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Abstract: Pullback dynamics of nonautonomous dynamical systems has been considerably developed. However, it is still a
tough job to study forward dynamics of nonautonomous dynamical systems, since forward attractors were only obtained in some
particular cases. In the paper, under some reasonable conditions, it is shown that closing to a local pullback attractor, there is an
approximate forward attractor. Specifically, let φ be a cocycle semiflow on a Banach space X with driving system θ on a base
space P . Suppose that the base space P is compact and φ is uniformly asymptotically compact. Let A(·) be a local pullback
attractor with

⋃
p∈P A(p) being compact. We prove that every ε-extended neighborhood Aε(·) of A(·) will forward attract every

bounded set B(·) that is pullback attracted by A(·). We then call Aε(·) an approximate forward attractor of φ.
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1. Introduction
The dynamics of nonautonomous dynamical systems is very

complicated. As matter of fact, one can define two different
types of attractors for nonautonomous dynamical systems:
pullback attractors and forward attractors, corresponding to
pullback attraction and forward attraction, respectively. A
(local) pullback (resp. forward) attractor we talk about here is
a compact, invariant set that pullback (resp. forward) attracts
a neighborhood of itself. The existence of the former one
can be obtained under quite standard hypotheses which are
similar to those to guarantee the existence of attractors for
autonomous systems; see e.g. [4, 9, 17]. However, the
notion of forward attractors sounds to be more suitable to
describe how nonautonomous systems evolve in the future.
Unfortunately, the existence of forward attractors remains
open problems except in some particular nonautonomous cases
such as the asymptotically autonomous and the periodic ones,
and are still under investigations; see e.g. Cheban et. al [2],
Wang et. al [18]), Kloeden [12] and Carvalho et. al [15,
pp. 595]. Therefore, it is still a tough job to study forward
dynamics of nonautonomous systems.

Our framework in the paper is to treat a nonautonomous
system as a cocycle semiflow over a suitable base space rather

than a process. Specifically, let φ be a cocycle semiflow on a
Banach space X with driving system θ on a base space P .
One of the advantage of the cocycle semiflows framework
is that in many cases the base spaces are compact, while
the default base space R (real number set) for processes is
unbounded. Based on the compactness of the base spaces,
the pullback attraction of cocycle semiflow and (forward)
attraction of the associated autonomous semiflow is shown to
be equivalent. This allows us to study the forward dynamics of
nonautonomous systems through their associated autonomous
semiflows. Suppose throughout the paper that the base space P
is compact. If φ is uniformly asymptotically compact and has
a global pullback attractor A (·), it was shown in Ju et al. [10]
that every ε-extended neighborhood A ε(·) (ε > 0) of A (·),
called a global approximate forward attractor, has forward
attraction. It will forward attract any bounded set B in the
phase space X , that is, limt→∞HX (φ(t, p)B,A ε(θtp)) =
0, where HX(·, ·) denotes the Hausdorff semidistance in
X . In this paper, we extend the result in [10] to local
case and get local approximate forward attractors. In fact,
utilizing a very different method, we obtain a stronger result,
obtaining approximate forward attracting sets associated with
pullback attracting sets. Specifically, suppose K(·) and
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B(·) are two nonautonomous sets with
⋃
p∈P K(p) being

compact. IfK(·) pullback attractsB(·), then every ε-extended
neighborhood Kε(·) of K(·) will forward attract B(·). If
K(·) is a local pullback attractor, then Kε(·) is called a local
approximate forward attractors. Then, in some cases, a local
pullback attractor can illustrate the forward dynamics around
itself clearly. Other recent works on forward dynamics of
nonautonomous systems without compact base spaces can be
found in [6, 11, 13].

This paper is organized as follows. In Section 2 we present
some basic notions and results on nonautonomous systems. In
Section 3, under some general assumptions, we obtain forward
attracting sets near pullback attracting sets of nonautonomous
systems. We illustrate the main result with an example in
Section 4.

2. Preliminaries

In this section we introduce some basic definitions and
notions.

Let X be a complete metric space with metric d(·, ·). Given
M ⊂ X , we denote M , intM , ∂M and M c the closure,
interior, boundary and complement ofM ofX , respectively. A
set U ⊂ X is called a neighborhood ofM ⊂ X , ifM ⊂ intU .

The Hausdorff semidistance is defined as

HX(M,N) = sup
x∈M

d(x,N), ∀M,N ⊂ X.

The ε-neighborhood of K in X is defined as

Kε = {x ∈ X|d(x,K) < ε}.

A nonautonomous system consists of a “base flow” and a
“cocycle semiflow” that is in some sense driven by the base
flow.

A base flow {φt}t∈R is a group of continuous
transformations from a metric space P into itself such that

1) θ0 = idP ,
2) θt ◦ θs = θt+s for all t, s ∈ R,
3) θtP = P for all t ∈ R.

Definition 2.1. A cocycle semiflow φ on the phase space
X over θ is a continuous mapping φ : R+ × P × X → X
satisfying

1) φ(0, p, x) = x,
2) φ(t+ s, p, x) = φ(t, θsp, φ(s, p, x)) (cocycle property).

We usually denote φ(t, p)x := φ(t, p, x). Then
{φ(t, p)}t≥0, p∈P can be viewed as a family of continuous
mappings on X .

A nonautonomous set B(·) in X is a family of subsets of X
indexed by p ∈ P ,

B(·) = {B(p) : p ∈ P}.

Given a nonautonomous set B(·), we call B(·) compact in
X if for each p ∈ P , the set B(p) is compact in X , and call
B(·) forward invariant (resp. invariant) under φ if for each

p ∈ P ,

φ(t, p)B(p) ⊂ B(θtp), t ≥ 0

(resp. φ(t, p)B(p) = B(θtp), t ≥ 0).

A nonautonomous setU(·) is called a neighborhood ofB(·),
if B(p) ⊂ intU(p) for each p ∈ P .

A nonautonomous set K(·) is said to pullback (resp.
forward) attracts another nonautonomous set B(·) under φ if
for each p ∈ P ,

limt→∞HX(φ(t, θ−tp)B(θ−tp),K(p)) = 0,

(resp. limt→∞HX(φ(t, p)B(p),K(θtp)) = 0).

Definition 2.2. A nonautonomous set A (·) is called a global
pullback (resp. forward) attractor of φ if it is compact,
invariant and pullback (resp. forward) attracts each bounded
set B ⊂ X under φ.

A nonautonomous setA(·) is called a (local) pullback (resp.
forward) attractor of φ if it is compact, invariant and pullback
(resp. forward) attracts one of neighborhood U(·) of itself
under φ.

Remark 2.1. It is clear that a global attractor A (·) will
attract each neighborhood U ⊂ X of itself. However, U(p)
(the neighborhood of a local attractor A(·)) varies in p ∈
P . Therefore the definition of local attractors is a nontrivial
generalization of that of global attractors.

Definition 2.3. Given a nonautonomous set B(·), then the
omega-limit set ω(B)(·) is defined to be

ω(B)(p) =
⋂
T≥0

⋃
t≥T

φ(t, θ−tp)B(θ−tp), p ∈ P.

Let φ be a given cocycle semiflow onX with driving system
θ on base space P , and let Φ := {Φ(t)}t≥0 be the skew
product semiflow on Y := P ×X , given by

Φ(t)(p, x) = (θtp, φ(t, p)x), t ≥ 0.

Denote by B ⊂ Y the set given by

B =
⋃
p∈P

(
{p} ×B(p)

)
.

The omega-limit set ω(B) of B through Φ is defined to be

ω(B) =
⋂
T≥0

⋃
t≥T

Φ(t)B.

We say B is positively invariant (resp. invariant ) under Φ, if

Φ(t)B ⊂ B, t ≥ 0(resp. Φ(t)B = B, t ≥ 0).

It is clear that B(·) is forward invariant (resp. invariant)
under φ if and only if B is positively invariant (resp. invariant)
under Φ.

Proposition 2.1. [8] Suppose K(·) and B(·) are two
nonautonomous sets with K(·) attracting B(·), and K(·) is



American Journal of Applied Mathematics 2020; 8(5): 278-283 280

compact, then ω(B)(·) ⊂ K(·) is nonvoid invariant and
compact, moreover ω(B)(·) pullback attracts B(·).

As a special case of the above result, we have
Proposition 2.2. Assume K attracts B through Φ with K ⊂

Y being compact. Then ω(B) ⊂ K is nonvoid invariant and
compact, moreover ω(B) attracts B.

3. Local Approximate Forward
Attractors of Nonautonomous
Dynamical Systems

3.1. Equivalence Between Two Types of Attraction

Let (φ, θ)X,P be a nonautonomous system, and let Φ be
the skew-product flow associated with φ. We first study
the relationship between the pullback attraction of φ and the
attraction of Φ. More specifically, we have

Theorem 3.1. Suppose P is compact. Let K(·) and B(·)
be two nonautonomous sets with KP :=

⋃
p∈P K(p) being

compact. Then K(·) pullback attracts B(·) through φ if and
only if K attracts B through Φ.

Remark 3.1. In the special case when K(·) is a global
pullback attractor of φ, the same results were obtained in
Theorem 15.7 and Theorem 15.8 of [7].

Proof of Theorem 3.1. Necessity: By the compactness of
P , one finds that

lim
t→∞

HY (Φ(t)B, P ×KP )

= lim
t→∞

HX (φ(t, p)B(p),KP )

≤ lim
t→∞

sup
p∈P

HX (φ(t, p)B(p),KP )

= lim
t→∞

sup
p∈P

HX (φ(t, θ−tp)B(θ−tp),KP ) = 0.

This means the compact set P ×KP attracts B through Φ.
Therefore the omega-limit set ω(B) of B exists and attracts B.

In the following, we prove ω(B) ⊂ K, which completes the
necessity.

For this purpose, define a nonautonomous set B̃(·) as
follows

B̃(p) :=
⋃
s≥0

φ(s, θ−sp)B(θ−sp), p ∈ P.

It is clear that B(·) ⊂ B̃(·). We first say B̃(·) is forward invariant. Indeed, for any t ≥ 0 and p ∈ P ,

φ(t, p)B̃(p) = φ(t, p)
⋃
s≥0

φ(s, θ−sp)B(θ−sp) ⊂
⋃
s≥0

φ(t, p) ◦ φ(s, θ−sp)B(θ−sp)

=
⋃
s≥0

φ(t+ s, θ−(t+s) ◦ θtp)B(θ−(t+s) ◦ θtp) ⊂
⋃
s≥0

φ(s, θ−s ◦ θtp)B(θ−s ◦ θtp) = B̃(θtp).
(1)

So B̃(·) is forward invariant, which implies the omega-limit set ω(B̃)(·) of B̃(·) is the maximal invariant set in B̃(·).
Furthermore, for any p ∈ P ,

ω(B̃)(p) =
⋂
τ≥0

⋃
t≥τ

φ(t, θ−tp)B̃(θ−tp) =
⋂
τ≥0

⋃
t≥τ

φ(t, θ−tp)
⋃
s≥0

φ(s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂
τ≥0

⋃
t≥τ

φ(t, θ−tp)
⋃
s≥0

φ(s, θ−(s+t)p)B(θ−(s+t)p) =
⋂
τ≥0

⋃
t≥τ

⋃
s≥0

φ(t, θ−tp) ◦ φ(s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂
τ≥0

⋃
t≥τ

⋃
s≥0

φ(t+ s, θ−(s+t)p)B(θ−(s+t)p) =
⋂
τ≥0

⋃
t≥τ

φ(t, θ−tp)B(θ−tp) = ω(B)(p),

where the third “=” holds since for each fixed t ≥ 0 and p ∈ P , φ(t, θ−tp) is a continuous map on X . It follows that
ω(B)(·) is the maximal forward invariant set in B̃(·). Therefore C :=

⋃
p∈P

(
{p} × ω(B)(p)

)
is the maximal invariant set in

B̃ :=
⋃
p∈P

(
{p} × B̃(p)

)
. By the forward invariance of B̃(·),

φ(t)B̃ = φ(t)
⋃
p∈P

(
{p} × B̃(p)

)
⊂
⋃
p∈P

φ(t)
(
{p} × B̃(p)

)
=
⋃
p∈P

(
{θtp} × φ(t, p)B̃(p)

)
⊂ (by (1)) ⊂

⋃
p∈P

(
{θtp} × B̃(θtp)

)
= B̃, t ≥ 0,
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i.e. B̃ is positively invariant under φ. Then ω(B̃) is the
maximal invariant set in B̃. Recall that C is also the maximal
invariant set in B̃, we have

ω(B) ⊂ ω(B̃) = C.

Finally, by the assumption that K(·) attracts B(·), one
knows that ω(B)(·) ⊂ K(·), and thus C ⊂ K, which shows

ω(B) ⊂ K.

Sufficiency: In a very similar way as above, we can prove
the sufficiency.

By the compactness of P ,

lim
t→∞

HX (φ(t, θ−tp)B(θ−tp),KP )]

≤ lim
t→∞

sup
p∈P

HX (φ(t, p)B(p),KP )

= lim
t→∞

sup
p∈P

HY (Φ(t)B, P ×KP )

= lim
t→∞

HY (Φ(t)B, P ×KP ) = 0,

which implies ω(B)(·) exists and pullback attracts B(·).
To complete the proof, it suffices to show ω(B)(·) ⊂ K(·).

We first define a set

B̂ =
⋃
s≥0

Φ(s)B.

Then B̂ is positively invariant and

ω(B̂) = ω(B).

This implies that Ω(B) is the maximal invariant set in B̂.
Write ω(B) :=

⋃
p∈P {p} × C(p), then C(·) is the maximal

invariant set in B̂(·), where B̂(·) is the set defined by B̂ :=⋃
p∈P {p} × B̂(p). By the positive invariance of B̂, one also

knows that B̂(·) is forward invariant. This implies ΩB̂(·) is the
maximal invariant set in B̂(·). We then have that ω(B)(·) ⊂
ω(B̂)(·) = C(·). We learn from the condition ω(B) ⊂ K that
C(·) ⊂ K(·). In summary, ω(B)(·) ⊂ K(·), which completes
the sufficiency. 2

3.2. Local Approximate Forward Attractors

Definition 3.1. Let K(·) be a nonautonomous set of X .
We call Kε(·) the ε-extended neighborhood of K(·) if the
set Kε :=

⋃
p∈P

(
{p} × Kε(p)

)
is the ε-neighborhood of

K =
⋃
p∈P

(
{p} ×K(p)

)
in the space Y .

Then, under some suitable assumptions, we can construct
local approximate forward attractors around pullback
attractors. In fact, we get a stronger result as follows.

Theorem 3.2. Let φ be a cocycle semiflow on a Banach
space X with driving system θ on a compact base space
P . Let K(·) be a set such that KP is compact. If K(·)
has pullback attraction through φ, then for any ε > 0, the
ε-extended neighborhood Kε(·) of K(·) is an approximate

forward attracting set associated to K(·), namely, if K(·)
pullback attracts a nonautonomous set B(·), then Kε(·)
forward attracts B(·) uniformly on p ∈ P , i.e.

lim
t→∞

sup
p∈P

HX

(
φ(t, p)B(p), Kε(θtp)

)
= 0.

Proof. In the first part of the proof, we employ many of the
techniques developed in [18, Theorem 3.1], where they were
used to construct global pullback attracting sets for cocycle
semiflows.

We know from Theorem 3.1 that K attracts B, i.e. for any
δ > 0 (we can assume δ < ε) there is a T > 0 (being
independent of p ∈ P ) so large that

HY (Φ(t)B,K) < δ/2, t ≥ T.

It follows that for any u = (p, u′) ∈ B, there is a v ∈ K
such that

dY ((θtp, φ(t, p)u′), v) ≤ δ, t ≥ T. (2)

Denote q := θtp. Then (2) can be written as

dY ((q, φ(t, θ−tq)u
′), v) ≤ δ, t ≥ T. (3)

For each q ∈ P , we divide K in two parts,

K := Kq[ε]
⋃

Kcq[ε],

where
Kq[ε] :=

⋃
d(p,q)<ε

(
{p} ×K(p)

)
and

Kcq[ε] :=
⋃

d(p,q)≥ε

(
{p} ×K(p)

)
.

If v ∈ Kcq[ε], then for t ≥ T ,

dY ((q, φ(t, θ−tq)u
′), v) > d(q, p) ≥ ε > δ,

which contradicts to (3). So we necessarily have v ∈ Kq[ε].
Write v := (q′, v′) and define a nonautonomous set K [ε](·) by

K [ε](q) =
⋃

d(p,q)<ε

K(p), q ∈ P.

Since dP (q′, q) < ε, we have v′ ∈ K [ε](q).
It follows that

dX

(
φ(t, θ−tq)u

′, K [ε](q)
)
≤ dX (φ(t, θ−tq)u

′, v′)

≤ dX ((q, φ(t, θ−tq)u
′), v) ≤ δ, t ≥ T.

Rewrite q as θtp, we have

dX

(
φ(t, p)u′, K [ε](θtp)

)
≤ δ < ε, t ≥ T.
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Since u′ ∈ B(p) is arbitrary, we can conclude that

HX

(
φ(t,p)B(p), K[ε](θtp)

)
≤ δ, for all t ≥ T.

By the arbitrariness of δ and the independence of T on
p ∈ P , one knows K [ε](·) forward attracts B(·) uniformly
on p ∈ P .

In the rest, we prove K [ε](·) ⊂ Kε(·), which completes the
proof of the theorem.

Let p ∈ P be fixed. We first claim that for any q ∈ P with
dP (q, p) < ε, it holds that

K(q) ⊂ Kε(p).

Indeed, for any q ∈ P with dP (q, p) < ε and x ∈ K(q), we
have

dY
(
(p, x), (q, x)

)
= dP (p, q) = dP (q, p) < ε.

Since (q, x) ∈ K, one knows that (p, x) ∈ Kε, that is,
x ∈ Kε(p), which proves the assertion. We then immediately
get from the definition

K [ε](p) =
⋃

d(q,p)<ε

K(q), p ∈ P

that
K [ε](p) ⊂ Kε(p). 2

4. An Example
We study the forward dynimics of the nonautonomous scalar

model
ẋ = x− h(t)x2, (4)

where h ∈ Cb(R,R), the set of bounded continuous functions
from R to R, and h(t) ≥ c > 0, t ∈ R for some constant c.
We can obtain the explicit solution

x(t, s;x0) =
et

x−10 es +
∫ t
s
erh(r)dr

, (5)

with x(s) = x0 6= 0.
The unique solution can generate a process S(·, ·) :=
{S(t, s)}t≥s on R by S(t, s)x0 = x(t, s;x0).

It is clear that 0 is an equilibrium. For x0 > 0 fixed, letting
s→ −∞ in (5) yields

x∗(t) =
et∫ t

−∞ erh(r)dr
. (6)

This shows that x∗(t) is a local pullback attractor for the
process S(·, ·) in (0,∞).

In order to study the forward dynamics in (0,∞), we work
in the framework of cocycle semiflows and require additional
assumption on h. Define the hull of h(t) as follows

H := H[h(·)] = {h(τ + ·) : τ ∈ R}Cb(R,R).

In application, h(·) is often taken as a periodic function,
quasiperiodic function, almost periodic function, local almost
periodic function [3, 14] or uniformly almost automorphic
function [19], and the metric on Cb(R,R) is taken as uniform
convergence on compact subintervals. In this case, the hull
H is a compact metric space. A simple example is that
h(t) = sin t, t ∈ R.

Accordingly, the translation group θ onH is given by

θτp(·) = p(τ + ·), t ∈ R, p ∈ H.

Instead of (4), we will consider the more general cocycle
system:

ẋ = x− p(t)x2, p ∈ H.

Then the unique solution x(t, 0;x0, p) will generate a
cocycle semiflow φ on R with driving system θ on a base space
H, which is given by φ(t, p)x0 = x(t, 0;x0, p).

Leaning from (6), we can define a local pullback attractor
x∗(·) for φ by

x∗(p) =
1∫ 0

−∞ erp(r)dr
.

It is worth noting that

x∗(θth) = x∗(t)

is the full solution of (4) given in (6).
Since h(t) ≥ c > 0, t ∈ R, we have

sup
p∈P

x∗(p) ≤ 1/c. (7)

Then by Theorem 3.2, we have

Theorem 4.1. Suppose h is a function such that H is
compact and (7) holds. Then for any ε > 0, the ε-extended
neighborhood xε∗(·) of x∗(·) has forward attraction. It will
forward attracts every bounded set B in (0,∞) uniformly on
p ∈ P , i.e.

lim
t→∞

sup
p∈P

HR (φ(t, p)B, xε∗(θtp)) = 0.

In particular for the equation (4), there is a neighborhood
O(t) of the full solution x∗(t) such that O(t) forward attracts
every solution x(t, s;x0) with x0 > 0, that is,

lim
t→∞

HR (x(t, s;x0),O(t)) = 0.

5. Conclusion
Our goal of this paper is to study the local forward dynamics

of nonautonomous dynamical systems, which can be seen as
a generalisation of our previous paper [10] where the global
forward dynamics was considered. However, the results here is
not trivial since we have to apple different methods. It is worth
noting that the compactness assumption on the base space P is
very necessary. It is still hard to study the forward dynamics
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of a nonautonomous dynamical system without a compact base
space.
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