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Abstract: In this paper, we study the long-time behavior of solutions for a class of initial boundary value problems of higher 

order Kirchhoff –type equations, and make appropriate assumptions about the Kirchhoff stress term. We use the uniform prior 

estimation and Galerkin method to prove the existence and uniqueness of the solution of the equation, when the order m and the 

order q meet certain conditions. Then, we use the prior estimation to get the bounded absorption set, it is further proved that using 

the Rellich-Kondrachov compact embedding theorem, the solution semigroup generated by the equation has a family of global 

attractor. Then the equation is linearized and rewritten into a first-order variational equation, and it is proved that the solution 

semigroup is Frechet differentiable. Finally, it proves that the Hausdorff dimension and Fractal dimension of a family of global 

attractors are finite. 

Keywords: Kirchhoff-Type Equation, Prior Estimation, Galerkin Method, A family of Global Attractors,  

Hausdorff Dimension, Fractal Dimension 

 

1. Introduction 

In this paper, we considers the initial-boundary value 

problem of the following higher-order nonlinear 

Kirchhoff-type equations 

2
( ) ( ) ( )( ) ( ) ( )m

tt t

q
m m m

q
u a t u u N u ID u t x+ ∆ + =−∆ + −∆ , (1) 

( ) 0, 0, 1, 2, , 2 1, , 0,
i

i

u
u i m x t

v
x t

∂
= = = ⋅ ⋅ ⋅ − ∈ ∂Ω >

∂
,  (2) 

0 1( ,0) , ( ,0) ,( ) ( ) .
n

tu x u u x u x Rx x= = ∈ Ω ⊂    (3) 

Where Ω  is a bounded domain in ( 1)
n

R n ≥  with 

smooth boundary ∂Ω , m N
+∈ , ∂Ω  is the homogeneous 

Dirichlet boundary of Ω , v  is an outer normal vector of 

∂Ω , ( )a t  is a general function of t, and ( )I x  is an external 

force term. The assumptions about ( )a t  and ( )( )
q

m

q
N D u t  

will be given later. 

In 1883, Gustav Robert Kirchhoff [1], a German physicist, 

first introduced the following equation when he studied the 

transverse vibration of stretched strings 

2 2
2

02 20
( ) 0

2

Lu Eh u u
h P dx

L tt x
ρ ∂ ∂ ∂ − + = ∂∂ ∂ ∫ , 0 , 0,x L t< < ≥  

Where h is the cross-sectional area of the string, E is young 

coefficient, 0P  is the initial axial tension, L is the length of 

the string, ρ  is the mass density of the string, and 

( , )u u x t=  is the lateral displacement in the spatial axial 

coordinate. Over the past a hundred years, with the 

development of science and technology, Kirchhoff equation 

has been paid more and more attention by scholars. The 

application field of Kirchhoff equation is also expanding, and 

its expression is constantly extended. A series of mathematical 

theories and research results have been obtained, such as the 

existence and uniqueness of global solution, the decay of 

solution, the existence of random attractor, and the index 

Numerical attractor, global attractor and its dimension 

estimation, inertial manifold, etc [2-6]. 
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When m = 1, q = 2, the stress term is 
2

2
(1 ( ) )u t+ ∇ , and a 

nonlinear nonlocal source term is added to equation (1), 

Mitsuhiro Nakao [7] studied the existence of attractors and 

some absorption properties in the local sense for this class of 

Kirchhoff type quasilinear wave equation with standard 

dissipation term tu . Then, Zaiyun Zhang [8]
 
and others 

studied the initial boundary value problem of nonlinear 

dissipative Kirchhoff equation when m = 0, q = 2, ( )a t β= ,

( )2
( ) ( )N Ms u t= , the initial boundary value problem of 

nonlinear dissipative Kirchhoff equation is as follows 

2
( ) ( ) ( )tt tu M u u u g u f xβ+ ∆ + + = , 

In Hilbert spaces ( )1 2
0 ( )H LΩ × Ω  and 

1
0( ) ( )D A H× Ω , 

they estimate the dimensions of global attractors by using 

rescaling technique and linearized variational method. The 

upper bounds of Hausdorff dimension and Fractal dimension 

are obtained. 

Furthermore, when m = 1, q = 2, stress term ( ) 2
( )N s Duϕ=  

and strong dissipation term ( ) 2
( )a t Duσ= , chueshov Igor [9] 

studied the well posedness and long-time behavior of the 

solution of the initial boundary value problem of the equation 

2 2
( ) ( ) ( ) ( )tt tu Du u Du u g u h xσ ϕ− ∆ − ∆ + = , 

By assuming the Kirchhoff term, he proved the existence 

and uniqueness of weak solution and the existence of a finite 

dimensional global attractor in the natural energy space with 

partial strong topology, and further proved that the attractor is 

strong under non supercritical conditions. 

Recently, on the basis of chueshov Igor
 
[9], Guoguang Lin 

[10] and others studied the long-term behavior of the initial 

boundary value problem for a class of nonlinear strongly 

damped higher order Kirchhoff type equation with 

1, 2,m q= = ( ) 1a t =  and 
2 2

2 2
( ) (( ) ( ) )m m q

N D u t D u t=  

2

( ) ( ) ( ) ( )
q

m m m
tt tu u u u g u f x+ −∆ + ∇ −∆ + = , 

They obtain the existence and uniqueness of the solution 

and the global attractor, and consider the dimension of the 

global attractor and the upper bound estimation of the 

dimension. For more related research results on the Kirchhoff 

equation, please refer to [11-15]. 

In this paper, based on the long-time behavior of solutions 

of some nonlinear Kirchhoff type equations with initial 

boundary value problems, a class of higher order Kirchhoff 

type equations with the highest order term ( )2m
u m N

+∆ ∈  is 

studied. Because of the uncertainty of m in Kirchhoff stress 

term ( )( )
q

m

q
N D u t  and q  in Banach space ( )qL Ω , there 

will be a bottleneck when using uniform prior estimation and 

Galerkin finite element method to prove the existence and 

uniqueness of the global solution of the equation, so it is 

impossible to continue the follow-up work. We get a relation 

between m and q in Banach space ( )qL Ω  by the theory of 

Sobolev space. Therefore, we overcome this problem 

successfully and get more extensive research methods and 

theoretical results. 

2. Preliminaries 

For brevity, we used the follow abbreviation: 
2 ( )H L= Ω , D = ∇ , 2L

⋅ = ⋅ ,
1

0 0( ) ( ) ( )m mH H HΩ = Ω Ω∩ ,

2 2 1
0 0( ) ( ) ( )m k m kH H H+ +Ω = Ω Ω∩ ,

2
0 0( ) ( )m k k

kE H H+= Ω × Ω , 

Let kA  be a family of global attractors from 0E  to kE , and 

0kB  be a bounded absorbing set in kE , with 

0,1, 2,3, , 2k m= ⋯  and ( 1,2,3, )iC i = ⋯ denotes positive 

constant. The notation ( , )⋅ ⋅ , ⋅  for the H inner product and 

norm, that is ( , ) ( ) ( )u v u x v x dx
Ω

= ∫ , 
2

( , )u u u= . 

Now we state some assumptions and result. Suppose the 

functions ( )a t  and ( )( )
q

m

q
N D u t  in the equation satisfy the 

following conditions. 

(A1) [ )2( ) 0,a t C∈ ∞  and 0t∀ ≥ , such that 

2
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0
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ε µ µ µ
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+
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 <
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(A2) ( ) [ )2 0,N s C∈ ∞  and 0s∀ ≥ , such that 

2

0

0 1
2

1

0

1 ( ) ,

0

m k

m k

d
D u

dt
N s

d
D u

dt

δ
ε δ δ δ

δ

+

+

 ≥+ ≤ ≤ ≤ = 
 <
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Where 

0 11 1 0 01

01 0 1 1

1 11 2 1 2 2
0 min , , , , ,

2 22

mm

m m

µ λµ λ δ δδ δε
µ µλ µ µ λ− −

 + −+ − < ≤  
+ +  

 

(A3)

2 2
, 2 ;

2 2

2
, 2 .

2

n n
q n m

n m n m

n
q n m

n m

 ≤ ≤ > + −

 ≤ < ∞ ≤
 +

 

3. The Existence of a Family of Global 

Attractors 

Lemma 1 Suppose that the ( 1) ( 2)A A−  are satisfied, and 

( ) ,I x H∈
 0 1( , ) ku u E∈ . Then the initial boundary value 

problem (1) - (3) has a global solution ( , )u v  satisfies  
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2
0(0, ; ( ))m ku L H∞ +∈ +∞ Ω ,

2
0 0(0, ; ( )) (0, ; ( ))k m kv L H L T H∞ +∈ +∞ Ω Ω∩ , and 

( )1 1
2 22 2 1

1
1

( , ) (0) 1
k

t tm k k

E

C
u v D u D v y e e

γ γ

γ
− −+= + ≤ + − , 

2

0 1 1
0 0

(0)
T T

m k
D v dt y C dtµ + ≤ +∫ ∫ , 

where tv u uε= + , 2
1 1min , , 2

k
kγ ε

δ
 =  
 

, 

2 2 2
2

1 0 0 0(0) k m k m ky D v D u D uδ+ += + + .
 

Thus, there exists a non-negative constant kR  and 

( ) 0k kt t= Ω > , such that 

2 22 2 2( , ) ( ).
k

m k k
k kE

u v D u D v R t t+= + ≤ >  

Proof. Let ( ) ( ) ( )
k k k

tv u uε−∆ −∆ −∆= + , by taking the inner 

product in H  of Equation (1) with ( )k
v−∆ , we obtain  

( )2
( ( ) ( )( ) ( ) ) ( ( ) ( ) )( ) , , .m m m

t

q
m k k

tt
q

u u u N u Ia t D u t v x v−∆ ∆ + −∆ −∆ = −∆+ +                    (4) 

By using öH lder  Inequality, Young inequality and éPoincar  inequality, the following are obtained by dealing with the 

following items in formula (4) 

222 2 2
1( )

1 2
( , )

2 2 2

m
k k k m k

ttu
d

v D v D v D u
dt

ε λε ε −
+−∆

+≥ − − .                   (5) 

By assuming (A1) and using Young inequality and éPoincar  inequality to deal with the strong damping term, we can obtain  

22 2
0 1( ) ( )( ( ) , )

2 2

m

t

k m k m k
ua t v D v D u

µ ε µ+ +−∆ −∆ ≥ − ,                        (6) 

2 2
2 2

2 2
, ( ) ,( )

1
( ) ( ( ))

2

m mk k m k m k
tu u

d
v u u D u D u

dt
ε ε+ +∆ −∆ ∆ −∆= + = +                    (7) 

It can be obtained from hypothesis (A2) 

( )
2 2

0( )( ) ( )( , )
2

m
q

m k m k m k

q
N u

d
D u t v D u D u

dt

δ εδ+ +−∆ −∆ ≥ + .                (8) 

Using Schwarz inequality and Young inequality to deal with the external force term, we obtain  

2 22 2 2

12
( ) ( ) ( ) ( )

1
( , ) ( , )

2 22

k k k k k k
I I Ix v D x D v D x D v C D v

ε ε
ε

−∆ = ≤ + ≤ +
.             (9) 

Substituting (5) - (9) into (4), we receive 

2 2 2 2 2
2 2 20 1( ) ( 2 2 ) 2

2

m
k m k m k k m kd

D v D u D u D v D u
dt

µ λδ ε ε ε+ + ++ + + − − +  

 
2 2 2 2

0 1 1
0 1

2
( )

m
m k m kD u D v Cµ

εδ ε λ ε µδ
δ

−
+ +− −

+ + ≤ .                  (10)

According to hypothesis (A1), we have 

20 1
1 2 2 0

2

m

k
µ λ ε ε= − − ≥ , 

2 2
2 0 1 12 0mk εδ ε λ ε µ−= − − ≥ . 

Let 2
1 1min , , 2

k
kγ ε

δ
 =  
 

, then we get 

2

1 1 1 0 1( ) ( ) m kd
y t y t D v C

dt
µγ ++ + ≤ ,  (11) 

where  

2 2 2
2

1( ) k m k m ky t D v D u D uδ+ += + + .   (12) 

By using Gronwall inequality, we obtain 

( )1 11
1 1

1

( ) (0) 1
t tC

y t y e e
γ γ

γ
− −≤ + − ,      (13) 
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0 1 1
0 0

(0)
T T

m k
D v dt y C dtµ + ≤ +∫ ∫ ,     (14) 

So, we have 

( )1 1
2 22 2 1

1
1

( , ) (0) 1
k

t tm k k

E

C
u v D u D v y e eγ γ

γ
− −+= + ≤ + − ,  (15) 

and 

 
2 21

1

lim ( , ) ( )
k

k kEt

C
u v R t t

γ→∞
≤ = > .       (16) 

Thus, there exist a non-negative constant 
2
kR  and 

( ) 0k kt t= Ω > , such that 

2 22 2 2( , ) ( ).
k

m k k
k kE

u v D u D v R t t+= + ≤ >   (17) 

Lemma 1 is proved 

Theorem 1 Under the hypotheses of Lemma 1, and 

( ) ,I x H∈
 0 1( , ) ku u E∈ . So the initial boundary value 

problem (1) - (3) has a unique global solution 

[ )( , ) ( 0, ; )ku v L E∞∈ +∞ . 

Proof. Existence: the existence of global solution is proved 

by Galerkin method 

Step 1: construct approximate solution 

Let ( ) , 0,1, 2,3, , ,m z

j

m z
j jw w z mλ+ +−∆ = = ⋯⋯ where jλ  

is the eigenvalue of −∆  with homogeneous Dirichlet 

boundary on Ω , jw  is the eigenfunction determined by the 

corresponding eigenvalue jλ . all the eigenfunctions { }
1

j
j

w
∞

=
 

constitute the standard orthogonal basis of 
2
0 ( ) ( )mH HΩ Ω∩ . 

Set 

1

( ) ( )

s

s s js j

j

u u t g t w

=

= =∑  be the approximate solution 

of the initial boundary value problem (1) - (3), where ( )jsg t  

is determined by the following system of differential 

equations 

2
( ( ) ( ) ) ) ( ( ) ) (( ) ( ) ( ) ( ) ( ) ( ), , 1 ).(m m m

st

q
m

stt s s s j j
q

u u u N u It a t t t D u t t w x w j s−∆ ∆ −∆ =+ + + ≤ ≤          (18) 

Where, (18) meet the initial conditions 0(0)s su u= , 

1(0)st su u= . 

When s → +∞ , we can obtain 0 1 0 1( , ) ( , )s su u u u→  in kE , 

According to the basic theory of solutions of ordinary 

differential equations, we know that the approximate solution 

( )su t  exists on (0, )st . Step 2: prior estimation 

In order to prove the existence of weak solution in space

( 0,1, 2,3, , 2 )kE k m= ⋯ , we multiply ( ) ( )js jsg t g tε′ +  at 

bothsides of equation (18) and sum of j , Set 

( ) ( ) ( )s st sv t u t u tε= + . 

When 0,1, 2,3, , 2k m= ⋯ , we get a priori estimate of 

solution in space kE  

2 22 2 2( , )
k

m k k
s s s s kE

u v D u D v R+= + ≤ ,     (19) 

2

0 1 1
0 0

(0)
T T

m k
D v dt y C dtµ + ≤ +∫ ∫ .       (20) 

It can be seen that the priori estimates of the solution of 

lemma 1 in formula (19) and (20) hold respectively. It is 

known that ( , )s su v  is bounded in ([0, ); )kL E∞ +∞  by 

formula (19) and can be obtained 
2

0(0, ; ( ))m k
sv L T H +∈ Ω  by 

formula (20). 

Step 3: limit process 

In space ( 0,1, 2,3, , 2 )kE k m= ⋯ , the subsequence { }lu  

is selected from sequence { }su , so that ( , ) ( , )l lu v u v→  

converges weakly * in ([0, ); )kL E∞ +∞ . In addition, from 

formula (20), we can get that lu  is bounded in 

2
0(0, ; ( ))m kL T H + Ω . 

If we know that kE  is closely embedded in 0E  by 

rellich-kondrachov compact embedding theorem, then 

( , ) ( , )l lu v u v→  converges strongly almost everywhere in 

0E . Thus, we can make s l=  and take the limit in equation 

(18). For fixed j , and l j≥ , we can get from formula (18). 

2
( ( ) ( ) ) ) ( ( ) )( ) ( ) ( ) ( ) ( ) ( ), ,(m m m

lt

q
m

ltt l l l j j
q

u u u N u It a t t t D u t t w x w−∆ ∆ −∆ =+ + + .              (21) 

Because su u→  weakly * converges in 
2 1

0([0, ); ( ) ( ))m kL H H∞ ++∞ Ω Ω∩ , then 

B weakly* converges in C 

( (( ), ( ) ) ( ), )k k
l j j ju ut w t wλ−∆ →  weakly* converges in [0, )L∞ +∞ , 

( (( ), ( ) ) ( ), )lt t

k k
j j ju ut w t wλ−∆ →  weakly* converges in [0, )L∞ +∞ . 
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Therefore, ( (( ), ( ) ) ( ( ), ( ) ) ( ), )k k k
ltt j lt j tt j ju u u

d
t w t w t w

dt
λ−∆ = −∆ →  converges in [0, )D′ +∞ , [0, )D′ +∞  is the conjugate 

space of [0, )D +∞  infinitely differentiable space 

( )2 2
( ( ), ( ) ) ( , )m mk k

l j j ju ut w t wλ∆ ∆−∆ →  weakly* converges in [0, )L∞ +∞ . 

As a result, 

2

2 2 2 2(( ) ) )( ), ( ) ) ( ( ), ( ) ) ( ( ), ( ) )( (m

lt

k m k m k m k

k
j l j l ju t w v t w u t wε

+ + +

−∆ −∆ −∆−∆ = −∆ − −∆ , then 

2

2 22 2(( ) [ ) )( ) ( ), ( ) ) ( ) ( ( ), ) ( ( ), )]( (m

lt

m k m kk m k

k
j j j j jua t t w a t v t w u t wλ ε λ

+ ++

−∆ −∆ −∆−∆ → − weakly* converges in [0, )L∞ +∞ . 

Futher, 22( ( ) ) ( ( ) )( ) ( ), ( ) ) ( ) ( ), )( (m

m km k
q q

m k m
l l j l l j j

q q
N u N uD u t t w D u t t wλ

++

−∆ −∆−∆ = , then 

22( ( ) ) ( ( ) )( ) ( ), ( ) ) ( ) ( ), )( (m

m km k
q q

m k m
l l j j j

q q
N u N uD u t t w D u t t wλ

++

−∆ −∆−∆ →  weakly* converges in [0, )L∞ +∞ . 

In particular, 0 0lu u→  weakly converges in kE ; 1ltu u→  weakly converges in kE .  

For any j  and l → +∞ , we can get 

2
( ( ) ( ) ) ) ) ( ( ) ) ) (( ) ( ) ( ) ( ) ( ) ( ), , 1 ).( ( (m m m k k

t

q
m

tt j j
q

u u u N u It a t t t D u t t w x w j s−∆ ∆ −∆ −∆ = −∆+ + + ≤ ≤  

Because of the arbitrariness of jw , we have for any B 
1
0( ) ( )kv H H∈ Ω Ω∩  

2
( ( ) ( ) ) ) ( ( ) )( ) ( ) ( ) ( ) ( ) ( ), ,(m m m

t

q
m

tt
q

u u u N u It a t t t D u t t v x v−∆ ∆ −∆ =+ + + , 

Therefore, the existence is proved. 

Next, we prove the uniqueness of the solution. 

Let 
* *,u v  be two solutions of the system of equations, let * *w u v= − , then w  satisfies 

2 * * * *
( ) ( ) ( ) 0( ) ( ) ) ( ) ) ,( (m m m m

q q
m m

tt t
q q

w a N u Nt w w D u t D v t v+ −∆ + ∆ −∆ − −∆ =+                (22) 

( ) ( )0 0, 0 0, .n
x Rw w ∈ Ω ⊂′= =                           (23) 

By using the inner product in H  of equation (1) with tw wε+ , we obtain 

2 * * * *
( ( ) ( ) ( ) 0( ) ( ) ) ( ) ) , ) ,( (m m m m

q q
m m

tt t t
q q

w a N u N w wt w w D u t D v t v ε+ −∆ + ∆ −∆ − −∆ + =+     (24) 

By using öH lder  inequality, Young inequality and 

éPoincar  inequality, the following are obtained by dealing 

with the following items in formula (22)  

2 21
( , ) ( , ) .

2
tt t t t tw w w w w

d d
w w

dt dt
ε ε ε+ = + −    (25) 

2
2 2

( ) ( )
1

( , )
2

m m m

tw w
d

w w w
dt

ε ε∆ + −∆ −∆= + .   (26) 

According to the hypothesis (A1) - (A2), éPoincar  

inequality and differential mean value theorem, we can obtain 

2 2

0( )( ( ) , )
2

m m m

t t tw w
d

a t w D w D w
dt

ε
εµ µ−∆ + ≥ + . (27) 

* * * *
( ( ) ( ) )( ) ) ( ) ) ,( (m m

q q
m m

t
q q

N u N w wD u t D v t v ε−∆ − −∆ +  

* * * *

* * * *

( ( ) ( )

( ) (

( ) ) ( ) )( ) ,

( ( ) ) ( ) )( ) , )

(

(

m m

m m

q q
m m

t
q q

q q
m m

q q

N u N

N u N

D u t D v t v w

D u t D v t v wε

= −∆ − −∆

−∆ − −∆+
  

1 2I Iε= + .             (28) 

By using Sobolev embedding theorem, we can obtain that,

0 ( ) ( )m qH LΩ ⊂ Ω , then there is a constant 0K > , such that 

( ) ( )
(2 ) 2 2 2

* * 4 4
( )

( )
q

m n q n mq nq nq
m m m m

L
D u t K u t u

+ − − +

Ω
≤ −∆ ,  (29) 

where 
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, 2 ;

2 2

2
, 2 .

2

n n
q n m

n m n m

n
q n m

n m

 ≤ ≤ > + −

 ≤ < ∞ ≤
 +

 

Therefore, 

* * * *
1 ( ( ) ( )( ) ) ( ) )( ) ,( m m

q q
m m

t
q q

N u NI D u t D v t v w−∆ − −∆=  

( ) ( )
1

2 1
* * *

1

0

( ) ( )
2

m

q
i q i

m m m m m
t

q q q
i

d
D w N D u t D v t D w D v D w

dt

δ ξ
− − −

=

≥ ′− ∑   

2 2 2
2

0
0

( )
2 4

m m m
t

Cd
D w w D w

dt

δ µ
µ

≥ − −∆ − . (30) 

Similarly, there are 

22 2 2
34

2 1 ( )
2 2

m m mCC
I D w w D wδ≥ − −∆ − . (31) 

Combined with formula (24) - (31), it is concluded that 

2 22 2
( )( ( ) 2 ( , )) 2m m

t t tw w
d

w D w w w
dt

εµ δ ε ε−∆+ + + + ≤  

2 2
22

4 3 1
0

( )( 2 ) ( 2 ) .
2

m mC
C w C D wδε ε ε ε

µ
−∆+ + − + −  (32) 

Further, due to 

22 11
( , )

2 2

m
m

t tw w w D w
λ −

≥ − − ,     (33) 

so, 

2 22 2
( )( ( ) 2 ( , )) 3m m

t t tw w
d

w D w w w
dt

εµ δ ε ε−∆+ + + + ≤  
2 2

22 ( )4 3 1 1
0

( 2 ) ( 2 ) 2 ( , ).
2

m mm
t

C
C w C D w w wδε ε ε λ ε

µ
−−∆+ + − + − + + (34) 

Let

2
3 1 12

2 4
0

( 2 )
max 3 , 2 , ,1

2 ( )

mCC
C

δ
ε

ε λγ ε ε ε
µ µ δ

− − + = + − +  
, such that 

2 2 2( ) ( )
d

y t y t
dt

γ≤ ,                                  (35) 

where 

2 22

2 ( )( ) ( ) 2 ( , )m m

t twy t w D w w wεµ δ ε−∆= + + + + ,                     (36) 

By Gronwall inequality, we get 

2
2 2( ) (0) 0

t
y t y e

γ≤ = ,                                (37) 

Thus 2 ( ) 0y t = , i.e. * *u v= , so the uniqueness is proved. 

Theorem 2 According to lemma 1 and theorem 1, then the initial boundary value problem (1) - (3) has a family of global 

attractors 

0 0
0

( ) ( ) , ( 1, 2,3, , 2 )k k k k
t

A B S t B k m
τ τ

ω
≥ ≥

= = ∩ ∪ = ⋯ , 

where { }2 22 2 2 2
0 0( , ) : ( , )

k

m k k
k k kE

B u v E u v D u D v R R+= ∈ = + ≤ +  is a bounded absorbing set in kE  and satisfies the 

following conditions: 

(i) ( ) , 0k kS t A A t= > ; 

(ii) lim ( ( ) , ) 0 ( )k k k k
t

dist S t B A B E
→∞

= ∀ ⊂  kB  is a bounded set; 

where ( ( ) , )= sup inf ( )
k

kk

k k Ey Ax B

dist S t B A S t x y
∈∈

− , ( )S t  is the solution semigroup generated by the initial boundary value 

problem (1) - (3). 

Proof. It is necessary to verify the conditions (I), (II) and (III) for the existence of attractors in reference [2]. Under the 

condition of Theorem 1, there exists a solution semigroup ( ) : k kS t E E→  of the initial boundary value problem (1) - (3). 

From lemma 1, we can obtain that k kB E∀ ⊂  is a bounded set that includes in the ball { }( , )
k

kE
u v R≤ . 
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2m 2m
0 0 0 0

2 2 22 2 2
0 0 0 0( ) ( ) ( ) ( )

( )( , ) k k k k
k

kH HE H H
S t u v u v u v C R C+ +Ω Ω Ω Ω= + ≤ + + ≤ + ,           (38) 

where 0 00, ( , ) kt u v B≥ ∈ , this shows that { }( ) ( 0)S t t ≥  is 

uniformly bounded in kE
.
 

Furthermore, for any 0 0( , ) ku v E∈ , when { }1max , kt t t≥ , 

we have 

2m
0 0

2 2 2 2 2
0 0 0( ) ( )

( )( , ) k k
k

kH HE
S t u v u v R R+ Ω Ω= + ≤ + , (39) 

Therefore,

{ }2 22 2 2 2
0 0( , ) : ( , )

k

m k k
k k kE

B u v E u v D u D v R R+= ∈ = + ≤ +  

is a bounded absorbing set in semigroup ( )S t . 

According to the rellich kondrachov compact embedding 

theorem, if kE  is compactly embedded in 0E , then the 

bounded set in kE  is the compact set in 0E . Therefore, the 

solution semigroup ( )S t  is a completely continuous operator, 

thus the global attractor family kA  of solution semigroup 

( )S t  is obtained. Where 0 0
0

( ) ( )k k k
t

A B S t B
τ τ

ω
≥ ≥

= = ∩ ∪   

The prove is completed. 

4. Dimension Estimation  

In this part, we first linearize the equation into a first-order 

variational equation and prove that the solution semigroup 

( )s t  is échetFr  differentiable on kE . Furthermore, we 

prove the decay of the volume element of the linearization 

problem. Finally, we estimate the upper bound of the 

Hausdorff dimension and fractal dimension of kA  

The initial boundary value problem (1) - (3) is 

linearized and rewritten into a first order variational 

equation 

tw wε θ+ = ,                (40) 

22
( )( )( ) ( )( ) ( ) ( )m

q
m m m m

t
q

Nw w a t a t w D u t wθ εθ ε θ ε∆− + + + −∆ − −∆ + −∆  

( )( ) 0( ) ( ) ( )
q q

m m m m

q q
N uD u t D u t D w′ ′ =+ −∆ ,    (41) 

0( , ) ,tw xθ ξ= ∈ Ω= ,             (42) 

( , ) ( ) ( , ) 0iw x t w x t∂Ω ∂Ω= −∆ = ,       (43) 

1, 2, , 2 1, 0.( , ) ( ) ( , ) 0,i
i m tx t x tθ θ∂Ω ∂Ω = ⋅ ⋅ ⋅ − >= −∆ =  (44) 

Where ( , ) kEξ ξ η= ∈ , 0 0( , ) ( )( , )u v S t u v=  is the 

solution of the initial boundary value problem (1) - (3). 

Given 0 0( , ) ku v A∈ , then we can get 0 0( )( , ) kS t u v E∈ . It 

is proved that there exists a unique solution to the linearized 

initial boundary value problem (40) - (44) for any ( , ) kEξ η ∈ . 

Lemma 2 If ( ) : k kS t E E→ , the Frechet differential on 

0 0 0( , )u vη =  is a linear operator : ( , ) ( , )F wξ η θ→ , for any 

0 , 0t R> > , the mapping ( ) : k kS t E E→  is échetFr  

differentiable on kE , where ( , )w θ  is the solution of the 

linearized initial boundary value problem (40) - (44). 

Proof. Set 0 0 0( , ) ku v Eη = ∈ , 0 0 0( , ) ku v Eη ξ η= + + ∈  

and 0
kE

Rη ≤ , 0
kE

Rη ≤ . 

We define 1 0( ) ( , )S t u vη η= = , 1 0( ) ( , )S t u vη η= = , 

where the semigroup ( )S t  is Lipschitz continuous on the 

bounded set of kE , i.e. 

2 2

0 0( ) ( ) ( , )
k

k

ct

EE
S t S t eη η ξ η− ≤ .       (45) 

Let 1 1( , ) ( , )U u u w v vψ φ η η θ= − − = − − − − , then 

tψ εψ φ+ = ,                    (46) 

22
( )( ) ( )m

q
m m

t
q

N D u t hφ εφ ε ψ ψ ψ∆− + + + −∆ = − , (47) 

(0) (0) 0ψ φ= = ,                (48) 

where 

( ) ( ) ( )( )[ ( ) ( ) ]( ) ( ) ( ) ( )
q q q q

m m m m m m m

q q qq
N N uh N D u t D u t u D u t D u t D w′ ′−= −∆ − −∆ .          (49) 

By using the inner product in kE  of Equation (47) with φ , we obtain 

2 2 2 2 2 2
2 2 3 2( ) 2 2 2k k m k k m k kd

D D D D D D
dt

φ ε ψ ψ ε ψ ε ψ ε φ+ ++ + + + =  

2
( )( )2 ( ) , 2 ( , ( ) ) .

q
m m k k k

q
N D u t D D hψ φ φ++ + − −∆                      (50) 

Now we deal with h , let ( )mf D u t= , ( )mf D u t= , and deal with equation (49) with the help of differential mean value 
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theorem 

1 1( )( ) ( )( )( )( ) ( )( )
q q q qm m m m

q q q q
D N D uh N u u u f f u uς ς ′ ′ ′′= − −∆ − − −∆  

( )( ) ( )
q q m m

q q
N uDf f ψ′ ′+ −∆  

1 2h h= + ,                                                    (51) 

Where 1 (1 )s f sfς = − + , (0,1)s ∈ , 1 ( )( ) ( )
q q m m

q q
N uDh f f ψ′ ′= −∆ , 

2 1 1( )( ) ( )( )( )( ) ( )( )
q q q qm m m m

q q q q
D N D uh N u u u f f u uς ς ′ ′ ′′= − −∆ − − −∆ . 

Further, let 1 1 1( )( )( )
q q

q q
g Nς ς ς ′′ ′= , then 

2 1 )[( ( ) ( ) ( ) ( )( ) ( )] ( )m m m
Dh g g f u g f u u u uς −′ ′ ′= −∆ + −∆ − −  

2
2( )(1 )( ( )) ( ) ( )( ) ( ) ( )m m m m

D Dg s u u u g f u u u uς′′ ′= − − −∆ + −∆ − − ,                (52) 

where 2 1 (1 ) fς ςθ θ= + − , (0,1)θ ∈ . 

Therefore, 

1 2 1 2( , ( ) ) ( ( ), ( ) ) ( , ( ) ) ( , ( ) )k k k kh h h h hφ φ φ φ− −∆ = − + −∆ ≤ −∆ + −∆ ,                   (53) 

where 

1 ( ( )( )( , ( ) ) ( ) , ( ) )
q qk m m k

q q
N uDh f fφ ψ φ′ ′−∆ = −∆ −∆  

5 ( )m m k k
u DC Dψ φ+

∞
≤ −∆  

2 2
26 1 6

2 2

m
m k k

D
C C

D
λ ψ φ+≤ + .                                (54) 

2
2 2( , ( ) ) ( ( )(1 )( ( )) ( ) ( )( ) ( ) ( ), ( ) )k m m m m k

D Dh g s u u u g f u u u uςφ φ′′ ′−∆ = − − −∆ + −∆ − − −∆  

2
2( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( )( )m m k m m k

D Dg u u u dx g f u u u u dxς φ φ∞ ∞Ω Ω
′′ ′≤ −∆ − −∆ + −∆ − − −∆∫ ∫  

1

2 2 2 2 2 2
7

1

2 2 2 2
8

( [ ( ( )) ( ( )) ] )

( [ ( ) ( ) ( ) ( ( ))] )

k m k m m k m

k m k m m k m

D D

D D

C D D u u u D uD u u dx

C D D u u u u D u u D u u dx

φ

φ

+

Ω

+

Ω

≤ − + −

+ − − + − −

∫

∫
 

1

2 2 4 2 2 4 2
7

1
2

2 2 2 2 2 2
8

4 ( ( ) ( ( )) ( ) ( ( )) )

4 ( ( ( )) ( ( )) ( ( )) ( ( )) )

k m k m m m k

k m k m m m k

D D

D D

C D D u u u dx D u u u dx

C D D u u u u dx D u u u u dx

φ

φ

+ +

Ω Ω

+ +

Ω Ω

≤ − + −

+ − − + − −

∫ ∫

∫ ∫
 

2 2
2 2

7

2 2
8

4 ( ( ) ( ) )

4 ( ( ) ( ) ( ) ( ) )

k m m k m k m

k m k m m m k

D D

D D

C D u u D u u u D u

C D D u u u u D u u u u

φ

φ

+ +
∞ ∞

+ +
∞ ∞

≤ − + −

+ − − + − −
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2 2
2 2

9 104 ( ) 4 ( )k m k k m k
D DC D u u C D u uφ φ+ +≤ − + −  

42
2 2 29 10
11 122( ) ( )

2

k m k
D

C C
D C C u uφ ++

≤ + + − .                                    (55) 

Combined with formula (53) - (55), it is concluded that 

42 2
2 2 2 26 1 6 9 10

11 12( , ( ) ) 2( ) ( )
2 2

m
k m k k m k

D D
C C C C

h D C C u u
λφ ψ φ+ ++ +

− −∆ ≤ + + + − .          (56) 

Furthermore, substituting formula (56) into equation (50), the result is as follows 

2 2 2 2 2
2 2 3

1 6 9 10( ) ( 2 ) 2k k m k k kd
D D D C C C D D

dt
φ ε ψ ψ δ ε φ ε ψ++ + ≤ + + + + −  

42
2 2 2 2

1 6 1 11 12( 2 ) 4( ) ( ) .m m k m k
DC D C C u uδ λ ε ψ+ ++ + − + + −                     (57) 

Let { }2 2
3 1 6 9 10 1 6 1 11 12max 2 , 2 , 2 ,4( )mC C C C C Cγ δ ε ε δ λ ε= + + + + − + − + , we can get 

42 2 2 2 2 2
2 2 2 2 2

3( ) ( ( ) )k k m k k k m k m k
D

d
D D D D D D u u

dt
φ ε ψ ψ γ φ ε ψ ψ+ + ++ + ≤ + + + − . 

From Gronwall inequality and Lipschitz property of (45), we can obtain 

3 13
2 2 4( )2 ( , )

k

C tk m k

E
D D e

γφ ψ ξ η+++ ≤ ,                                (58) 

So, when ( , ) 0
kE

ξ η → , 

3 13

2

0 0
2( )

2

( ) ( ) ( )( , )

( , ) 0
( , )

k

k

k

E C t

E

E

S t S t FS t

e
γ

η η ξ η
ξ η

ξ η
+

− −
≤ → . 

The prove is completed.  

Theorem 3 Under the assumptions and conditions of 

theorem 2, then a family of global attractors kA  of initial 

boundary value problem (1) - (3) has Hausdorff dimension and 

fractal dimension, and 

( ) ( )1 6
,

5 5
H k F kd A n d A n< < . 

Proof. Let ( , ) ,TR u vεϑ ϕ= = ( , )T
tu uϕ = , tv u uε= + , 

then :{ , } { , }t tR u u u u uε ε→ +  is an isomorphic mapping. If 

( 1, 2, , 2 )iA i m= ⋯  is the global attractor of { }( )S t , then iAε  

is the global attractor of { }( )S tε , and they have the same 

dimension. 

From lemma 2, we can get that ( ) : k kS t E E→  is 

échetFr  differentiable, then the linearized first order 

variational equation (41) can be rewritten as 

( ) 0tP Pϑ+ Λ = ,              (59) 

             ( )t tP F ϑ= ,                 (60) 

where 

2 22( )
( )

( ( )) ( )

q
m

m m m

q

N

I I

A u a t A A I a t A I

ε

ϑ
ε ε ε

− 
 
 Λ =
 − + + + Φ −
 
 

,

I  is an identity operator, A−∆ = , ( , )T
kP w Eθ= ∈ , 

tw wθ ε= + . 

For a fixed 0 0( , ) ku v E∈ , let 1 2, , , nβ β β…  be n elements 

of kE , and 1 2( ), ( ), , ( )nw t w t w t…  be n solutions of linear 

equation (59), whose initial value is 

1 1 2 2(0) , (0) , , (0)n nw w wβ β β= = =… . 

Therefore, 

2

1 2 1 2( ) ( ) ( ) 2 ( ( ) ( ) 0
k k

n t n nE E

d
w t w t w t trF Q

dt
ϑ τ τ β β βΛ ΛΛ Λ Λ ⋅ Λ Λ Λ =… …— .            (61) 

Furthermore, from the uniform Gronwall inequality, we can obtain 

2

1 2 1 2
0

( ) ( ) ( ) exp( ( ( )) ( ) )
k k

t

n n t nE E
w t w t w t trF Q dβ β β ϑ τ τ τΛ ΛΛ Λ Λ = Λ Λ Λ ⋅∫… … ,              (62) 
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where Λ  is the outer product, tr  is the trace, ( )nQ τ  is an orthogonal projection from space kE  to 

{ }1 2( ), ( ), , ( )nspan w t w t w t… . 

For a given time τ , let ( )( ) ( ), ( ) ( 1,2, )
T

j j j j nω τ ξ τ η τ= = …  be the standard orthogonal basis of spance 

{ }1 2( ), ( ), , ( )nspan w t w t w t… . 

We define the inner product of kE  as 

 ( )( ) ( ) ( )( )2 2( , ), , , , .m k m k k kD D D Dξ η ξ η ξ ξ η η+ += +                        (63) 

To sum up, it can be concluded that 

( ) ( )
1

( ) ( ) ( ( )) ( ) ( ), ( )
k

N

t n t n j j
Ej

trF Q F Qϑ τ τ ϑ τ τ ω τ ω τ
=

⋅ = ⋅∑ ( )( )
1

= ( ) ( ), ( )
k

N

t j j
Ej

F ϑ τ ω τ ω τ
=
∑ ,      (64) 

where 

( )( ) ( )( ) ( ), ( ) ( ) ,
k

t j j j j
E

F ϑ τ ω τ ω τ ϑ ω ω= − Λ  

2 22 2 2 2
2 2 21

1 0

1
+ ( )( + )+

2 2

m
m k m k k m k

j j j jD D D D
ε λε ξ δ εµ ξ η ξ

−
+ + +≤ − −  

22 2 2 2 2 2
2 14 1

1 0
2 2 2

m k
k m k k m k k

j j j j j

C
D D D D D

λε εη λ µ η ε η ξ η
ε

− −
++ − + + +  

2 2 22 2 2
21 0 1 14 1( )

( )
2 2 2

m m k
m k k k

j j j

C
D D r D

δ εµ ε λ λεξ η η
ε

− − −
+− +

≤ + + +  

2 2 2
215

2

m k k k
j j j

C
D r Dξ η η+ ≤ − + ∇ + 

 
,                                       (65) 

where { 2 2 2 14 1
15 0 1 1min ( ) ,

m k
m C

C
λεµ δ ε λ ε
ε

− −
− = − − − − 


, 

{ }1max 2 ,r ε δ= . 

Owing to the ( )( ) ( ), ( ) , 1,2,
T

j j j j nω τ ξ τ η τ= = …  is the 

standard orthonormal basis of { }1 2( ), ( ), , ( )nspan w t w t w t… , 

so 

2 2
2 1m k k

j jD Dξ η+ + = ,             (66) 

 ( ) 2
15

1 1

( ( )) ( ), ( )
2

n n
k

t j j j
Ej jk

nC
F rϑ τ ω τ ω τ η

= =
≤ − + ∇∑ ∑ , (67) 

For almost all t , there are 

2
1

1 1

n n
k a

j j
j j

η λ −

= =
∇ ≤∑ ∑              (68) 

where 
2

k
a

m
=  and [0,1]a ∈ , jλ  is the eigenvalue of 2mA  

and 1 2 nλ λ λ< < <⋯ , thus 

115

1

( ( )) ( )  
2

.
n

a
t n j

j

nC
TrF Q rϑ τ τ λ −

=
⋅ ≤ − + ∑     (69) 

Let 

( )
0 0

1

0

1
sup sup ( ( ( ) ) ( ) )

k j k

kD j

n t n
B E

q t F S Q d
t

η

ϑ η
τ ϑ τ τ

≤

∈ ∈
= ⋅ ,     (70) 

and 

 lim ( )n n
t

q q t
→∞

= ,        (71) 

so 

 
115

1

.
2

n
a

n j
j

nC
q r λ −

=
≤ − + ∑       (72) 

Therefore, the Lyapunov exponent 1 2, , , ( 1)n nκ κ κ >…  of 

0kB  is uniformly bounded, and 

 
115

1 2
12

n
a

n j
j

nC
rκ κ κ λ −

=
+ + + ≤ − + ∑… ,   (73) 
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such that 

 
1 115 15

1 1

( )
2 12

n n
a a

j j j
j j

nC nC
q r rλ λ− −

+
= =

≤ − + ≤ ≤∑ ∑ ,   (74) 

 115
15

115

2 51 .
2 12

n
a

n j
j

nC r
q nC

nC
λ −

=

 
≤ − − ≤ −∑ 

 
  (75) 

Further, we can get 

1

( ) 1
max

5

j

j n
m

q

q

+

≤ ≤
≤ .           (76) 

Therefore, ( ) ( )1 6
,

5 5
H k F kd A n d A n< < , i.e. the 

Hausdorff  dimension and Fractal  dimension of a family of 

global attractors are finite. 

5. Conclusions 

On this paper, we studies the existence and uniqueness of 

the solution of the equation, when the order m  and the order 

q  of the Banach space ( )qL Ω  meet certain conditions 

(Lemma 1 and Theorem 1). Then, we obtain the solution 

semigroup ( )S t  generated by the equation has a family of 

global attractor Ak in space 
2 1

( ( ) ( )) ( )0 0
m k k

E H H Hk
+= Ω Ω × Ω∩

(Theorem 2). Finally, we get the Hausdorff dimension and 

Fractal dimension of a family of global attractors Ak  are 

finite (Lemma 2 and Theorem 3). 
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