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Abstract: The Cauchy operator plays important roles in the theory of basic hypergeometric series. As some applications,
our purpose is mainly to show new proofs of the Mehler’s formula, the Rogers formula and the generating function for the

homogeneous Hahn polynomials (ID%O‘)(J:, y|q)) by making use of the Cauchy operator and its properties. In addition, some

interesting results are also obtained, which include a formal extension of the generating function for <I>£{)‘) (z,y]q))-
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1. Introduction

Following [9], the g-shifted factorial is defined by

(a;q)o =1, (a59)n = 1:[(1 —aq®), (a;9)0c = [ [ (1 - ag"),
k=0 k=0

and (a1, a2, -, am)n = (a1;9)n(a2; @)n - - - (am; q)n, where
m is a positive integer and n is nonnegative integer or co.
The basic hypergeometric series ¢ is defined by
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The g-exponential function is given by

5 (z _ (z;m’ 2| < 1. (1)

n=0
The g-binomial coefficients are defined by

(4:9)n
[ n ] _ J @k @Dn—r’ 0<k<mn,
k 0, k> n.

The g-Hahn polynomials @%a)(ﬂq) were first studied by
Hahn, and then by Al-Salam and Carlitz [1, 10, 11]. Now, we
restate the definition of the g-Hahn polynomials as follows.

Definition 1.1. The g-Hahn polynomials are defined by

n

ol =30 |} | @t

k=0

According to the g-Hahn polynomials, we can easily
obtain the homogeneous Hahn polynomials (I)%a)(x, ylg). In
this paper, we need to give the following definition of the
homogeneous Hahn polynomials, again.

Definition 1.2. The homogeneous Hahn polynomials are

defined by

T n
() (2, ylq) = y”@i‘")(altz) =
ke

| | onte

Evidently, @' (z, 1|q) = &\ (z|q).
The usual g-differential operator is defined by

Dy {fla)y = {8 =10

X

and we further define D) . {f(x)} = f(z), and for n >
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1L, Dy {f(x)} = Dg.{Dp;"{f(x)}}. By g-differential
operator D, ., VY. B. Chen and NS. S. Gu gave the

X nn

2 (Q)n’

n=0
Then, VY. B. Chen and NS. S. Gu defined the Cauchy
operator [3],

argumentation operator 7'(bD, ;) =

[4,5].

Later, many researchers further study the Cauchy operator.
For details of g-differential operator, the readers refer to
[6,7,8, 14, 15, 16].

Based on the definitions for D, , and T'(a,b; D, ) and
the Leibniz rule for D, ,, we can easily obtain the following
formulas.

oo (a)nannI
T(a,b; Dy ) = — 7
! RZ:O (@)n
Lemma 1.1.
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q,T (xt)oo - (xt)oo — m q m\ Ll )m q
T(cv, 23 Dgy) {y"} = 23 (2, yla) (5)
y" Y (art) oo [ n } (o, yt)m (m)m
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Three Cauchy operator identities established by VY. B. Chen and NS. S. Gu are restated as the following lemmas [3].
Lemma 1.2. We have
(abt) o
T(a,b; Dy, = , 7
(a,b: Dy, ){(xt)m} (b, 7)o @
provided |bt| < 1.
Lemma 1.3. We have
1 (abt) oo a, xt
T(a,b; Dy = ’ ,bs|, 8
(CL, ’ q,: ) {(aﬁs,l’t)oo} (bt,x8,$t>w2¢l |: abt ‘q S:| ( )
provided max {|bs|, |bt|} < 1.
Lemma 1.4. We have
(20) o (abs, zv) o a, xs, v/t
T(a,b; Dy . = ’ ’ ot 9
(aa » Mg, ){<ﬂf$,l’t)oo (bS,L]CS,iL’t)OOg(b2 abs, v |q )

provided mazx {|bs|, |bt|} < 1.

In [3], the authors derived Heine’s o¢; transformation
formula and Sears’ 3¢o transformation formula by the
symmetric property of some parameters in the above operator
identities (8)(9). And further they obtain extensions of the
Askey-Wilson integral, the Askey-Roy integral, Sears’ two-
term summation formula.

In this paper, our main purpose is to make use of the
above Cauchy operator identities (4)-(9) to give new proofs of
the Mehler’s formula, the Rogers formula and the generating
function for the homogeneous Hahn polynomials. In addition,

some interesting results are also derived, which include a

formal extension of the generating function for o' (z,y|q)).

2. Some Applications

In Liu’s recent paper [13], the following first two known
results were proved by using the theory of analytic functions
of several complex variables. In this section, we first make use
of the Cauchy operator identities (4) and (9) to prove them.
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Theorem 2.1. (The generating function for CI)%‘X) (z,y|q)). If Proof. The identity (1) can be rewritten as follows:
max {|xt],|yt|} < 1, then, we have that
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Applying T'(«v, z; Dy ,,) to both sides of the above identity
with respect to y, we get

- tn 1
T(o,x; Dy y) {y =T(o,x; Dy, {}
By means of (4) and (7), we obtain our desired result (10). This proof is completed.
We recall the g-Mehler formula for the homogeneous Hahn polynomials, which was found by Al-Salam and Carlitz [1] (see
also [2, 12]).
Theorem 2.2. (The Mehler formula for & (x,ylq)). For maz {|ztul, |xtv|, |ytul, |ytv|} < 1, then, we have that

t" (axtv, Bytu) oo a Ié; ytv
Pl o) = ’ ' tul. 11
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By the identity (9) and (10), we have
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This completes the proof.
Lety = 1,v = 11in (11). Thus, we get the following result [12].
Corollary 2.1. For max {|ztul|, |zt|, |ytul, |yt|} < 1, then, we have that
> " (axt, Bytu) oo a, B
Pl@) B — J ) ) " 12
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Proof. Here, the Cauchy operator is used to prove the above identity. First, letting v = 1 in (11), we yield that

S 0@ (2, y1g) B u|q LA Z 30 (ulq)T (a2 Do) 5™} (f])
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Then, taking ¥ = 1 in the above identity, we derive our desired result. This completes the proof.

lq, xtu] .
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Theorem 2.3. (The Rogers formula for . (x,y|q)). For max {|xs|,|zt|} < 1, then, we have that

o ™ (axt) oo a, yt
50> Dl = i [ Y s
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This completes the proof.

Next, we make use of Cauchy operator properties to derive some interesting results relevant to <I’,(1a) (x,ylq).
Theorem 2.4. (A formal extension of the identity (10)). For max {|ty|, |tz|} < 1, then, we have that

> (M (x,ylq) (@)

ne0 7 (@Dn B (tY) oo

Proof. We begin with the g-binomial theorem

" (aty)eo e [ ay |q,xt}

= (a)n(ty)" _ (aty)oo
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Applying T'(ov, z; Dy,,) to both sides of the above identity with respect to the variable y, we get
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By means of (4) and (9), we obtain our desired result. This completes the proof.
Theorem 2.5. For max {|xt|, |yt|} < 1, then, we have that
o0 k n n m
() t Y™ (axt) oo { n } (o, yt)m (:1:)
P Z, —_— — -~ 7 7 - —
kzzo ek(®919) @k (yt, zt) mZ:: m | (axt)m \q

Proof.

This completes the proof.

13)
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15)
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Theorem 2.6. For max {|uxt|, |vyt|, |[vat|} < 1, then, we have that
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This completes the proof.

3. Conclusions

The Cauchy operator plays very important roles in the
theory of basic hypergeometric series and g-orthogonal
polynomials. In terms of the Cauchy operator, some known
identities can be proved, again. Meanwhile, some new results
can be obtained too. These results may be helpful in the theory
of basic hypergeometric series and g-orthogonal polynomials.
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