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Abstract: In this work, introduce and study a generalized operator quasi-equilibrium problems (in short, OQEP) in the
setting of topological vector spaces. We prove some new existence results for the solution of this problem by applying
C(f)-quasiconvex, escaping sequence in Hausdörff topological vector spaces. The results of this paper can generalize and unify
previously known corresponding results of this area.
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1. Introduction and Preliminaries

The study of equilibrium problems was introduced by Blum
and Oettle [2] in 1994. In 2005, Kazmi and Raouf [12] have
intensively studied a class of operator equilibrium problems
and established some existence results for solutions of this
problem. In this work we establish some existence theorems
for solutions of a new class of generalized operator quasi-
equilibrium problems (in short, OQEP). The results of this
paper can be viewed as a generalization and improvement of
many well-known results in the literature, see for example ([5,
11-14]).

Throughout the paper, unless otherwise specified, we use
the following notations.

Let W and Z be Hausdörff topological vector spaces;
L(W,Z) be a space of all continuous linear operators from W
to Z, endowed with the topology of point-wise convergence
(w.r.t.p.c.) and let B ⊂ L(W,Z) be a nonempty convex set.
Let C : B → Π(Z) be a multi-valued map such that for each
f ∈ B, C(f) is a solid, convex and open cone and 0 6∈ C(f)
and let C0(f) = C(f) ∪ {0}, where Π(Z) denotes the family
of all subsets of Z.

Let Z be an ordered topological vector space with an
ordering cone C(f). Note that C(f) 6= Z. It is clear
that the cone C(f) for each f ∈ B defines on Z a partial
ordering ≤C(f) as follows; g ≤C(f) h if and only if h − g ∈

C(f),∀h, g ∈ C(f).
Let S : B → Π(B) be a multi-valued map with non-empty

values. We denote by F(B) the family of multi-valued maps
from B ×B to Π(Z). Let F ∈ F(B).

In this paper, we consider the following generalized
operator quasi-equilibrium problem (OQEP). Find f ∈
B such that

f ∈ clBS(f) and F (f, g) 6⊆ −C(f), ∀g ∈ S(f), (1)

where clBS(f) denotes the closure of S(f) in B.
We remark that, for suitable choices of F , B, S, W , Z and

C, OQEP (1) reduces to the problems presented in ([5, 12-14])
and the references therein. If B ⊂ W , then (1) reduces to
vector equilibrium problem studied by Khaliq and Raouf [8],
Khaliq [6], Khaliq and Krishan [7], Kazmi [10-11], Ansari and
Yao [1] and the references therein. We omit the details.

We need the following definitions and results.
Definition 1.1. Let P : D ⊂ L(W,Z) → Π(Z) be a multi-

valued mapping. Then
(i) The graph of a multi-valued map P : D ⊂ L(W,Z) →

Π(Z) define as

G(f) = {(f, z) ∈ D × Z : f ∈ D, z ∈ P (f)}.

(ii) Let P be a multi-valued map from range of P to D. The
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inverse P−1 of P defined by

f ∈ P−1(z) if and only if z ∈ P (f).

(iii) If, for each f ∈ D and any open set V in Z containing
P (f) ,there exists an open neighborhood U of f in D
such that P (f) ⊆ V for all f ∈ U , then P is called
upper semicontinuous on D.

LetB =
⋃∞
n=1Bn, be a subset of L(W,Z) where {Bn}∞n=1

is an increasing sequence of non-empty and compact sets such
that Bn ⊆ Bn+1 for all n ∈ N . A sequence {fn}∞n=1 in B is
said to be escaping from B (relative to {Bn}∞n=1) if for each n
there is an m ≥M, fm 6∈ Bn.

Let S, T : B → Π(L(W,Z)) be multi-valued maps then the
multi-valued maps clBS, coS, S

⋂
T : B → Π(L(W,Z)) are

defined as (clBS)(f) = clBS(f), (coS)(f) = coS(f) and
(S

⋂
T )(f) = S(f)

⋂
T (f), for all f ∈ B, where coS(f)

denotes the convex hull of S(f)
To prove the existence of solution of OQEP(1), we shall use

the following theorems which are the special cases of Theorem
2 in Ding, Kim and Tan [3] and Theorem 2 in Ding, Kim and
Tan [4].

Theorem 1.1. Let B be a non-empty, compact and convex
subset of a Hausdörff topological vector space E. Suppose
that A, clEA, P : B → Π(B) are multi-valued maps such
that for each x ∈ B, A(x) is non-empty and convex set,
for each y ∈ B, A−1(y) is open set in B, clEA is upper
semicontinuous, for each x ∈ B, x 6∈ coP (x) and for each
y ∈ B, P−1(y) is open in B. Then there exists x∗ ∈ B such
that x∗ ∈ clBA(x∗) and A(x∗) ∩ P (x∗) = ∅.

Theorem 1.2. Let B be a non-empty and convex subset of
a locally convex Hausdörff topological vector space E and
D be a non-empty and compact subset of B. Suppose that
A, P : B → Π(D) and clEA : B → Π(B) be multi-valued
maps such that for each x ∈ B, A(x) is non-empty and convex
set, for each y ∈ B, A−1(y) is open set in B, clEA is upper
semicontinuous, for each x ∈ B, x 6∈ coP (x) and for each
y ∈ D, P−1(y) is open in B. Then there exists x∗ ∈ B such
that x∗ ∈ clBA(x∗) and A(x∗) ∩ P (x∗) = ∅.

2. Existence Results

Now we give existence results for OQEP(1).
Definition 2.1. Let C : B → Π(Z) be a multi-valued

map such that for each f ∈ B, C(f) is a multi-valued map
with convex cone values in Z. A multi-valued bifunction
F ∈ F(B), where F(B) the family of multi-valued maps
from B × B to Π(Z), is called C(f)-quasiconvex, if for all
f, g1, g2 ∈ K and λ ∈ [0, 1], gλ = λg1 + (1− λ)g2, we have

F (f, gλ) ⊆ F (f, g1)− C(f)

or
F (f, gλ) ⊆ F (f, g2)− C(f).

Theorem 2.1. Let B ⊂ L(W,Z) be a non-empty, compact
and convex set. Let C : B → Π(Z) be a multi-valued map

such that for each f ∈ B, C(f) is a solid, convex and open
cone, 0 6∈ C(f). Let (Z,C(f)) be an ordered topological
vector space. Let F ∈ F(B) and S, clBS : B → Π(B) be
multi-valued maps such that for each f ∈ B, S(f) is non-
empty convex, for each g ∈ B, S−1(g) is open in B and clBS
is upper semicontinuous. Assume that

(i) F is C(f)-quasiconvex;
(ii) graph of G(f) = Z\(−C(f)) is closed for all f ∈ B;

(iii) for each g ∈ B, F (·, g) is upper semi-continuous with
compact values on B;

(iv) F (f, f) ⊆ C0(f), ∀f ∈ B.
Then there exists f0 ∈ B such that

f0 ∈ clBS(f0) and F (f0, g) 6⊆ −C(f0) ∀g ∈ S(f0).

Proof: For each f ∈ B, we define a multi-valued map
P : B → Π(B) by

P (f) = g ∈ B : F (f, g) ⊆ −C(f).

We show that f 6∈ coP (f), for each f ∈ B. Suppose that
f ∈ coP (f), for some f ∈ B. Then there exists f0 ∈ B such
that f0 ∈ coP (f0). This implies that f0 can be expressed as

f0 = Σj∈Jαjgj with αj ≥ 0,Σj∈Jαj = 1, j = 1, 2, 3, ...., n,

where {gj : j ∈ N} be a finite subset of B, J ⊂ N be an
arbitrary non-empty subset where N denotes the set of natural
numbers. This follows

F (f0, gj) ⊆ −C(f0) for all j = 1, 2, 3, ..., n.

Since F is C(f)-quasiconvex, we have

F (f0, gj) ⊆ F (f0, f0) + C(f0)
⊆ C0(f0) + C(f0)
⊆ C(f0)

for all j = 1, 2, ..., n.

F (f0, gj) ⊆ C(f0)

which is a contradiction. Hence f 6∈ coP (f) for each f ∈ B.
Now we show that P−1(g) is open in B, which is equivalent
to show that [P−1(g)]c = B\P−1(g) is closed.

Indeed, we have

P−1(g) = {f ∈ B : g ∈ P (f)}
= {f ∈ B : F (f, g) ⊆ −C(f)}

[P−1(g)]c = {f ∈ B : F (f, g) 6⊆ −C(f)}.

By assumptions (ii) and (iii), we claim that [P−1(g)]c is
closed in B, for all g ∈ B.

Indeed, let {fλ}λ∈Γ be a net in [P−1(g)]c such that {fλ}
converges to f (w.r.t.p.c.). Then we have F (fλ, g) 6⊆ −C(fλ)
for each g ∈ B, that is, there exists hλ ∈ F (fλ, g) such
that hλ 6∈ −C(fλ) or hλ ∈ G(fλ) for all λ ∈ Γ. Let
A = {fλ}∪{f}. ThenA is compact and hλ ∈ F (A, g) which
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is compact. Therefore hλ converges to h (w.r.t.p.c.). Then, by
upper semi continuity of F (·, g), we have h ∈ F (f, g). Also
since G(·) has a closed graph in B × Z, we have h ∈ G(f).
Consequently, h ∈ F (f, g) and h 6∈ −C(f), i.e., F (f, g) 6⊆
−C(f). Hence f ∈ [P−1(g)]c and so [P−1(g)]c is closed in
B for all g ∈ B.

Thus it follows that all the hypothesis of Theorem 1.1 are
satisfied. Hence there exists f0 ∈ B such that

f0 ∈ clBS(f0) and S(f0) ∩ P (f0) = ∅

which implies that there exists f0 ∈ B such that

f0 ∈ clBS(f0) and F (f0, g) 6⊆ −C(f0), ∀g ∈ S(f0).

Theorem 2.2. Let B ⊂ L(W,Z) be a non-empty subset
such that B =

⋃∞
n=1Bn where {Bn}∞n=1 is an increasing

sequence of non-empty, compact and convex subsets ofB. Let
C : B → Π(Z) be a multi-valued map such that for each
f ∈ B, C(f) is a solid, convex and open cone, 0 6∈ C(f).
Let (Z,C(f)) be an ordered topological vector space. Let
F ∈ F(B) and S, clBS : B → Π(B) be multi-valued
maps such that for each f ∈ B, S(f) is non-empty convex
for each g ∈ B, S−1(g) is open in B and clBS is upper
semicontinuous. Assume that

(i) F is C(f)-quasiconvex;
(ii) graph of G(f) := Z\(−C(f)) is closed for all f ∈ B;

(iii) for each g ∈ B, F (., g) is upper semi-continuous with
compact values on B;

(iv) F (f, f) ⊆ C0(f), ∀f ∈ B;
(v) for each sequence {fn}∞n=1 in B with fn ∈ Bn, n ∈ N

which is escaping from B relative to {Bn}∞n=1, there
exists m ∈ N and gm ∈ Bm

⋂
S(fm) such that for

each fm ∈ clBS(fm)

F (fm, gm) ⊆ −C(fm).

Then there exists f0 ∈ B such that

f0 ∈ clBS(f0) and F (f0, g) 6⊆ −C(f0), ∀g ∈ S(f0).

Proof: Since for each n ∈ N, Bn is compact and convex
subset in L(W,Z), applying Theorem 2.1, we have for all
n ∈ N , there exists fn ∈ Bn such that

fn ∈ clBS(fn) and F (fn, h) 6⊆ −C(fn) (2)

for all h ∈ S(fn)
Suppose that the sequence {fn}∞n=1 in B be escaping from

relative to B =
⋃∞
n=1Bn. By assumption (iv) there exists

m ∈ N and hm ∈ Bm
⋂
S(fm) such that for each fm ∈

clBS(fm),
F (fm, hm) ⊆ −C(fm),

which contradicts (2). Hence {fn}∞n=1 is not an escaping
sequence from B relative to {Bn}∞n=1. Thus using the similar
arguments, which have been used by Qun [15] in proving
Theorem 2, there exist r ∈ N and f0 ∈ Br such that fn → f0

(w.r.t.p.c.) and F (f0, g) ⊆ G(f0). Since clBS : B → Π(B) is

upper semicontinuous with compact values, hence there exists
f0 ∈ B such that

f0 ∈ clBS(f0) and F (f0, g) 6⊆ −C(f0), ∀g ∈ S(f0).

Theorem 2.3. Let B be a non-empty for each convex
subset of a locally convex Hausdorff topological vector space
L(W,Z) and D be a nonempty compact subset of B. Let
C : B → Π(Z) be a multi-valued map such that for each
f ∈ B, C(f) is a solid, convex and open cone, 0 6∈ C(f). Let
(Z,C(f)) be an ordered Hausdorff topological vector space.
Let F ∈ F(B) and S, clBS : B → Π(B) be multi-valued
maps such that for each f ∈ B, S(f) is non-empty convex,
for each g ∈ B, S−1(g) is open in B and clBS is upper
semicontinuous. Assume that

(i) F is C(f)-quasiconvex;
(ii) The graph of G(f) := Z\(−C(f)) is closed for all

f ∈ B;
(iii) for each g ∈ B, F (·, g) is upper semi-continuous with

compact values on B;
(iv) F (f, f) ⊆ C0(f), ∀f ∈ B.
Then there exists f0 ∈ B such that

f0 ∈ clBS(f0) and F (f0, g) 6⊆ −C(f0), ∀g ∈ S(f0).

Proof: Let P : B → Π(B) be a multi-valued map define by

P (f) := {g ∈ D : F (f, g) ⊆ −C(f)} ∀f ∈ B.

Then by using the same argument, which we have used in
proving Theorem 2.1, we have f 6∈ B for each f ∈ B and
P−1(g) is open for each g ∈ D. Thus all the conditions of
Theorem 1.2 are satisfied. Hence there exists f0 ∈ B such that

f0 ∈ clBS(f0) and S(f0) ∩ P (f0) = ∅

which implies that there exists f0 ∈ B such that

f0 ∈ clBS(f0) and F (f0, g) 6⊆ −C(f0), ∀g ∈ S(f0).

3. Application

As an immediate application of theorems proved in Section
2, we obtain as special cases, the following existence
results for the solutions of generalised operator quasi-
variational-like inequality problem (in short, GOQVLIP) and
generalized operator variational-like inequality problem (in
short, GOVLIP).

Theorem 3.1. Let W ,Y and Z be three Hausdörff
topological vector spaces and B be a non-empty, compact
and convex subset of L(W,Z). Let (Y,C(f)) be an ordered
Hausdörff topological vector space. Let M : B × Z →
Π(L(W,Y )) be a multi-valued map; η : B × B → L(W,Y )
be bifunction; T : B → Π(Z) and S : B → Π(B) be multi-
valued maps. Define

F (f, g) = Max〈M(f, ν), η(g, f)〉
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for all f, g ∈ B, where ν ∈ T (f) be assume that all the
other conditions of Theorem 2.1 holds. Then the GOQVLIP
of finding f0 ∈ B such that for each g ∈ S(f0) there exists
ν0 ∈ T (f0) satisfying

f0 ∈ clBS(f0) and Max 〈M(f0, ν0), η(g, f0)〉 6⊆ −C(f0),

has a solution.
Corollary 3.1. If S(f) = B for all f ∈ B, in Theorem 3.1.

Then the GOVLIP of finding f0 ∈ B such that for each g ∈ B,
there exists ν0 ∈ T (f0) satisfying

f0 ∈ B and Max 〈M(f0, ν0), η(g, f0)〉 6⊆ −C(f0),

has a solution.
Remark 3.1. If B ⊂ W in Corollary 3.1, then we obtain the

existence results of compact and non-compact settings of [9].

4. Conclusion

In this work, we studied a new class which is known
as a generalized operator quasi-equilibrium problem and
establish existance results for using escaping sequence and
C(f)-qusasiconvex, in the setting of topological vector
spaces. The operator quasi-equilibrium is a generalization and
improvement, include not only scalar and vector equilibrium
and variational inequalities problems as special cases, but have
sufficient evidence for their importance to study, see ([5, 12])
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