflow with continuous time setting is of value 45, 
whereas the maximum dynamic flow without contraflow is of 
value 26. 
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3.3. Earliest Arrival Contraflow on TTSP Network 

Let N = �V, E, c�e	, τ�e	, 
, �, �	  be a network with not 
necessarily equal transit time on anti-parallel arcs and with 
integer inputs. The discrete time earliest arrival contraflow 
(DT-EACF) problem, if the direction of the arcs are allowed to 
reverse, maximizes the feasible net flow from 
 to � at each 
time steps θ ∈ {0, 1, . . . , T}. In the following we propose an 
efficient solution procedure for DT-EACF problem modeled 
on a special class of network known as two terminal 
series-parallel (TTSP) network �. A TTSP network � is a 
network with a single source 
 and a single sink � which has 
a single arc �
, �	 together with source 
 and sink � or is 
obtained from two series parallel networks �` and �a by one 
of the following two operations: 
(i) Parallel Composition: Merge source nodes 
` of �` and 

a  of �a  to form the source 
  of �  and merge sink 
nodes �` of �` and �a of �a to form the sink � of �. 

(ii) Series Composition: Merge the sink node �` of �` with 
the source node 
a of �a. 

We apply minimum cost flow algorithm of [26] to solve the 
DT-EACF problem for TTSP network. The algorithm solves 
maximum dynamic flow problem using a temporally repeated 
flow over the time horizon �. In fact, this maximum dynamic 
flow has the earliest arrival property [26]. We claim that two 
terminal series parallel network � , after transforming into 
network �2, remains two terminal series parallel network. 
That is, the following algorithm solves the earliest arrival 
contraflow problem with discrete time setting, if the direction 
of the arcs are allowed to reverse only once at time zero. 
Moreover, the time complexity of Algorithm 3 is dominated 
by the polynomial time complexity of algorithm in [26]. 

Algorithm 3: Algorithm DT-EACF 

1. Given TTSP network N = �V, E, c�e	, τ�e	, 
, �, �	 with 
not necessarily equal transit time on anti-parallel arcs 
and with integer inputs. 

2. Transform network � into �2 as in Algorithm 1. 
3. Transform network �2  into its auxiliary network �2O  

as in [11]. 
4. Solve earliest arrival flow problem on �2O  by using the 

algorithm in [26]. 
5. Arc �Q is reversed if and only if the flow along arc �R is 

greater than c�e	 or if there is non-negative flow along 
arc � ∉ �. 

6. Get discrete time earliest arrival contraflow on � for 
time horizon �. 

Together with the notion of natural transformation [15], 
Algorithm 3 solves continuous time earliest arrival contraflow 
problem on �  when the arc reversal capability is allowed 
only once at time zero. Also, the solution to the problem is 
optimal and can be found in strongly polynomial time. 

4. Conclusion 

The importance and applicability of the idea of network 
contraflow especially in evacuation planning problem has 
been increasing due to its lane direction reversal capability. In 
the case of unequal to-and-fro transit time of oppositely 
directed lanes of a road, it is crucial to take network 

contraflow models with not necessarily equal transit time on 
anti-parallel arcs into account for preparing evacuation tasks. 
In this paper, we gave a network flow based evacuation model, 
an optimization model, capturing this situation. We studied 
the maximum dynamic contraflow problem and earliest 
arrival contraflow problem, and proposed strongly polynomial 
time algorithms as solution procedures, if the arcs are flipped 
only once at time zero, for discrete as well as continuous time 
setting. We also discussed about optimality and efficiency of 
the proposed algorithms, and present numerical examples that 
compares the optimal flow value with and without contraflow 
approach. 

Applying the proposed model for real data-set and 
examine the performance of solution technique would 
enhance the scope of this work. Studying contraflow 
evacuation planning problems with other variants such as 
abstract contraflow, partial contraflow, lexicographically 
dynamic contraflows, etc., within the proposed model 
framework, are also crucial. Moreover, consideration of 
contraflow evacuation planning problems addressing the 
situation where multiple parallel lanes with different 
transit time exist on road topology would be further 
research work. 
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