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Abstract: The flow adjacent to a wall rapidly set in motion for a generalized second-grade fluid with anomalous diffusion is 

examined. For the elucidation of such a fluid, the fractional-order derivative approach in the constitutive relationship model is 

presented because models based on ordinary differential equations have a relatively limited class of solutions, which does not 

provide compatible description of the complex systems in general. The current model of second-order fluid involving 

fractional calculus is based on the formal replacement of the first-order derivative in ordinary rheological constitutive equation 

by fractional derivative of a non-integer order. In addition, the time-fractional equation considered in this article describes the 

anomalous sub-diffusion. In this article, the velocity and stress field of generalized second-grade fluid with fractional 

anomalous diffusion are studied by fractional partial differential equations. Analytic solutions are given in closed form, from 

these differential equations in terms of the generalized G-functions or Fox's H-function with the discrete Laplace transform 

technique. Thus, many previous and classical results, namely, the solution of fractional diffusion equation obtained by Wyss, 

the classical Rayleigh’s time-space regularity solution, the relationship between velocity field and stress field obtained by 

Bagley and Torvik, are represented by particular cases of our proposed derivation. 

Keywords: Time Fractional Navier-Stokes Equation, Generalized Second Grade Fluid, Anomalous Diffusion,  

Fox's H-function 

 

1. Introduction 

In the past few decades, non-Newtonian fluids have gained 

increasing popularity, mainly due to their concrete 

application in various fields such as material processing, 

chemical and nuclear industries, geophysics, oil reserving 

engineering and bioengineering [1]. Ketchup, blood, paints, 

shampoo, polymer melts, oils, drilling mud, and greases are 

examples of non-Newtonian fluids [2, 3]. The large variety of 

fluids and industrial applications has been a major motivation 

for research in non-Newtonian flow. One of the important 

class of non-Newtonian fluids is viscoelastic fluid. However, 

even the most commonly used simplest subclass of 

viscoelastic fluids is the so-called second-order fluid. 

Recently fractional calculus has encountered much success 

in the description of complex dynamics. It has proved to be a 

valuable tool to handle viscoelastic behavior. The starting 

point of the fractional derivative model of viscoelastic fluid 

is generally a classical differential equation, which is 

adjusted by substituting the time derivative of an integer 

order by Riemann-Liouville fractional calculus operators. 

This generalization agrees one to define precisely non-integer 

order integrals or derivatives. For describing viscoelastic 

behavior, fractional derivatives have been considerably 

flexible [4-6]. 

Anomalous diffusion is one of the most ubiquitous 

phenomena in nature [7], which has a large variety of 

physical situations. For instance, surface growth phenomena, 

transport of fluid in porous media [8], two-dimensional 

rotating flow [9], diffusion at liquid surfaces [10], diffusion 

of plasma [11], sub-recoil laser cooling [12], continuous-time 
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random walks [13, 14] and non-Markovian dynamical 

processes in protein folding [15]. Anomalous diffusion 

deviates from the standard Fichean description of Brownian 

motion. Such anomalous behavior can be represented by 

Lévy processes whose main character is that the mean 

squared displacement is a nonlinear growth with respect to 

time, such as
2x tγ< >∼ . The time-fractional equation 

considered in this article describes the anomalous sub-

diffusion corresponding to 0 1γ< < . Sub-diffusion typically 

arises in cases where there are spatial or temporal constraints 

such as occur in porous media and fractal lattices. 

Note that similar investigations have been made for the 

generalized second-grade fluid theoretically in terms of 

Wright function and Fox's H-function [16-18]. In this paper, 

the velocity and stress field of the generalized second-grade 

fluid with fractional anomalous diffusion caused by a plate 

moving impulsively on its own plate is investigated. The 

velocity and stress fields of the flow are explained by 

fractional-order differential equations. Exact analytic 

solutions of these differential equations are gained by 

applying the discrete Laplace transform technique of the 

sequential fractional derivatives method in terms of Fox’s H-

function. 

2. Problem Formulation 

The second-order approximation of the general 

constitutive equation given by Rivlin and Ericksen [19] can 

be written in the following form [20] 

2
1 1 2 2 1 ,T pI A A Aµ α α= − + + +                 (1) 

where T  is the stress tensor, p−  is the pressure, I is the unit 

vector, µ , 1α and 2α are the constants of the fluid, 

customarily known as the coefficients of viscosity, 

viscoelasticity and cross-viscosity, respectively. 1A  and 2A  

are the kinematical tensors defined through [21, 22] 

( )1 ,
T

A V V= ∇ + ∇                           (2) 

( ) ( )2 1 1 1,
T

tA A A V V A= ∂ + ∇ + ∇                (3) 

where t∂  denotes the material time derivatives, V denotes 

the velocity. 

For fluid of the type (1) that is compatible with 

thermodynamics, in the sense that all the motions of the fluid 

encounter Clausius-Duhem inequality and the assumption 

that the Helmholtz free energy is minimum when the fluid is 

in equilibrium, the following constraints of the signs of the 

material moduli hold [23] 

1 1 20, 0, 0.µ α α α≥ ≥ + =                     (4) 

Fluids meeting the above requirements are well-known as 

second-grade fluids in the literature. Generally, the 

constitutive equation of generalized second-grade fluids also 

has the form (1) but 2A  is defined as follows [24] 

( ) ( )2 1 1 1,
T

tA A A V V Aβ= ∂ + ∇ + ∇               (5) 

where Caputo fractional calculus operator denoted by t
β∂ and 

may be defined as 

( ) '

0

1
( ) ( ) ,

(1 )

t

t f t t f d
ββ τ τ τ

β
−∂ = −

Γ − ∫  0 1,β< <   (6) 

where (.)Γ  is the Gamma function, t
β∂ represents the 

material time derivative of fractional order and 
'f denotes 

the ordinary derivative. When 0,β =  and 1 0α = , then the 

relationship illustrates the classical viscous Newtonian fluid. 

In the exclusion of body force, the equation of motion is 

. .
DV

T
Dt

ρ = ∆                                  (7) 

Where ρ is the density, and 
D

Dt
 is the time fractional 

material derivative. 

The equation of continuity for the velocity is 

. 0.V∆ =                                    (8) 

We seek a solution for the velocity field in the form 

( , ) .V u y t i=                                (9) 

The fluid is set into motion through the action of the stress 

at the plate. The stress is described by (1), (2), (4) and (5). By 

substitution ( , )u y t in the equations, we obtain 

1 ,xy y t yT u uβµ α= ∂ + ∂ ∂                       (10) 

where 0xx yy zz xz yzT T T T T= = = = = and xy yxT T= . 

By inserting the stress components and the velocity in (7), 

we obtain the modified Navier-Stokes equation 

2 2
1 ,t y t yu u uα βρ µ α∂ = ∂ + ∂ ∂                        (11) 

where t
α∂  and t

β∂ denote time-fractional derivative, and the 

fluid is generalized second-order fluid, respectively. 

For the impulsive motion, the initial and boundary 

conditions are as follows: 

( ,0) 0 for 0, (0, )  for 0,

0 for y .

u y y u t U t

u

= > = >
→ → ∞

    (12) 

3. Velocity Field 

In this study, dimensionless variables are introduced as 

follows: 



 American Journal of Applied Mathematics 2020; 8(6): 327-333 329 

 

22
* 1

2
, , , , where .

Uu yU tU
u y t v

U v v v

α µη
ρρ

∗ ∗ ∗= = = = =

U  and η  denote characteristic velocity and dimensionless 

parameter, respectively. Applying these dimensionless 

variables, governing equation of (11) and initial and 

boundary conditions (12) can be written as 

2(1 ) ,t t yu uα βη∂ = + ∂ ∂                         (13) 

( ,0) 0 for 0, (0, ) 1 for 0,

0 for y .

u y y u t t

u

= > = >
→ → ∞

          (14) 

The asterisks symbol is omitted here for its simplicity. Let 

us assume that 

0

( , ) { ( , ), } ( , )stu y s L u y t s e u y t dt

∞
−= = ∫ is the image function 

of ( , )u y t , where s  is the parameter of transformation. In 

equation (13) and (14), we use the Laplace transform 

principle of sequential fractional derivatives, 
2

2

1
0, (0, ) , 0 for ,

1

d u s
u s u y

sdy s

α

βη
− = = → → ∞

+
whose 

analytic solution is 

( )1/2
/21

( , ) exp / 1 .u y s s y s
s

α βη = − + 
 

       (15) 

Now, we can rewrite (15) as follows 

( )
( )

( ) ( )1/2 1/2 1

1/2 /2 /2 1
1 1 0

( / 2)1 1 1
( , ) .

! ! ( / 2)
! 1

n m
n n

n n m
n n m

y m ny s
u y s

s s n m n sn s

α

α β ββ

η η

η

− −−∞ ∞ ∞

− + + +
= = =

− − Γ +−
= + = +

Γ+
∑ ∑ ∑            (16) 

Applying the discrete inverse Laplace transform into (16), we get 

( ) ( )1/2 ( )/2 1

1 0

( / 2)
( , ) 1

! ! ( / 2) ( ( ) / 2 1)

n m

n m

y t t m n
u y t

n m n n m

β α βη η

β α β

− − −∞ ∞

= =

− − Γ +
= +

Γ Γ − + +∑ ∑  

( )
( )

1/2 ( )/2

11 1
13

1

1 ,1
2

1 ,
! ( )

0,1 ; 1 ,0 ; ,
2 2

n

n

n

y t
H t

n n n

β α
β

η
η

β α β

− −∞
−

=

  −  −   = +
 − −   −    

    

∑                                    (17) 

in which ,
, ( )m n

p qH z  denotes Fox’s H function [25]. Now let us make some analyses for the formula (17). 

(i) When 11, 0α β α= = = , (17) can be written as 

( ) ( ) ( ) ( )
1/2 1/2 1/2

/2
1 1/2

1/2,1

1 0

( , ) 1 1 ,
! (1 / 2) ! (1 / 2)

n n

n

n n

y t yt
u y t W yt

n n n n

η
η

− − −∞ ∞−− −
−

= =

− −
= + + = = −

Γ − Γ −∑ ∑                            (18) 

in which ,

0

( )
( )

n

p q

n

z
W z

pn q

∞

=

=
Γ +∑ , z ∈ℂ  is the Wright function [26]. Using the definition of the Wright function and the series 

expression of the error function, we can find the following relation [16] 

1/2, 1( ) ( / 2).W z erfc z− = −                                                                  (19) 

Substituting (19) into (18), we have ( )1/2
1/2,1( , ) ( / 2 )u y t W yt erfc y t−

−= − = − . 

This is the classical Rayleigh’s analogy solution of Newtonian fluid [27]. It is evident that the result of this paper includes a 

particular case the classical Newtonian fluid. 

(ii) When 1β = , formula (17) can be simplified as  

( )
( )

1/2 (1 )/2

11 1
13

1

1 ,1
2

( , ) 1 .
! (1 )

0,1 ; 1 ,0 ; ,1
2 2

n

n

n

y t
u y t H t

n n n

αη
η

α

− −∞
−

=

  −  −   = +
 −   − −    

    

∑  



330 Mohammad Tanzil Hasan et al.:  The Impulsive Motion of Flat Plate in Generalized Second   

Grade Fluid with Anomalous Diffusion 

This is the solution for velocity for ordinary second-order fluid. 

(iii) When 1 0,  0 1β α α= = < < , (17) leads us,  

( ) ( )
/2

/2
/2,1

0

( , ) .
! (1 / 2)

n

n

yt
u y t W yt

n n

α
α

αα

−∞
−

−
=

−
= = −

Γ −∑                                                    (20) 

Separating (20) into two parts according to the odd and even terms and applying formulas 

( ) ( ) 1 1(1/ 2 ) 1 2 / (2 1)!! and ( 1/ 2 ) 1 2 / (2 1)!!.
n nn nn n n nπ π+ +Γ − = − − Γ − − = − +  

We have 

( )

( )

/2
1 21

23

1,1 ; 1,
2

( , ) ,
2 1 1 1

, ; 1, ; 0,1
2 2 2

yt
u y t H

α
α

π
−

−

  
  

  =
    
    

    

                                                       (21) 

which is the solution of the fractional diffusion equation obtained by Wyss [28], using contour integral and inverse Mellin 

transform method to find the solution. 

4. Stress Field 

Since the fluid is set into motion through the action of the stress at the plate, the stress field ought to be computed. From (10) 

the dimensionless stress can be reprepresnted 

t

u u
F D

y y

βη∂ ∂= +
∂ ∂

                                                                       (22) 

where 
2

( , ) .
xyT

F y t
Uρ

=  

The Laplace transform of (22) is 

( ) ( )
( , ) .

du y du y
F y s s

dy dy

βη= +                                                           (23) 

Substituting (15) into (23), we have 

( )
1/2

/2 1

1/2
( , ) exp .

11

s s
F y s y

ss

α α

ββ ηη

−

−

  
 = − −    + +  

                        (24) 

We apply the discrete inverse Laplace transform formula again to give the stress distribution. Firstly, we rewrite (24) as a 

series form 

( )
( )

( )1 1
( 1) /2 1 1 2

( 1)1/2 ( 1) /2 ( 1) /2 1
0 0 0

1

( ) ( ) 12
( , ) .

1!
! 1 !

2

nk
k k k

k k n k
k k n

k
n

y s y
F y s

kk sk s n

α

α β ββ

η
η

η

− −
+ −∞ ∞ ∞−

− − + + + − +
= = =

− − Γ + − −  = − = −
− + Γ  

 

∑ ∑ ∑     (25) 

Using the discrete inverse Laplace transform with (25), we obtain 

( ) ( ) ( )1
1

1 2 ( 1) /2 ( 1) /2

0 0

1

2
( , )

1 1 1!
!

2 2 2

k n
k

k k

k n

k
t ny t

F y t
k k kk

n n

β
α βηη

α β β

− −−∞ ∞ − + + −

= =

− − Γ + −
 = −
− + −   Γ Γ − + +   

   

∑ ∑  
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( ) ( )
1

1 ( 1) /2 ( 1) /22

11 1
13

0

3
,1

2 2

! 3 1 1
(0,1); ,0 ; ,

2 2 2 2

k
k k k

k

k

y t
H t

k k k k

α β
β

η
η

α β β

−
− − + + −∞

−

=

  −  −   = −
 + −   − −    

    

∑                     (26) 

Now let us make some analyses for the above formulas of this study 

(i) If 1 0, 1β α α= = = , the medium is a Newtonian fluid, and (26) becomes 

( ) ( )
1/2

1/2 1/2 1/2
1/2,1/2

0

( , ) .
1

!
2 2

k

k

yt
F y t t t W yt

k
k

−∞
− − −

−
=

−
= − = − −

 Γ − 
 

∑                                        (27) 

By the definition of Wright function, we are able to demonstrate that 

( )1/2 2
1/2,1/2 ( ) exp / 2 .W z zπ −

− − = −                                                      (28) 

Substituting (28) into (27), we can reduce (27) to the classical solution of Newtonian fluid. 

(ii) If 1α = , then (26) can be simplified as 

( ) ( )
1

1 ( 1)/2 ( 1) /22

11 1
13

0

3
,1

2 2
( , ) ,

! 3 1 1
(0,1); ,0 ; ,

2 2 2 2

k
k k k

k

k

y t
F y t H t

k k k k

β
β

η
η

α β β

−
− − + + −∞

−

=

  −  −   = −
 + −   − −    

    

∑        (29) 

which is the same result as shown by Tan and Xu [16]. 

To obtain the value of the shear stress at the plate, we put 0y =  in (24), to get the following expression 

( )
/2 1

1/2
( ) .

1
p

s
F s

s

α

βη

−

−
−=
+

                                                                               (30) 

Similarly, we obtain the following formula to calculate the shear stress at the plate 

1/2 ( )/2 11 1
13

3
,1

2
( ) .

3
(0,1); ,0 ; ,

2 2

pF t t H tα β βη η
α β β

− + −

  
  

  = −
 +   
    

    

 

5. The Relationship Between Stress Field and Velocity Field 

Substituting (15) into (24), we obtain 

( )1/2
/2( , ) 1 . ( , ).F y s s s u y sα βη= − +                                                              (31) 

Similarly, we can obtain the Laplace inversion of the first term at the right-hand side of the equation 

( )
( ) ( )1 1

(( )/2) 11/2
1 /2 1 1/2 1/2

( )/2
0 0

1 1

12 2
( ) 1 , ,

1 1
! !

2 2 2

n n

n

n
n n

n n
t

g t L s s t L t
s

n n n

β α β
α β

β α β

η η
η η η

α ββ

− −
∞ ∞ − + −

− −
− +

= =

    − Γ − − Γ −    
      = − + = =    +        Γ − Γ − Γ −            

∑ ∑  

Applying the convolution theorem of the Laplace transform with equation (31), we get 
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( )1

1/2 (( )/2) 1

0 0

1

2
( , ) ( ) ( , ) .

1
!

2 2

n

t

n

n

n

F y t t u y d

n n

β α β
η

η τ τ τ
α ββ

−
∞

− + −

=

 − Γ − 
 = − −

+   Γ − Γ −   
   

∑ ∫                                 (32) 

Using the definition of fractional calculus, equation (32) can be written as 

( )1

1/2 ( )/2

0

1

2
( , ) . ( , ).

1
!

2

n

n
t

n

n

F y t D u y t

n

β α β
η

η

−
∞

− + +

=

 − Γ − 
 = −

 Γ − 
 

∑                                     (33) 

The physical meaning of (32) and (33) is that the stress at a 

given point at any time is depended on the time history can 

be depicted by the fractional calculus. If one puts	� = 1, � =

�� = 0,  formula (33) can be simplified as 
1/2( , ) ( , )tf y t D u y t= . This is the dimensionless form of the 

result obtained by 

Bagley and Torvic [29]. 

6. Conclusions 

In this study, the classical problem of the plate moving 

impulsively in its own plane to the generalized second-order 

fluid is extended by replacing material time derivative of 

integer order with fractional-order and defining 0 < � ≤ 1 . 

Some important results presented for the flow field of a 

generalized second-grade fluid with anomalous sub-diffusion 

(0 < � ≤ 1)  near the wall suddenly set in motion. The 

discrete Laplace transform method of sequential fractional 

derivatives is used to obtain exact analytical solutions of 

velocity and stress. The fractional derivatives approach in the 

constitutive relationship model of generalized viscoelastic 

fluid and anomalous diffusion are introduced. The fractional-

order model is more applicable than the ordinary second-order 

model narrating the properties of viscoelastic fluid. We hope 

that our model and the analytical solutions employed in this 

paper will be used to validate and interpret more complicated 

types of flow and the analysis of viscoelastic fluid. 
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