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Abstract: The main scope of this paper is to focus the approximate controllability of second order (q∈(1,2]) fractional 

impulsive stochastic differential system with nonlocal, state-dependent delay and Poisson umps in Hilbert spaces. The existence 

of mild solutions is derived by using Schauder fixed point theorem. Sufficient conditions for the approximate controllability are 

established by under the assumptions that the corresponding linear system is approximately controllable and it is checked by 

using Lebesgue dominated convergence theorem. The main results are completly based on the results that the existence and 

approximate controllability of the fractional stochastic system of order 1<q≤2 and are derived by using stochastic analysis theory, 

fixed point technique, q-order cosine family {Ca(t)}t≥0, new set of novel sufficient conditions and methods adopted directly from 

deterministic fractional equations for the second order nonlinear impulsive fractional nonlocal stochastic differential systems 

with state-dependent delay and Poisson jumps in Hildert space H. Finally an example is added to illustrate the main results.  

Keywords: Approximate Controllability, Fixed-Point Theorem, Fractional Stochastic Differential System, Hilbert Space, 

Poisson Jumps 

 

1. Introduction 

The concept of semigroups of bounded linear operators is 

taken as an important concept to dealing with differential and 

integro-differential equations in Banach spaces [8, 14, 15, 17, 

36]. For more points of interest on this concept, we refer to 

Pazy [36]. On the other hand, in numerous mathematical 

models of real world or man made phenomena, we are led to 

dynamical systems which involve some inherent randomness. 

These systems are called stochastic systems. Stochastic 

differential equations [34] have attracted much attention and 

have played an important role in many ways such as option 

pricing, forecast of the growth of population, etc [16, 18, 29, 

34]. In the last few decades, fractional differential systems (we 

refer to the monographs [28, 31, 35, 41] and references cited 

therein) have focused considerable importance in 

electrochemistry, physics, porous media, control theory, 

engineering etc., [4, 5, 6, 10, 11, 44] due to the descriptions of 

memory and hereditary properties of various materials and 

processes. Notion of controllability is of great importance in 

mathematical control theory due to a number of important 

properties of control systems in engineering. Astrom [1] 

discussed about introduction to stochastic control theory. In 

the infinite dimensional systems, two basic concepts of 

controllability are exact and approximate controllability. 

Exact controllability enables to steer the system to arbitrary 

final state while approximate controllability is weaker concept 

of controllability and it is possible to steer the system to an 

arbitrary small neighborhood of the final state (see, for 

example, [2, 9, 12, 46, 50]). Impulsive effects [47] exist 

widely in many evolution process because, the impulsive 

effects may bring an abrupt change at a certain moments of 

time involving such fields as economics, mechanics, 

electronics, telecommunications, medicine and biology, etc. 

Kexue et al. [27] studied controllability of nonlocal fractional 

differential systems of order � ∈ (1,2]  in Banach spaces. 

Delay fractional differential equations are similar to fractional 

differential equations, but their evolution involves past value 

of the state variable. Muthukumar and Thiagu [32] proved the 

existence of solutions and approximate controllability of 

fractional nonlocal stochastic differential equations of order 
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� ∈ (1,2] with infinite delay and Poisson jumps in Hilbert 

spaces by using fixed point theory and natural assumption that 

the corresponding linear system is approximately controllable. 

Hence problem of existence of approximate controllability for 

nonlinear fractional impulsive stochastic differential 

equations with nonlocal conditions and infinite delay has been 

studied by several authors were received significant attention 

in modern days (see [10, 12, 33, 40, 49] and references 

therein). Rajivganthi et al. [38] studied existence of solutions 

and approximate controllability of impulsive fractional 

stochastic differential systems with infinite delay and poisson 

jumps.  

Many authors (see [21, 22, 23, 30, 39]) established the 

existence and approximate controllability of different types of 

functional differential equations with state-dependent delay. 

Fractional differential equations with state-dependent delay 

appear frequently in applications as models of equations and 

for this reason the study of this type of equations has been 

receiving great attention in recent years (see [3, 7, 43, 45] and 

references therein). Many authors (see [13, 19, 26, 48, 51] and 

references therein) studied the existence and approximate 

controllability as well as stability of different types of 

fractional stochastic differential equations with 

state-dependent delay in Hilbert spaces under different 

suitable aspects. Selvarasu et al. [41] established approximate 

controllability of impulsive fractional stochastic 

integro-differential systems with state-dependent delay and 

poisson Jumps of order 1 < � < 2. Moreover approximate 

controllability results for fractional impulsive stochastic 

differential system of order � ∈ (1,2]  with nonlocal, 

state-dependent delay and Poisson jumps in Hilbert spaces has 

not yet been derived in the literature. The main purpose of this 

paper is to obtain the sufficient conditions of approximate 

controllability results for fractional impulsive stochastic 

differential system of order � ∈ (1,2]  with nonlocal, 

state-dependent delay and Poisson jumps in Hilbert spaces of 

the form 

	�
���(�) = ��(�) + ��(�) + �(�, ��(�,��)) 
+� 	�

���(�, ��(�,��)) !(�) + � 	" #(�, ��(�,��), $)%&( �,  $), 
� ∈ ':= [0, +]\{�., . . . , �/},0 = �1 < �. < ⋯ < �/ < �/3. =+, 

�1(�) = 4(�) +5(��6 , . . . , ��7)(�), 
(8 > :),8, : ∈ ℕ, 

�′(0) = =, 
Δ�(�?) = @?(��A), 

Δ�′(�?) = @?(��A), B = 1,2, . . . , :: = 1, :.	      (1) 

Here, the state variable�(⋅) takes values in a real separable 

Hilbert space D with the inner product 〈⋅,⋅〉 and norm ∥⋅∥H. 

The fractional derivative 	�
�� , 1 < � ≤ 2 is understood in 

the Caputo sense. Let 0 = �1 < �. < ⋯ < �/ < �/3. = + be 

the given time points. The control function�(⋅) is given in 

ℒK(', L) of admissible control functions with L as a Hilbert 

space. � is a bounded linear operator from L into D. Also 

�:
(�) ⊂ D → Dis the infinitesimal generator of a strongly 

continuous cosine family O(�)  on D.  Let P  be another 

separable Hilbert space. Let {!(�)}�Q1be a given P-valued 

Wiener process with a finite trace nuclear covariance 

operatorR ≥ 0.  Let �T = {�T(�): � ∈ 
�T}  be a stationary UV 
Poisson point process with characteristic measure W . Let 

%( �,  $) be the Poisson counting measure associated with	�T. 

Then %(�, X) = ∑ 	Z∈[\] ,Z^� @"(�T(_))  with measurable set 

X ∈ �̀(P − {0}), which denotes the Borel b-field of .P − {0} 
Let%&( �,  $) = %( �,  $) −  �W( $)  be the compensated 

Poisson measure that is independent of !(�). Let cK([0, +] ×X;D) be the space all mapping f: [0, +] × X → Dfor which 

� 	g1 � 	" h ∥ f(�, $) ∥HK  �W( $) < ∞.  We can define the 

H-valued stochastic integral � 	g1 � 	" f(�, $)%&( �,  $), which is 

a centered square integrable martingale. We can also 

employing the same notation 	∥⋅∥for the norm of ℒ(P,D) , 

which denotes the space of all bounded operators fromP  into 

D . Simply ℒ(D) if P = D . The histories��  represents the 

function defined by ��: (−∞, 0] 	→ D, ��(j) = �(� + j),	for 

� ≥ 0	belong to some phase space ℬdescribed axiomatically 

and l: ' × ℬ → (−∞, +]  is a continuous function. Further 

�: ' × ℬ → D,  �: ' × ℬ → ℒm(P, D)  and #: ' × ℬ × X →
D	are nonlinear functions. Here ℒm(P, D) denotes the space 

of all R -Hilbert Schmidt operators from P  into D . Let 

cO(', ℒK(Ω, U, ℙ; D)) ={ �(�)  is continuous everywhere 

except for some �?  at which �(�?�)  and �(�?3)  exist and  

�(�?�)  = �(�?) ,  B = 1,2, … ,8} be the Banach space of 

piece-wise continuous function from ' into ℒK(Ω, U, ℙ; D) 
with the norm ∥ � ∥qr= sup

�∈v
|�(�)| < ∞.cO(', ℒK)  is the 

closed subspace of cO(', ℒK(Ω, U, ℙ;D))  consisting of 

measurable and U� -adapted D -valued processes �(⋅) ∈
cO(', ℒK(Ω, U, ℙ; D))  endowed with the norm ∥ � ∥K=
sup{h ∥ �(�) ∥K, � ∈ '}.  Moreover the function 5:Dx →
D,	 where 0 = �1 < �. < �K <. . . < �x ≤ y ,  8 ∈ ℕ  is a 

continuous function. For example (refer [25]) 

5(��6 , . . . , ��7)(�) =z	
x

{|1
O{}(�{ + �), � ∈ ℬ, � ≥ 0, 

where O{	(~ = 1,2, . . . , 8)  are constants. @?  and  @?: D →
D	are appropriate functions. The jump in the state � at time 

�?  is defined by Δ� = �(�?3) − �(�?�) . The initial data 

4 = {4(�): � ∈ (−∞, 0]} is an U1 -measurable ℬ -valued 

stochastic process independent of Brownian motion {!(�)} 
and Poisson point process �T(⋅) with finite second moment. 

Further =(�) is an U�-measurable D-valued random variable 

independent of !(�) and Poisson point process �T with finite 

second moment. 

2. Preliminaries 

Let (Ω, U, ℙ) be a complete probability space furnished 

with complete family of right continuous increasing sub 

b -algebras {U�: � ∈ '}  satisfying. U� ⊂ U . An D -valued 

random variable is an U -measurable function �(�): Ω →
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D and a collection of random variables � = {�(�, �): Ω →
D|�∈v} is called a stochastic process. Usually, we suppress the 

dependence on  � ∈ Ω  and write �(�)  instead of �(�, �) 
and �(�): ' → D in the place of �. Let  �/(�)(: = 1,2, … ) 
be a sequence of real valued one-dimensional standard 

Brownian motions mutually independent over (Ω, U, ℙ) . 

Set 	!(�) = ∑ 	�/|. �W/�/(�)�/, � ≥ 0, where W/ ≥ 0  (: =
1,2, … )  are non-negative real numbers and {�/}  (: =
1,2, … )  is complete orthonormal basis in P . Let R ∈
ℒ(P, P) be an operator defined by  R�/ = W/�/with finite 

y�(R) = ∑ 	�/|. W/ < ∞,  y�(R)  denotes the trace of the 

operator R.  Then the above P -valued stochastic process 

!(�)  is called a R -Wiener process. Let us assume that 

U� = b(!(_): 0 ≤ _ ≤ �)	 is the b -algebra generated by ! 

and . U� = U.  Let � ∈ ℒ(P,D)  and define ∥ � ∥mK−
y�(�R�⋆)=∑ 	�/|. ∥ �W/��/ ∥K..	 If ∥ � ∥m< ∞,  then �  is 

called a R-Hilbert Schmidt operator. Let ℒm(P, D) denotes 

the space of all RHilbert Schmidt operators� ∈ ℒ(P,D).	The 

completion ℒm(P, D)  of ℒ(P,D)  with respect to the 

topology induced by a norm∥⋅∥m, where ∥ � ∥mK=〈�, �〉 is a 

Hilbert space with the above norm topology. Let �	be the 

closed subspace of all continuously differentiable process that 

belong to the space�(', ℒK(Ω; D)) consisting of U�-adapted 

measurable process such that U1 -adapted processes 4 , 

= ∈ ℒK(Ω, ℬ). 
In this work we will employ an axiomatic definition of the 

phase space ℬ introduced by Hale and Kato [20]. The axioms 

of the space ℬ are established for ℱ?- measurable functions 

from '1 into D , where '1: = (−∞, 0 ], endowed with a 

seminorm ∥⋅∥H.We will assume that ℬ satisfies the following 

axioms: 

(a) If �: (−∞, +) → D, + > 0 is continuous on [0, +)	and  

�1 ∈ ℬ , then for each � ∈ [0, +)  the following conditions 

hold, 

(I) �1 ∈ ℬ,	 
(ii),∥ �(�) ∥≤ P. ∥ �� ∥ℬ, 

(iii) ∥ �� ∥ℬ≤ PK(�) ∥ �1 ∥ℬ 

+P�(�)sup{∥ �(_) ∥; 0 ≤ _ ≤ +}, where P. > 0  is a 

constant, PK: [0,∞) → [0,∞) is a locally bounded function, 

P�: [0,∞) → [0,∞)  is a continuous function. Moreover 

P., PK(⋅), P�(⋅) are independent of �(⋅), 
(b) For the function�(⋅) in (a), ��is a ℬ-valued continuous 

functions on, [0, +), 
(c) The space ℬ is complete. 

Examples of phase space satisfying the above axioms can 

be found in Hale et al. And Hernandez et al. [21,24]. The 

ℬ-valued stochastic process  ��: Ω → ℬ, � ≥ 0, is defined by 

setting  

�� = {�(� + _)(�): _ ∈ (−∞, 0]}. 
The collection of all strongly measurable, square integrable 

D valued random variables, denoted by ℒK(Ω, U, ℙ; D) ≡ℒK(Ω;D),is a Banach space equipped with norm ∥ �(⋅) ∥ℒ�=
(h ∥ �(⋅;�) ∥HK )6� , where the expectation, h  is defined by 

h(ℎ) = � 	� ℎ(�) ℙ . Let '. = (−∞, +] and O('., ℒK(Ω; D)) 
be the Banach space of all continuous maps from '. 

intoℒK(Ω; D) satisfying the condition.sup
�∈v6

h ∥ �(�) ∥K< ∞. 

Let ℤbe the closed subspace of all continuous process that 

belong to the space O('., ℒK(Ω; D))  consisting of U� - 

adapted measurable process and U1 -adapted processes 

4 , = ∈ ℒK(Ω, ℬ)	 and the restriction �: ' → ℒK(Ω, ℬ)  is 

continuous. Let ∥⋅∥ℤ be a seminorm in ℤ	defined by 

∥ � ∥ℤK= sup
�∈v

∥ �� ∥ℬK , 

where 

∥ �� ∥ℬK≤ PKh ∥ 4 ∥ℬK+ P� sup1^Z^g
{h ∥ �(_) ∥K}, 

PK = sup
�∈v

{PK(�)} and P� = sup
�∈v

{P�(�)},It is easy to verify 

that ℤ furnished with the norm topology as defined above is a 

Banach space. 

Let �(D) be the space of all bounded linear operators on 

D . Let @  be the identity operator on D . If � is a linear 

operator on D, then �(W, �) = (W@ − �)�. denotes the 

resolvent operator of �. We can use the notation 

B�(�) = ���6
�(�) , � > 0, � > 0, 

where Γ(�)  is the Gamma function. If 	� = 0, we set 

B1(�) = �(�), the delta distribution. 

The foiiowing important defitions 2.1 - 2.8 are carried out 

from Kexue et al. [27].  

Definition 2.1 The Riemann-Liouville fractional integral of 

order � > 0 is defined by 

����(�) = � 	�1 B�(� − _)�(_) _ 

where .�(�) ∈ ℒ.([0, +]; D). 
Definition 2.2 The Riemann-Liouville fractional derivative 

of order 1 < � ≤ 2 is defined by 


���(�) = ��
�����K���(�), 

where �(�) ∈ ℒ.([0, +]; D),. 
Definition 2.3 The Caputo fractional derivative of order 

1 < � ≤ 2 is defined by 

	�
���(�) = 
��(�(�) − �(0) − �′(0)�), 
where �(�) ∈ ℒ.([0, +]; D) ∩ O.([0, +]; D), 
���(�) ∈ℒ.([0, +]; D).  

The Laplace transform for the Riemann-Liouville fractional 

integral is given by 

�[����(�)] = .
�\ ��(W), 

where ��(W) is the Laplace transform of � given by 

��(W) = � 	�
1 �����(�) �, ��W > !1. 

The Laplace transform of the Caputo derivative is given by  

�[�
���(�)] = W���(W) − �(0)W��. − �′(0)W��K 
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Consider a class of fractional differential system with 

infinite delay 

	�
���(�) = ��(�) + ��(�), � ∈ [0, +], 
�(0) = �1 ∈ D, �′(0) = �. ∈ D,         (2) 

where � ∈ (1,2], 	�
��  is the Caputo fractional derivative, � 

is the infinitesimal generator of a strongly continuous 

-� −order cosine family {O�(�)}�Q1 on the Hilbert space D, 

the state values �(⋅) takes values in D, the control function 

�(⋅) is given in ℒK(', L) of admissible control functions with 

L, a Hilbert space, � is a bounded linear operator form L 

into.D. 
Theorem 2.4 (Schauder fixed point theorem) Let � be a 

real Banach space, � ⊂ �  a nonempty closed bounded 

convex subset and �: � → � is compact. Then � has a fixed 

point. 

Theorem 2.5 (Lebesgue’s dominated convergence theorem) 

Suppose �/: ℝ → [−∞,∞]  are (Lebesgue) measurable 

functions such that the pointwise limit 	�(�) = ¡~8/→��/(�) 
exists. Assume there is an integrable �:ℝ → [0,∞]  with 

|�/(�)| ≤ �(�) for each � ∈ ℝ. Then �  is integrable as is 

�/ for each :, and 

lim/→�¥ 	
ℝ
�/ ¦ = ¥ 	

ℝ
lim/→��/ ¦ = ¥ 	

ℝ
� ¦. 

Definition 2.6 Let� ∈ (1,2]. A family {O�(�)}�Q1 ⊂ ℬ(D) 
is called a solution operator (or a strongly continuous �-order 

fractional cosine family) for the above problem (2) if the 

following conditions are satisfied 

(a) O�(0) = @, @ is the identity operator in D, 

(b) O�(�)�  is strongly continuous for � ≥ 0 , for every 

�	 ∈ D, 

(c) O�(�)
(�) ⊂ 
(�) and	�O�(�)�1 = O�(�)��1 for all 

�1 ∈ 
(�), � ≥ 0,  

(d) O�(�)�1  is a solution of �(�) = �1 + � 	�1 B�(� −
_)��(_) _ for all �1 ∈ 
(�), � ≥ 0, 

A is called the infinitesimal generator of . The strongly 

continuous � -order fractional cosine family is also called 

�-order cosine family. 

The corresponding fractional sine family S�: ℝ3 → ℬ(D) 
associated with O�  is defined by ��(�)� = � ?�1 O�(_)� _ 

for,� ≥ 0,.	�	 ∈ D, 

Definition 2.7 The fractional Riemann-Liouville family 

T�: ℝ3 → ℬ(D)	associated with	O� is defined by 

y�(�) = ����.O�(�). 
Definition 2.8 The � -order cosine family O� is called 

exponentially bounded if there exist constants © ≥ 1  and 

!1 ≥ 0 such that 

∥ O�(�) ∥≤ ©�ª«� , � ≥ 0. 
An operator �is said to belong to	O�(©,!1), if	problem 

(2) has an q-order cosine family O�(�)	satisfying the above 

inequality. 

Assume � ∈ O�(©,!1)  and let O�(�)  be the 

corresponding �-order cosine family. Then we have 

W��.�(W� , �)�1 = � 	�
1 ����O�(�)�1 �, ��W > !1, �1 ∈ D, 

W��K�(W� , �)�1 = � 	�
1 ������(�)�1 �, ��W > !1, �1 ∈ D, 

�(W� , �)�1 = � 	�
1 ����y�(�)�1 �, ��W > !1, �1 ∈ D 

Based on the result found in Kexue et al. [27], the functi�on 

�	 ∈ 	C([0, +]; D)  is called a mild solution of (2)  if x 

satisfies 

�(�) = O�(�)�1 + ��(�)�. + � 	�1 y�(� − _)��(_) _, � ∈ '. 
The solution of system (1)  for a given control �(⋅) ∈

ℒK(', L) denoted by �(⋅; �). In particular, the state of system 

(1) at � = +, �(+; �) is called the terminal state with control 

�.. The set �g(%) = {�(+; �); �(⋅) ∈ ℒK(', L)} is called the 

reachable set of system (1). In what follows, �g(%) stands 

for the closure of �g(%)  in the space D. 

Definition 2.9 The system (1) is said to be approximately 

controllable on the interval '  if �g(% ) is dense in D , 

i.e., .�g(%) = D. 
In order to study the approximate controllability (see [12, 

32, 38, 42, 51]) of the fractional control system (1), we need 

to introduce the relevant operator 

	­1g = � 	g1 y�(+ − _)��∗y�∗(+ − _) _, 
�(¯, ­1g) = (¯@ + ­1g)�.�°�	¯ > 0, 

where �∗ denotes the adjoint of � and y�∗(y) is the adjoint 

of y�(�). It is clear that the operator ­1g	is a linear bounded 

operator. 

(H0) ¯�(¯, ­1g) → 0 as ¯ → 03 in the strong operator 

topology. 

Note that the assumption (H0) is equivalent to the fact that 

the fractional linear control system (2)  is approximately 

controllable on '. 
Definition 2.10 It is clear that under these conditions the 

system (1) admits a mild solution �(⋅) ∈ cO(', ℒK) if 

(i) �(�) is U-adapted for each 0 ≤ � ≤ +, 

(ii) � 	g1 h ∥ �(_) ∥K  _ < ∞, ². _. 
(iii) For each � ∈ ℒKU(', L)  and �(⋅) ∈ cO(', ℒK)  the 

following stochastic integral equation is satisfied  

x(�) = O�(�)(4(0) + m(��6 , . . . , ��7)(0)) + ��(�)= + � 	�1 y�(� − _)�(_, ��(Z,�³)) _ + � 	�1 y�(� − _)��(_) _	 
+� 	�1 y�(� − _)[� 	Z

���(_, ��(Z,�³)) !(_)] _ + � 	�1 � 	" y�(� − _)#(_, ��(Z,�³), $)%&( _,  $) 
+∑ 	1´�A´� y�(� − �?)@?(��A) + ∑ 	1´�A´� y�(�−)@?(��A), B = 1, :. 
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(iv) �1(�) = 4(�) + 5(��6 , . . . , ��7)(�), ,�′(0) = =, 

where 

�(�) = �∗y�∗(+ − �)�(¯, ­1g){�g − O�(�)(4(0) + m(��6 , . . . , ��7)(0)) − ��(�)= − � 	�1 y�(+ − _)�(_, ��(Z,�³)) _ 

−	� 	�1 y�(+	_)[� 	Z
���(_, ��(Z,�³)) !(_)] _ −� 	�1 � 	" y�(+ − _)#(_, ��(Z,�³), $)%&( _,  $) 

−∑ 	1´�A´� y�(b − �?)@?(��A) − ∑ 	1´�A´� y�(b−)@?(��A), B = 1, :. 
In order to prove the theorems, we need the following 

hypotheses: 

(H1) The bounded linear operator y�(�) is compact for 

� > 0 and there exists a positive constant © such that 

sup
�∈v

∥ y�(�) ∥≤ ©. 
(H2) � is an infinitesimal operator of a strongly continuous 

�-order cosine family {O�(�): � ≥ 0} on D. Also ∥ O�(�) ∥≤©r  and ∥ ��(�) ∥≤ ©¶ . Moreover the operators O�(�) and 

��(�) are compact for � > 0, 
(H3) The functions 5:Dx → D is continuous, satisfy the 

Lipschitz condition and there exists a positive constant · 

such that 

h ∥ 5(��6 , . . . , ��7) ∥HK≤ ·, 
for all ,(��6 , . . . , ��7) ∈ Dx, 

(H4) �	is a bounded linear operator from L into D, such 

that  ∥ � ∥= %, for a constant % ≥ 0. 

(H5) For each � ∈ ℬ,P̧ (�) = lim¹→�� 	1
�¹ �(_, �) !(_) 

exists and is continuous. Also there exists a positive constant 

©¸ such that.h ∥ P̧ (�) ∥HK≤ ©¸, 

(H6) The non-linear function #  is a Borel measurable 

function which satisfy the Lipschitz continuity condition and 

there exists positive constants ©# > 0 and �# > 0 such that 

� 	" ∥ #(�, �, $) ∥HK W( $) _ ≤ ©#(1+∥ � ∥ℬK ), 
� 	" ∥ #(�, �, $) ∥Hº W( $) ≤ �#(1+∥ � ∥ℬº ), �°�	²¡¡	� ∈ ℬ, � ∈ '. 

(H7) The functions � → 4�  and � → =�  are well defined 

from »(l�) = {l(_, ¼); (_, ¼) ∈ ' × ℬ, l(_, ¼) ≤ 0}  into ℬ 

and there exists a continuous and bounded functions 

ℋ¾ ,ℋ¿ : »(l�) → ℝ	such that  

∥ 4� ∥ℬK≤ ℋ¾(�) ∥ 4 ∥ℬK and ∥ =� ∥ℬK≤ ℋ¿(�) ∥ = ∥ℬK for 

every � ∈ »(l�).  

(H8) The functions @? , @?: D → D are continuous and there 

exists constants À̂? ,  Â? , B = 1, :	such that 

h ∥ @?(�) ∥K≤ À̂? ∥ � ∥K, h ∥ @?(�) ∥K≤  Â? ∥ � ∥K, 
for every � ∈ ℬ and B = 1, :, 

(H9) The functions �: ' × ℬ → D, �: ' × ℬ → ℒm(P, D) 
and #: ' × ℬ_ ∈ ' × X → Dsatisfies the following conditions: 

(i) Let �: (−∞, +] → Dbe such that � ∈ cO(', ℒK) . The 

functtions � → �(_, ��(�,��)), � → �(_, ��(�,��))  and � →
#(_, ��(Z,�³), $)  are measurable on ' . Also the functions 

� → �(_, ��(�,��)), � → �(_, ��(�,��))  and � → #(_, ��(Z,�³), $) 
are continuous on »(l�) ∪ ' for every _ ∈ '. 

(ii) For Ä > 0,there exists a function ÅÆ ∈ ℒ.(', ℝ3)	such 

that sup
∥Ç∥�^Æ

h ∥ �(�, �) ∥K≤ ÅÆ(�)  for a.e � ∈ '  and 

liminfÆ→� � 	g1 ÊË(�)
Æ = �1 < ∞.  

(iii) For Ä > 0,  there exists a function ΩÆ ∈ ℒ.(', ℝ3) 
such that sup

∥Ç∥�^Æ
h ∥ �(�, �) ∥mK≤ ΩÆ(�)  for a.e � ∈ '	 and 

liminfÆ→� � 	g1 �Ë(�)
Æ = �. < ∞. 

(iv) For Ä > 0,  there exists a function ΘÆ ∈ ℒ.(', ℝ3) 
such that sup

∥Ç∥�^Æ
h ∥ #(�, �, $) ∥mK≤ ΘÆ(�)  for a.e � ∈ '	 and 

liminfÆ→� � 	g1 ÍË(�)
Æ = �K < ∞. 

We can prove the next lemma using the phase space axioms. 

Lemma 2.11 Let �: (−∞, +] → D be a function such that 

� ∈ cO(', ℒK). 
Then 

h ∥ �Z ∥ℬK≤ (ℋK + ℌ.) ∥ 4 ∥ℬK+ℋ�sup{h ∥ �(j) ∥K; j
∈ [0,max{0, _}]}, _ ∈ »(l�) ∪ ', 

andh ∥ �Z ∥ℬK≤ (ℋK + ℌK) ∥ = ∥ℬK+ℋ�sup{h ∥ �(j) ∥K; j ∈
[0,max{0, _}]}, _ ∈ »(l�) ∪ ', where 

ℌ. = sup
�∈»(��)

D¾(�), ℌK = sup
�∈»(��)

D¿(�), 	ℋK = sup
�∈v

PK(�),  

	ℋ� = sup
�∈v

P�(�). 

3. Approximate Controllability 

Theorem 3.1 Assume that the hypotheses (D1) − (D9) are 

satisfied. Further, suppose that for all Ä > 0 

11©K�ℋ�(1 + ..ÒÓÔÓg
Õ� )(1 + 2+K[y�(R) + (©# +��#)]) < 1, 

then the system (1) has a solution on '. 
Proof. Let ℬg1 = {� ∈ cO(', ℒK): �1 ∈ ℬ} be the space 

endowed with uniform convergence topology. On the space 

ℬg , consider a set ℬÖ = {� ∈ ℬg1: ∥ � ∥K≤ �}, 
where � is a positive constant. Let ∥⋅∥g  be the semi-norm 

defined by 

∥ � ∥gK= sup
�∈v

∥ �� ∥ℬK , 

∥ �� ∥ℬK≤ PKh ∥ 4 ∥ℬ×K + P� sup1^Z^g
{h ∥ �(_) ∥K}. 

For Ä > 0, define the operator Υ: ℬg1 → ℬg	1 by Υ�(�) =
}̃(�), where 
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}̃(�) = O�(�)(4(0) +5(��6 , . . . , ��7)(0)) + ��(�)= + ¥ 	
�

1
y�(� − _)�(_, ��(Z,�³)) _ + ¥ 	

�

1
y�(� − _)��(_) _ 

	+ � 	�1 y�(� − _)[� 	Z
���(_, ��(Z,�³)) !(_)] _	 + � 	�1 � 	" y�(� − _)#Ú_, ��(Z,�³), $Û%&( _,  $) 

+	 z 	
1´�A´�

y�(� − �?)@?(��A) + z 	
1´�A´�

y�(� − 	�?)@?(��A), 

B = 1, : 

	²:  

ÜT(�) = �∗y�∗(+ − �)�(¯, Υ1g){�g−O�(�)(4(0) + m(��6 , . . . , ��7)(0)) − ��(�)=- � 	�1 y�(b − _)�(_, ��(Z,�³)) _ 

−� 	�1 y�(+ − _)[� 	Z
���(_, ��(Z,�³)) !(_)] _ − � 	�1 � 	" y�(+ − _)#(_, ��(Z,�³), $)%&( _,  $) 

−∑ 	1´�A´� y�(b − �?)@?(��A) 	− ∑ 	1´�A´� y�(+ − �?)@?(��A))}, B = 1, : 

we shall show that the operator Υ: ℬg1 → ℬg1 by Υ�(�) = }̃(�) 
has a fixed point, for all Ä > 0. For that, we have to prove for 

Ä > 0 there exists an � > 0 such that Υ(ℬÖ) ⊂ ℬÖ.Suppose 

let us assume that Υ(ℬÖ) ⊂ ℬÖ.	Then for each positive number 

�, there exists a function �(⋅) ∈ ℬÖ , but Υ(�) ∉ ℬÖ 

that is h ∥ (Υ�)(�)) ∥HK> �. 
For any � ∈ ℬÖ , it follows from lemma (2.11) that 

h ∥ ��(Z,�³) ∥ℬK≤ (ℋK + ℌ.) ∥ 4 ∥ℬK+ℋ�� ∨ (ℋK + ℌK) ∥ = ∥ℬK+ℋ�� = �∗. 
For, Ä > 0,  

h ∥ ÜT(�) ∥K= h ∥ �∗y�∗(+ − �)�(¯, Υ1g){�g − O�(�)(4(0) + m(��6 , . . . , ��7)(0)) − ��(�)= 

	− � 	�1 y�(+ − _)�(_, ��(Z,�³) − � 	�1 y�(+ − _)[� 	Z
���(_, ��(Z,�³)) !(_)] _ − � 	�1 � 	" y�(+ − _)#(_, ��(Z,�³), $)%&( _,  $) 

−∑ 	1´�A´� y�(b − �?)@?(��A) 	− ∑ 	1´�A´� y�(+ − �?)@?(��A))}, B = 1, :, 

≤ 11©K%K
¯K {∥ �g ∥K+©rK[∥ 4 ∥ℬK+©5] + ©¶K ∥ = ∥ℬK+	 	©K¥ 	

g

1
ÅÖ∗(_) _	 + ©K+K[2©¸ + 2y�(R)¥ 	

g

1
ΩÖ∗(_) _] 

+©K+K(2©# + 2��#) � 	g1 ΘÖ∗(_) _	 + ©K∑ 	x?|. (À̂? +  Â?)}, B = 1, :, 
≤ ..Ò�Ô�

Õ� {∥ �g ∥K+©rK[∥ 4 ∥ℬK+©5] + ©¶K ∥ = ∥ℬK+©K � 	g1 ÅÖ∗(_) _ 

	+©K+K[2©¸ + 2y�(R) � 	g1 ΩÖ∗(_) _] + ©K+K(2©# + 2��#) � 	g1 ΘÖ∗(_) _+∑ 	x?|. (À̂? +  Â?)}, B = 1, :, 
where 

©5 =∥ 4 ∥ℬK +∥ 8.(��6 , . . . , ��7)(�) ∥HK +∥ = ∥ℬK  

For Ä > 0 and � > 0, we have 

� < h ∥ Υ�(�) ∥K= h ∥ O�(�)(4(0) + 5(��6 , . . . , ��7)(0)) + ��(�)= + � 	�1 y�(� − _)�(_, ��(Z,�³)) _ + � 	�1 y�(� − _)��(_) _ 

	+ � 	�1 y�(� − _)[� 	Z
���(_, ��(Z,�³)) !(_)] _	 + � 	�1 � 	" y�(� − _)#(_, ��(Z,�³), $)%&( _,  $) 

+∑ 	1´�A´� y�(� − �?)@?(��A) + ∑ 	1´�A´� y�(� − 	�?)@?(��A) ∥K, B = 1, :. 
≤ 11©rK[∥ 4 ∥ℬK+©5] + 11©¶K ∥ = ∥ℬK+ 11©K � 	g1 ÅÖ∗(_) _ 

	+ .K.ÒÓÔÓg
Õ� {∥ �g ∥K+©rK[∥ 4 ∥ℬK+©5] + ©¶K ∥ = ∥ℬK+©K � 	g1 ÅÖ∗(_) _ 
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	+©K+K[2©¸ + 2y�(R) � 	g1 ΩÖ∗(_) _] + ©K+K(2©# + 2��#) � 	g1 ΘÖ∗(_) _ 

	+©K∑ 	x?|. (À̂? +  Â?)} + 11©K+K[2©¸ + 	2y�(R) � 	g1 ΩÖ∗(_) _] 
+11©K+K(2©# + 2��#) � 	g1 ΘÖ∗(_) _ + 11©K∑ 	x?|. (À̂? +  Â?) 

≤ P∗ + .K.ÒßÔÓg
Õ� {� 	g1 ÅÖ∗(_) _ + 2+K[y�(R) � 	g1 ΩÖ∗(_) _ + (©# + ��#) � 	g1 ΘÖ∗(_) _]} 

	+11©K{� 	g1 ÅÖ∗(_) _ + 2+K[y�(R) � 	g1 ΩÖ∗(_) _ + (©# + ��#) � 	g1 ΘÖ∗(_) _]} 
Note that P∗ is independent of � and �∗ → ∞ as � → ∞. Now 

liminfÖ→� � 	g1 Êà∗(Z)
Ö  _ = liminfÖ→� � 	g1 {Êà∗(Z)

Ö∗
Ö∗
Ö } _ = �1ℋ�, 

liminfÖ→� � 	g1 �à∗(Z)
Ö  _ = liminfÖ→� � 	g1 {�à∗(Z)

Ö∗
Ö∗
Ö } _ = �.ℋ�, 

liminfÖ→� � 	g1 Íà∗(Z)
Ö  _ = liminfÖ→� � 	g1 {Íà∗(Z)Ö∗

Ö∗
Ö } _ = �Kℋ� , 

Hence.� = max{�1, �., �K}. We have for Ä > 0,  

11©K�ℋ�(1 + ..ÒÓÔÓg
Õ� )(1 + 2+K[y�(R) + (©# + ��#)]) ≥ 1, 

which is contradictive to our assumption. Hence for Ä > 0, there exist � > 0 such that Υ(ℬÖ) ⊂ ℬÖ. 
Next we shall prove that arbitrary Ä > 0, the operator Υ maps ℬÖ  into a relatively compact subset of ℬÖ . First, we prove that 

the set V(�) = {Υ�(�); � ∈ ℬÖ} is relatively compact in Dfor every � ∈ ' . It is clear that the case � = 0 is obvious. For 

0 < ¯ < � ≤ +, define (ΥÕ�)(�) = y�(¯)}̃(� − Ä),,since y�(�) is compact and }̃(� − ¯)	is bounded on ℬÖ , the set VÕ(�) ={(ΥÕ�)(�); �(⋅) ∈ ℬÖ}  is relatively compact in D . That is, a finite set {â{ , 1 ≤ ~ ≤ :}  in D  exists such that VÕ(�) ⊂
⋃ 	/{|. %ä(â{ , åK), where %ä(â{ , åK) is an open ball in D with center at â{  and radius 

å
K. On the other hand, 

h ∥ (Υ�)(�) − (ΥÕ�)(�) ∥K≤ ææÒÓÔÓg
Õ� {∥ �g ∥K+©rK[∥ 4 ∥ℬK+©5] + ©¶K ∥ = ∥ℬK  

	+©K � 	g1 ÅÖ∗(_) _ + ©K+K[2©¸ + 2y�(R) � 	�
��Æ ΩÖ∗(_) _] 	+ ©K+K(2©# + 2��#) � 	g1 ΘÖ∗(_) _ +©K∑ 	x?|. (À̂? +  Â?)} 

	+7©K � 	�
��Æ ÅÖ∗(_) _ + 7©K+K[2©¸ + 	2y�(R) � 	�

��Æ ΩÖ∗(_) _] 	+ 7©K+K(2©# + 2��#) � 	�
��Æ ΘÖ∗(_) _ ≤ å

K 

Consequently V(�) ⊂ ⋃ 	/{|. %ä(â{ , ¼). Hence for each � ∈ ', V(�) is relatively compact in D. 

Next we shall prove that V = {(Υ�)(⋅): �(⋅) ∈ ℬÖ} is equicontinuous on '. For 0 < �. < �K ≤ +, 

h ∥ }̃(�K) − }̃(�.) ∥K= h ∥ O�(�K)(4(0) + m(��6 , . . . , ��7)(0)) + ��(�K)= + � 	��
1 y�(�K − _)�(_, ��(Z,�³)) _ 

	+ � 	��
1 y�(�K − _)��(_) _ + � 	��

1 y�(�K_)[� 	Z
���(_, ��(Z,�³)) !(_)] _ 

	+ � 	��
1 � 	" y�(�K − _)#(_, ��(Z,�³), $)%&( _,  $) + ∑ 	1´�A´� y�(�K − �?)@?(��A) 

	+∑ 	1´�A´� y�(�K − �?)@?(��A)} − {O�(�.)(4(0) + 	m(��6 , . . . , ��7)(0)) + ��(�.)= 

	+ � 	�6
1 y�(�. − _)�(_, ��(Z,�³)) _ + � 	�6

1 y�(�. − _)��(_) _	 + � 	�6
1 y�(�. − _)[� 	Z

���(_, ��(Z,�³)) !(_)] _ 

	+ � 	�6
1 � 	" y�(�K − _)#(_, ��(Z,�³), $)%&( _,  $) + ∑ 	1´�A´� y�(�. − �?)@?(��A) + ∑ 	1´�A´� y�(� − �?)@?(��A)}} ∥K, B = 1, :, 

≤ 19 ∥ O�(�K) − O�(�.) ∥K (∥ 4 ∥ℬK+ ·) + 19 ∥ ��(�K) − ��(�.) ∥K∥ = ∥ℬK  

	+19©K%K � 	��
�6 ∥ Ü(_) ∥K  _ + 19%K � 	�6

1 ∥ y�(�K − _) − y�(�. − _) ∥K∥ Ü(_) ∥K  _ 

	+19©K � 	��
�6 ÅÖ∗(_) _ + 19� 	�6

1 ∥ y�(�K − _) − y�(�. − _) ∥K ÅÖ∗(_) _ 
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	+19©K(2©¸ + 2y�(R) � 	��
�6 ΩÖ∗(_) _) + 19(2©¸ + 2y�(R) � 	�6

1 ∥ y�(�K − _) − y�(�. − _) ∥K ΩÖ∗(_) _) 

+19©K(2©# + 2è�#)¥ 	
��
�6

ΘÖ∗(_) _ + 19(2©# + 2è�#)¥ 	
�6
1

∥ y�(�K − _) − y�(�. − _) ∥K ΘÖ∗(_) _ 

	+19©K∑ 	�6´�A´�� ∥ @?(��A) ∥K+ 19∑ 	1´�A´�6 ∥ y�(�K − �?) − y�(�. − �?) ∥K∥ @?(��A) ∥K 

	+19©K∑ 	�6´�A´�� ∥ @?(��A) ∥K+ 19∑ 	1´�A´�6 ∥ y�(�K − �?) − y�(�. − �?) ∥K∥ @?(��A) ∥K 

≤ 19 ∥ O�(�K) − O�(�.) ∥K (∥ 4 ∥ℬK+ ·) + 19 ∥ ��(�K) − 	��(�.) ∥K∥ = ∥ℬK  

	+ K1éÒÓÔÓ
Õ� � 	��

�6 {∥ �g ∥K+©K(∥ 4 ∥ℬK+ ·) + ©K ∥ = ∥ℬK+©K � 	g1 ÅÖ∗(_) _ 

	+©K(2©¸ + 2y�(R) � 	g1 ΩÖ∗(_) _ + ©K(2©# + 	2��#) � 	�6
1 ΘÖ∗(_) _	 + ©K∑ 	x?|. (À̂? +  Â?)} 

+ K1éÒ�ÔÓ
Õ� � 	�6

1 ∥ y(�K − _) − y(�. − _) ∥K {∥ �g ∥K+©K(∥ 4 ∥ℬK+ ·) +©K ∥ = ∥ℬK+©K � 	g1 ÅÖ∗(_) _ 

	+©K(2©¸ + 2y�(R) � 	g1 ΩÖ∗(_) _ + ©K(2©# + 	2��#) � 	�6
1 ΘÖ∗(_) _	 + ©K∑ 	x?|. (À̂? +  Â?)} 

+19©K � 	��
�6 ÅÖ∗(_) _ + 19� 	�6

1 ∥ y�(�K − _) − y�(�. − 	_) ∥K ÅÖ∗(_) _ 

	+19©K(2©¸ + 2y�(R) � 	��
�6 ΩÖ∗(_) _ + 19(2©¸ + 	2y�(R) � 	�6

1 ∥ y�(�K − _) − y�(�. − _) ∥K ΩÖ∗(_) _ 

	+19©K(2©# + 2��#) � 	��
�6 ΘÖ∗(_) _ + 19� 	�6

1 ∥ y�(�K − _) − y�(�. − _) ∥K (2©# + 2��#)ΘÖ∗(_) _ 

	+19©K∑ 	�6´�A´�� ∥ @?(��A) ∥K+ 19∑ 	1´�A´�6 ∥ y�(�K −	�?) − y�(�. − �?) ∥K∥ @?(��A) ∥K 

	+19©K∑ 	�6´�A´�� ∥ @?(��A) ∥K+ 19∑ 	1´�A´�6 ∥ y�(�K − �?) − y�(�. − �?) ∥K∥ @?(��A) ∥K, B = 1, :, 
since {y�(�)}�Q1is strongly continuous and the compactness of y�(�), � > 0, implies the continuity in the uniform operator 

topology, it follows that 

h ∥ }(�K) − }(�.) ∥K→ 0	²_	�K − �. → 0. 
Hence V is equicontinuous on '. 

Finally, we have to show that the map Υ(⋅) is continuous on ℬÖ . Let (�/)/∈ℕ be a sequence in ℬÖand � ∈ ℬÖsuch that 

�/ → �	in cO(', ℒK). From the phase space axiom, it is easy to see that (�/)Z → �Zas : → ∞ uniformly for _ ∈ (−∞, +]. 
From this fact, hypotheses (H5) and the inequality 

h ∥ �(_, ��(Z,(�ë)³)/ ) − �(_, ��(Z,�³)) ∥ℬK≤ h ∥ �(_, ��(Z,(�ë)³)/ ) − �(_, ��(Z,(�ë)³)) ∥ℬK 	+ h ∥ �(_, ��(Z,(�ë)³)) − �(_, ��(Z,�³)) ∥ℬK , 
h ∥ �(_, ��(Z,(�ë)³)/ ) − �(_, ��(Z,�³)) ∥mK≤ h ∥ �(_, ��(Z,(�ë)³)/ ) − �(_, ��(Z,(�ë)³)) ∥mK 		+ h ∥ �(_, ��(Z,(�ë)³)) − �(_, ��(Z,�³)) ∥mK , 
h ∥ #(_, ��(Z,(�ë)³)/ , $) − #(_, ��(Z,�³)$) ∥mK≤ h ∥ #(_, ��(Z,(�ë)³)/ , $) − #(_, ��(Z,(�ë)³), $) ∥mK  +h ∥ #(_, ��(Z,(�ë)³), $) − #(_, ��(Z,�³), $) ∥mK , 

we claim that �(_, ��(Z,(�ë)³)/ ) → �(_, ��(Z,�³)), �	(_, ��(Z,(�ë)³)/ ) → 		�(_, ��(Z,�³))  and #(_, ��(Z,(�ë)³)/ ) → 	#(_, ��(Z,�³))  as 

: → ∞, for every _ ∈ '. Now, the Lebesque dominated convergence theorem (Theorem 2.5) implies that Υ�/ → Υ� in ℬg1. 

Thus Υ(⋅) is continuous on ℬÖ . Then by the Schauder fixed point theorem (Theorem 2.4) Υ has a fixed point and the system (1) 

has a solution on '.  

Theorem 3.2 Assume that the hypotheses (D0) , (D1) − (D9)  and theorem (3.1)  are hold, then the system (1)  is 

approximately controllable on '. 
Proof. Let �Õ	be a fixed point of Υ in ℬÖ . Then, we can see that, �Õ is a mild solution of system (1) under the control 

�Õ(+) = �∗y�∗(+ − �)�(¯, Υ1g){�g − O�(+)(4(0) + 	m(��6 , . . . , ��7)(0)) − ��(+)= 

	− � 	g1 y�(+ − ¼)�(¼, ��(å,�íî)Õ ) _ − � 	g1 y�(+ − 	¼)[� 	å
���(¼, ��(å,�íî)Õ ) !(¼)] ¼ 

	− � 	g1 � 	" y�(+ − ¼)#(¼, ��(å,�íî)Õ , $)%&( ¼,  $) − ∑ 	1´�A´g y�(+ − �?)@?(��AÕ ) 	− ∑ 	1´�A´g y�(+ − �?)@?(��AÕ ))}, B = 1, :, 
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and satisfies 

�Õ(+) = O�(+)(4(0) + m(��6 , . . . , ��7)(0)) + ��(+)= + � 	g1 y�(+ − _)�(_, ��(Z,�³î)Õ ) _ 

	+ � 	g1 y�(+ − _)��Õ(_) _ + � 	g1 y�(+ − 	_)[� 	Z
���(_, ��(Z,�³î)Õ ) !(_)] _ 

	+ � 	g1 � 	" y�(+ − _)#(_, ��(Z,�³î)Õ , $)%&( _,  $) + ∑ 	1´�A´g y�(+ − �?)@?(��AÕ ) 
	+∑ 	1´�A´g y�(+ − �?)@?(��AÕ ), B = 1, :. 

�Õ(+) = O�(+)(4(0) + m(��6 , . . . , ��7)(0)) + ��(+)= 

	+ � 	g1 y�(+ − _)�(_, ��(Z,�³î)) _ + � 	g1 y�(+ − 	_)�[�∗y�∗(+ − �)�(¯, Υ1g) 
	× {�g − O�(+)(4(0) + m(��6 , . . . , ��7)(0)) − ��(+)= 

	− � 	g1 y�(+ − ¼)�(¼, ��(å,�íî)Õ ) _ − � 	g1 y�(+ − 	¼)[� 	å
���(¼, ��(å,�íî)Õ ) !(¼)] ¼ 

	− � 	g1 � 	" y�(+ − ¼)#(¼, ��(å,�íî)Õ , $)%&( ¼, d$) − ∑ 	1´�A´g y�(+ − �?)@?(��AÕ ) 
	−∑ 	1´�A´g y�(+ − �?)@?(��AÕ ))}] _ + � 	g1 y�(+ − 	_)[� 	Z

���(_, ��(Z,�³î)Õ ) !(_)] _ 

	+ � 	g1 � 	" y�(+ − _)#(_, ��(Z,�³î)Õ , $)%&( _,  $) + ∑ 	1´�A´g y�(+ − �?)@?(��AÕ ) 
	+∑ 	1´�A´g y�(+ − �?)@?(��AÕ ), B = 1, :, 

= �g + (Υ1g�(¯, Υ1g) − @){�g − O�(+)(4(0) + 	m(��6 , . . . , ��7)(0)) − ��(+)= 

	− � 	g1 y�(+ − ¼)f(¼, ��(å,�íî)Õ ) _ − � 	g1 y�(+ − ¼)[� 	å
���(¼, ��(å,�íî)Õ ) !(¼)] ¼ 

	− � 	g1 � 	" y�(+ − ¼)#(¼, ��(å,�íî)Õ , $)%&( ¼,  $) − ∑ 	1´�A´g y�(+ − �?)@?(��AÕ ) 
−∑ 	1´�A´g y�(+ − �?)@?(��AÕ ))}, B = 1, :. 

= �g − ¯�(¯, Υ1g){�g − O�(+)(4(0) + m(��6 , . . . , ��7)(0)) − ��(+)= 

	− � 	g1 y�(+ − ¼)�(¼, ��(å,�íî)Õ ) _ − � 	g1 y�(+ − 	¼)[� 	å
���(¼, ��(å,�íî)Õ ) !(¼)] ¼ 

	− � 	g1 � 	" y�(+ − ¼)#(¼, ��(å,�íî)Õ , $)%&( ¼,  $) − ∑ 	1´�A´g y�(+ − �?)@?(��AÕ ) 	− ∑ 	1´�A´g y�(+ − �?)@?(��AÕ ))}, B = 1, :. 
The uniform boundedness of the functions �,�  and #  imply that the sequences {�(_, ��(Z,�³î)Õ )}, {�(_, ��(Z,�³î)Õ )}  and 

{#(_, ��(Z,�³î)Õ ), $}  are bounded in ℒK(', ℬ) . Hence the subsequence, denoted by {�(_, ��(Z,�³î)Õ )}, {�(_, ��(Z,�³î)Õ )}  and 

{#(_, ��(Z,�³î)Õ ), $} that weakly converges to, say �(_),	�(_) and #(_) in ℒK(', D) and ℒK(', ℒm(P, D)). Then it is easy to see that 

h ∥ � 	g1 y�(+ − _)[�(_, ��(Z,�³î)Õ ) − �(_)] _ ∥K≤ � 	g1 ∥ y�(+ − _) ∥K h ∥ �(_, ��(Z,�³î)Õ ) − �(_) ∥K  _ → 0, 
h ∥ � 	g1 y�(+ − _)[� 	Z

�� [�(_, ��(Z,�³î)Õ ) − �(_)]] !(_) ∥mK 	≤ � 	g1 ∥ y�(+ − _) ∥K [� 	Z
��h ∥ 	�(_, ��(Z,�³î)Õ ) − �(_) ∥mK  !(_) → 0, 

h ∥ � 	g1 y�(� − _)[� 	" [#(_, ��(Z,�³î)Õ , $) − #(_)]]%&( _,  $) ∥mK  

	≤ � 	g1 ∥ y�(+ − _) ∥K [� 	" h ∥ #(_, ��(Z,�³î)Õ , $) − 	#(_) ∥mK ]%&( _,  $) → 0 

As	¯ → 03 and the boundedness of @ and @	implies that 

ð ∥ �Õ(+) − �g ∥K≤ h ∥ ¯�(¯, Υ1g){�g − O�(�)(4(+) + m(��6 , . . . , ��7)(0)) − ��(+)= 
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	− � 	g1 y�(+ − _)�(_, ��(Z,�³î)Õ ) _ − � 	g1 y�(+ − _)[� 	Z
���(_, ��(Z,�³î)Õ ) !(_)] _ 

	− � 	g1 � 	" y�(+ − _)#(_, ��(Z,�³î)Õ , $)%&( _,  $) − ∑ 	1´�A´g y�(+ − �?)@?(��AÕ ) 
	−∑ 	1´�A´g y�(+ − �?)@?(��AÕ ))} ∥K→ 0	²_	¯ → 03. 

Hence �Õ(+) → �g  holds in D and consequently we get the approximate controllability of system (1).  

4. Application 

In this section, we can apply the previous results to study the approximate controllability of fractional impulsive stochastic 

differential system of order 1 < � ≤ 2 with nonlocal, state-dependent delay and Poisson jumps of the form 

	�
��}(�, �) = ñ�
ñ�� }(�, �) + ¦(�, �) + (� 	�

��².(_ − �)}(_ −	l.(�)lK(∥ }(�) ∥), �) _) + (� 	�
��²K(_ − �)}(_ − l.(�)lK(∥ }(�) ∥), �) _)ò�(�), 

	+ � 	" $(� 	�
�� ²�(_ − �)}(_ − l.(�)lK(∥ }(�) ∥), �) _)%&( �,  $), 
	� ∈ ' = [0, +]\{�., �K, … , �x}, (�, �) ∈ ' × [0, ó], 

}(�, 0) = }(�, ó) = 0, � ∈ ' 
}(�, �) = 4(�, �) + ∑ 	x{|1 O{}(�{ + �), � ≤ 0, � ∈ [0, ó], � ∈ (−∞, 0], 

@?(}(�?))� = � 	�A
�� À?(�? − _)}(_, �) _, � ∈ [0, ó], B = 1, :, 

@?(}(�?))� = � 	�A
�� ?(�? − _)}(_, �) _, � ∈ [0, ó], B = 1, :,                         (3) 

where 	�
��  is the Caputo fractional partial derivative of order 

1 < � ≤ 2 , ¦: [0,1] × (0, ó) → (0, ó)  is continuous, and 

À? ,  ? > 0  for B = 1,2, . . , :.  Also 0 < �. < �K < ⋯ <
�x < + are prefixed numbers. l{ : [0,∞) → [0,∞), ~ =
1,2. ²., ²K, ²�: ℝ → ℝ are continuous. 4 ∈ ℬ = cO1 ×ℒK(g, D)(gis a positive function on(−∞,−�)) be the phase 

space in the Hale et al [20]. The operator � is defined by 

�= = ñ�
ñ�� = with domain 
(�) = {= ∈ D, 	�¿�� , are absolutely 

continuous and 	( �����)= ∈ D  =(0) = =(ó) = 0}. Also �(�) 
enotes a standard one-dimensional Wiener process defined on 

a stochastic basis (Ω, U, {U�}�Q1, ℙ).  To write the above 

system (3) into the abstract form (1), we can choose the 

space. D = L = ℒK([0, ó]).  Define �:D → D  by 

�� = �,õõ 	(�})(�) =
ñ�ö(�)
ñ��  with the domain 
(�) = {� ∈

D: �, �′  are absolutely continuous, �õõ ∈ D and �(0) =
�(ó) = 0} and for } ∈ 
(�). Also the set {�/, : ∈ ℕ} is an 

orthonormal basis of D.  In particular �� = ∑ 	�/|. −:K〈�, �/〉�/,� ∈ 
(�). Then � is the infinitesimal generator 

of a strongly continuous cosine 

family O(�)� = ∑ 	�/|. À°_(:�)〈�, �/〉�/,, � ∈ ℝ  and the 

associated sine family in D  defined by 

�(�)� = ∑ 	�/|.
Z{/(/�)

/ 〈�, �/〉�/ , � ∈ ℝ.  From [37], for all 

�	 ∈ D,	� ∈ ℝ, ∥ ��(�) ∥≤ 1 and ∥ O�(�) ∥≤ 1. 
 Hence the spectrum �  consists of eigen values :  for 

: ∈ ℕ, with associated eigen vectors �/(�)=èK
÷ _~:(:�),: ∈

ℕ  Define an infinite dimensional space L  by L = {� =
∑ 	�/|K �/�/(�)| ∑ 	�/|K �/K < ∞},0 ≤ � ≤ ó, and the norm in 

L  is ∥ � ∥= (∑ 	�/|K �/K)6� . The bounded linear operator 

�:L → Dis defined by ��(�)(�) =¦(�, �), 0 ≤ � ≤ ó. The 

functions �, �  and  #	 are continuous. Let (Ω, U, ℙ)  be a 

complete probability space and {P(�): � ∈ '}  is a Poisson 

point process taking values in the space  P = [0,∞) with a 

b -finite intensity measure W( â), The Poisson counting 

measure %&( �,  â)  is induced by K(⋅)  and the 

compensating martingale measure is denoted by  

%&( �,  â):=%( �,  â) −  �W( â). 
For � ∈ (1,2), � generates a strongly continuous cosine 

family O(�), it follows from the subordinate principle (see 

Theorem 3.1, [6]) that �  generates a strongly continuous 

exponentially bounded fractional cosine family 	O�(�)  such 

that O�(0) = @ and 

O�(�) = � 	�
1 ��,\�(_)O(_) _, � > 0, 

�ℎ���	��,\�(_) = ��\�ù\
�
(_��\�)	²:  

ùú(�) = ∑ 	�/|1
(��)ë

/!�(�ú/3.�ü) , (0 < j < 1). 
It is clear that the fractional differential system (2)  is 

approximately controllable on 'for � = 2. Hence for � = 2 

with the above choices, the system (3) can be rewritten to the 

abstract form (1) and all the conditions of Theorem 3.1 are 

satisfied. Thus there exists mild solutions for the system (3). 

Moreover all the conditions of Theorem 3.2 are satisfied and 

hence the fractional stochastic differential equations with 

Poisson jumps (3) is approximately controllable on '. 
We have to use the following results: 

(I) the functions².: ℝ → ℝ  is continuous, bounded and 
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ℒý = (� 	1
��

¹6�(Z)
þ(Z)  _)

6
� < ∞. 

(ii) the functions ²K: ℝ → ℝ is continuous, bounded and 

ℒ¸ = (� 	1
��

¹��(Z)
þ(Z)  _)

6
� < ∞. 

(iii) the functions ²�: ℝ → ℝ is continuous, bounded and 

ℒ# = (� ?1
��

¹��(Z)
þ(Z)  _)

6
� < ∞. 

(iv) the function À?: ℝ → ℝ is continuous such that, 

ℒ�A = (� 	1
��

(�A(�Z))�
þ(Z)  _)6� < ∞for every B = 1,2…:. 

(v) the function  ?: ℝ → ℝ is continuous such that , 

ℒ�A = (� 	1
��

(�A(�Z))�
þ(Z)  _)6� < ∞ for every B = 1,2…:. 

By defining the functions �, #, l, @? , @?: ℬ → D	 and 

�: ℬ → ℒm(D) by 

l(�, ­) = l.(�)lK(∥ ­(0) ∥), 
�(­)(�) = � 	1

�� ².(_)­(_, �) _, 
�(­)(�) = � 	1

�� ²K(_)­(_, �) !(_), 
#(­)(�) = � 	�

�� ².(_)­(_, �) _, 
@?(­)(�) = � 	�

�� À?(−_)­(_, �) _, B = 1,2, . . . , :, 
@?(­)(�) = � 	�

�� ?(−_)­(_, �) _, B = 1,2, . . . , :. 
Moreover, the maps �,	�,	#,	@? and @? are bounded linear 

operators ∥ � ∥K≤ ℒý , ∥ � ∥mK≤ ℒ¸, ∥ # ∥mK≤ ℒ#,  ∥ @? ∥K≤
ℒ�Aand ∥ @? ∥K≤ ℒ�A . 

Because of the compactness of y�(�) generated by �,the 

associated linear system (2) is approximately controllable [30]. 

Hence by Theorem	(3.2), the system (3) is approximately 

controllable. 

5. Conclusion 

This paper has investigated the existence of mild solutions and 

approximate controllability of second order ( � ∈ (1,2) ) 

fractional impulsive stochastic differential system with nonlocal, 

state-dependent delay and Poisson umps in Hilbert spaces. For 

the future work, the controllability and stability results could be 

extended to study the neutral impulsive fractional stochastic 

differential systems with state-dependent delay and Poisson 

jumps satisfying the nonlocal condition according to the method 

in this paper. Hence our main results are the generalization of the 

recent results on fractional stochastic control systems with 

state-dependent delay and Poisson jumps.  
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