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Abstract: Fractional Laplacian is an important nonlocal operator which has many applications in different kinds of 

differential equations. Recently, optimization problems involving the fractional Laplacian have been studied a lot by many 

authors. However, most of these papers are focusing on the optimization problems related to the first eigenvalue of the 

equation. Optimization problems related to the energy functional of the equation have not been investigated well enough. In 

this paper, we are going to study a maximization problem related to the energy functional of an equation involving a fractional 

Laplace type operator. Firstly, by using suitable variational framework in a fractional Sobolev space, we can show that a 

fractional equation has a solution which is in fact the global minimum of the corresponding energy functional. Moreover, by 

using reduction to absurdity we can obtain the uniqueness of the solution of the fractional equation. Then, we focus on a 

maximization problem related to the equation which takes the energy functional as the objective functional. Finally, by 

carefully analysing the properties of an arbitrarily choosen minimizing sequence and the tools of the rearrangement theory, we 

can prove that the maximization problem is solvable.  
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1. Introduction 

Since Burton’s theory of rearrangement was established in 

the papers [1-2], there have been many applications in 

optimization problems related to different kinds of equations. 

Cuccu et al studied the optimization problems involving the 

p-Laplacian in [3-5]. Emamizadeh and Zivari-Rezapour 

investigated an optimization problem related to a linear 

elliptic boundary problem in [6]. Emamizadeh and Prajapat 

obtained the symmetry of the solution of an optimization 

problem in [7]. Marras used a different approach to prove the 

solvability of an optimization involving the p-Laplacian in 

[8]. Qiu et al introduced a new truncation trick to solve two 

optimization problems involving the p-Laplacian in [9]. 

Recent years, many authors were interested in the 

optimization problems involving the nonlocal operator, see 

for example in [10-16] and the references therein. Qiu et al 

considered an optimization problem related to the following 

fractional equation in [10]: 

( , ) ( ), ,

0,

s

N

L u h x u f x x

u x R

θ− + = ∈ Ω


= ∈ − Ω
 

where 
sL uθ− is a fractional Laplace type operator defined as 

follows: 

2

( ) ( ) 2 ( )
( ) ( )

N

s

N sR

u x y u x y u x
L u x y dy

y
θ θ+

+ + − −− = ∫  

with 0 1s< < . For ( , )h x u , it is assumed that ),( ⋅xh is 

non-decreasing for almost all x ∈ Ω . This assumption is 

essential in the arguments of proving the uniqueness of the 

fractional equation and the solvability of the corresponding 

optimization problems. In this paper, we are going to study a 

maximization problem related to the following fractional 

equation ,( )fPλ : 
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( ) ( ), ,

0,

s

N

L u V x u f x x

u x R

θ λ− − = ∈ Ω


= ∈ − Ω
 

where ( ) ( )V x L∞∈ Ω , ( ) 0V x > and λ is a positive 

parameter. Apparently, here the term ( )V x uλ− has different 

monotonicity. Therefore, we need overcome more difficulties. 

Under suitable assumptions, we can show that the equation 

,( )fPλ  has a solution fu which is in fact the global 

minimizer of the corresponding energy functional. Moreover, 

we can obtain the uniqueness of the solution by using 

reduction to absurdity. Then, we consider the following 

maximization problem: 

( )Max  
( )

inf ( )
g R f

g
∈

Φ  

where ( ) gg gu dx
Ω

Φ = ∫ and ( )R f is the set of all the 

rearrangements of f  which is defined in details in section 2. 

We organize the present paper as follows. In section 1, we 

give the brief introduction. In section 2, some preliminaries are 

prepared before the main results. Section 3 is devoted to show 

the solvability of the equation ,( )fPλ  and the uniqueness of 

solution of the equation ,( )fPλ . At last, in section 4, we show 

that the problem ( )Max has a solution. 

2. Preliminaries 

2.1. Some Definitions 

We give some definitions here. In the paper, we denote by

C a positive constant. Suppose :f RΩ֏ is a measurable 

function defined in a smooth bounded domain in 
NR with 

3N ≥ . We say :g RΩ֏ is a rearrangement of 

:f RΩ֏  if and only if for any t R∈  it holds that: 

{ : ( ) } { : ( ) }meas x f x t meas x g x t∈ Ω ≥ = ∈ Ω ≥  

where meas(·) denotes the Lebesgue measure of the set. The 

set of all the rearrangements of :f RΩ֏ is denoted by 

( )R f . ( )( ) 0 1sH sΩ < <  is the fractional Sobolev space 

defined by: 

2( ) { ( ) : 0 , }s N cH u L R u in uΩ = ∈ = Ω < ∞
 

where 

1/2
2

2

( ( ) ( ))
N N N sR R

u x u y
u dxdy

x y
+

 − =
 − 
∫ ∫  

is the norm of ( )sH Ω . ( )sH Ω is Hilbert space with the 

inner product 

2

( ( ) ( ))( ( ) ( ))
,

N N N sR R

u x u y v x v y
u v dxdy

x y
+

− −=
−∫ ∫  

For 1 p≤ < ∞ , we denote by 
p

u  the usual norm in 

( )pL Ω and u ∞ the norm in ( )L∞ Ω . The energy functional

: ( )
s

fI H RΩ ֏  corresponding to the equation ,( )fPλ  is 

2

2
2

2

1 ( ( ) ( ))
( ) ( )

2 + Ω Ω

−= − − −
−∫ ∫ ∫Nf N sR

u x u y
I u x y dxdy Vu dx fudx

x y
θ λ  

We say ( )su H∈ Ω  is a solution of the equation ,( )fPλ if for any ( )sv H∈ Ω it holds 

2 2

( ( ) ( ))( ( ) ( ))
( ) 0+ Ω Ω

− − − − − =
−∫ ∫ ∫N N sR

u x u y v x v y
x y dxdy Vuvdx fvdx

x y
θ λ  

2.2. Some Lemmas 

Lemma 1 ([17] Theorem 6.5) The embedding of ( )sH Ω

into ( )r NL R is continuous for 1 2 / ( 2 )r N N s≤ ≤ − and 

compact for 1 2 / ( 2 )r N N s≤ < − . 

Lemma 2 ([2] Lemma 2.1) For any ( )g R f∈ where 

( )pf L∈ Ω  for some 1 p≤ ≤ ∞ then ( )pg L∈ Ω and 

p p
g f= . 

Lemma 3 ([7] Lemma 2.3) Let ( )pf L∈ Ω  and 

'( )pg L∈ Ω where 1 p≤ ≤ ∞ , ' / ( 1)p p p= − , then there 

exists ( )f R f
∧

∈ which maximizes the linear functional 

hgdx
Ω∫  relative to ( )h R f∈  where ( )R f  is the weak 

closure of ( )R f  in ( )pL Ω .  

Lemma 4 Suppose that ( ) 0V x > and ( ) ( )V x L∞∈ Ω  

: (0, ),NRθ → ∞ ( ) ( ), \{0};Nx x x Rθ θ= − ∀ ∈ ( )NL Rθ ∞∈

and there exists 0 Rθ +∈ such that
 0( ) , .Nx x Rθ θ≥ ∀ ∈

 
Define 

2

2

0 2

( ) ( )
inf ( )

N
V

N su H R

u x u y
x y dxdy

x y
λ θ+∈

 − = − 
−  

∫  
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where 
2{ ( ) : | | 1},s

VH u H V u dx
Ω

= ∈ Ω =∫ then 

0 0λ > . 

Proof. Obviously, 00 λ≤ < ∞ . Choose{ }nu as a minimize 

sequence, i.e.,  

2

2

2
02

( ) ( )
| | 1, ( )+Ω

−
= − →

−∫ ∫ N

n n
n N sR

u x u y
V u dx x y dxdy

x y
θ λ , 

Then there exists a subsequence (still denoted by { }nu ), such that nu weakly converges to ( )su H∈ Ω . Since ( )sH Ω is 

compactly embedded into
2 ( )L Ω , nu converges strongly to 

2 ( )u L∈ Ω . Therefore,  

2 2 2 2| (| | | | ) | || || | (| | | | ) | 0∞
Ω Ω

− ≤ − →∫ ∫n nL
V u u dx V u u dx  

So that,  

2 2| | | | 1nV u dx V u dx
Ω Ω

→ =∫ ∫ . 

Since ( ) ( ), \{0};Nx x x Rθ θ= − ∀ ∈ ( )NL Rθ ∞∈ and there exists 0 Rθ +∈ such that 0( ) , ,Nx x Rθ θ≥ ∀ ∈  

2

1/2
2

2

( ( ) ( ))
( )

N N sR

u x u y
x y dxdy

x y
θ+

 − −
 − 
∫

 

is a norm in ( )sH Ω which is equivalent to u . 

Combining with the weakly lower semi-continuity of the norm, we have 

2 2

2 2

0 02 2

( ( ) ( )) ( ( ) ( ))
( ) liminf ( )+ +→∞

− −≤ − ≤ − =
− −∫ ∫N N

n n

N s N snR R

u x u y u x u y
x y dxdy x y dxdy

x y x y
λ θ θ λ  

which implies that 

2

2

0 2

( ( ) ( ))
( ) 0

N N sR

u x u y
x y dxdy

x y
λ θ+

−= − >
−∫  

3. Main Results 

3.1. The Existence and Uniqueness of the Equation ,( )fPλ  

We use the following hypotheses on the function 

: (0, ) :NRθ → ∞
 

(H1) ( ) ( ), \{0};Nx x x Rθ θ= − ∀ ∈
 

(H2) ( )NL Rθ ∞∈ and there exists 0 Rθ +∈ such that 

0( ) , .Nx x Rθ θ≥ ∀ ∈  

Proposition 1 Assume that (H1) and (H2) hold,  

0 ( ) ( )V x L∞< ∈ Ω , ( )qf L∈ Ω , 
2

2

N
q

N s
>

+
, 00 λ λ< < , 

where 0λ is defined in Lemma 4, then the equation ,( )fPλ  has 

a unique solution ( )
s

fu H∈ Ω  and 

( )
( ) inf ( )sf f fv H

I u I v∈ Ω= . 

Proof. Choose arbitrarily ( )su H∈ Ω , by the Holder 

inequality and Lemma 1 we have  

'
q

qL L
fudx f u C u

Ω
≤ ≤∫  

where 1 ' : ( 1) 2 ( 2 )q q q N N s< = − < − . From (H1) and (H2) 

we have 

2

2
2

02

( ( ) ( ))
( )

N N sR

u x u y
x y dxdy u

x y
θ θ+

− − ≥
−∫  

Therefore, we can deduce that 

20

0

( ) 1
2

fI u u C u
θ λ

λ
 

≥ − − 
 

 

which implies that fI is a coercive functional. Since we can 

check by standard arguments that fI is weakly lower 
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semi-continuous, fI  has a minimizer ( )
s

fu H∈ Ω with 

( )
( ) inf ( )sf f fv H

I u I v∈ Ω= . 

By the standard arguments we can show that 
1
( ( ), )

s
fI C H R∈ Ω which implies that ( )

s
fu H∈ Ω is a 

solution of the equation ,( )fPλ , i.e.,  

2 2

( ( ) ( ))( ( ) ( ))
( ) 0+ Ω Ω

− −
− − − =

−∫ ∫ ∫N

f f

fN sR

u x u y v x v y
x y dxdy Vu vdx fvdx

x y
θ λ

 

holds for any ( )sv H∈ Ω . Assume that the equation ,( )fPλ

has another solution fw . Then we can easily deduce that 

2 2

( ( ) ( ))( ( ) ( ))
( )+ Ω

− −
− =

−∫ ∫N

f f

fN sR

T x T y v x v y
x y dxdy VT vdx

x y
θ λ

 

for any ( )sv H∈ Ω  where f f fT u w= − . Take fv T= in  

the above equality and notice that 00 λ λ< <  we have  

2

2

2

2

( ) ( )
( )+ Ω

−
− =

−∫ ∫N

f f

fN sR

T x T y
x y dxdy VT dx

x y
θ λ  

2

2

2
0 2

( ) ( )
( )+Ω

−
< ≤ −

−∫ ∫ N

f f

f N sR

T x T y
VT dx x y dxdy

x y
λ θ

 

a contradiction. Therefore, the equation has a unique 

solution. 

3.2. The Solvability of the Problem (Max) 

Theorem 1 Assume that 0 ( ) ( )V x L∞< ∈ Ω , ( )qf L∈ Ω , 

2 ( 2 )q N N s> + , 00 λ λ< < , then the problem (Max) has a 

solution ( )f R f
∧

∈ , i.e.,  

( )

( ) sup ( )
g R f

f g
∧

∈
Φ = Φ . 

Proof. By Proposition 1, there is a unique solution 

( )
s

fu H∈ Ω of the equation ,( )fPλ . Let
( )

inf ( )g g
g R f

A I u
∈

= , 

and we can see that for each ( )g R f∈ ，it holds 

2

2

| ( ) ( ) |1
( ) ( )

2 N N

g g

g g N sR R

u x u y
I u x y dxdy

x y
θ+

−
= −

−∫ ∫  

2| |
2

g gV u dx gu dx
λ

Ω Ω
− −∫ ∫  

2

0
0

1
(1 )

2 q
g gL

u C g u
λ θ
λ

≥ − − . 

From Lemma 2, 
q qL L

g f= , we can deduce from the 

above inequality that A is finite. Choose { }ig as a minimizing 

sequence, i.e., ( )ig R f∈ , i∀ ∈N  and 

lim ( )i
i

A I u
→∞

= ， 

where , ( ) ( )
i i ii g i g gu u I u I u= = . Then { }iu is bounded in

( )sH Ω  and has a subsequence which still denoted by{ }iu

that converge weakly to ( )su H∈ Ω  and strongly to 

' ( )qu L∈ Ω for the compact embedding of ( )sH Ω  into 

'( )(1 ' ( 1) 2 ( 2 ))qL q q q N N sΩ < = − < − . Notice that

qq
i LL

g f≡ , then{ }ig  is bounded in ( )qL Ω which has a 

subsequence still denoted by { }ig  converge weakly to

,( )q wg R f∈ , where 
,( )q wR f is denoted by the weak closure 

of ( )R f in ( )qL Ω . Then,  

( ) 0,ig g udx i
Ω

− → → ∞∫ . 

Combining with the Holder inequality we have 

'( ) ( ) ( ) ( ) 0,
Ω Ω Ω Ω

− ≤ − + − ≤ − + − → → ∞∫ ∫ ∫ ∫q qi i i i i i i iL L
g u gu dx g u u dx g g udx g u u g g udx i  

Since ( )sH Ω  is compactly embedded into
2 ( )L Ω , { }iu  converge strongly to u  in

2 ( )L Ω . It holds then,  

2 2lim (| | | | ) 0i
i

V u u dx
→∞ Ω

− =∫  

Therefore,  

lim ( )i
i

A I u
→∞

=
2

2

2

1 | ( ) ( ) |
( ) | |

2 2+ Ω Ω

−≥ − − −
−∫ ∫ ∫ ∫N N N sR R

u x u y
x y dxdy V u dx gudx

x y

λθ             (1) 
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By Lemma 3, linear functional 

,: ( ) , ( )q wl R f R l g gudx
Ω

= ∫֏

 

has a maximizer ( )f R f
∧

∈ ,  

gudx f udx
∧

Ω Ω
≤∫ ∫ . 

We can imply from (1) that 

2

2

1 | ( ) ( ) |
( )

2 N N N sR R

u x u y
A x y dxdy

x y
θ+

−≥ −
−∫ ∫ 2| |

2
V u dx f udx

λ ∧

Ω Ω
− −∫ ∫ . 

Since u
∧

 is the global minimizer of the functional 
f

I ∧ ,  

,
0

2
2

2
( )

1 | ( ) ( ) |
( ) inf ( ) | |

2 2
∧

∧ ∧

+ Ω Ω∈ Ω

−= − − −
−∫ ∫ ∫ ∫N Ns p N sR Rf v W

v x v y
I u x y dxdy V v dx f vdx

x y

λθ
 

2
2

2

1 | ( ) ( ) |
( ) | |

2 2

∧

+ Ω Ω

−≤ − − −
−∫ ∫ ∫ ∫N N N sR R

u x u y
x y dxdy V u dx f udx

x y

λθ
 

From the above two inequalities, we have 

( )
f

I u∧

∧
≤ A . 

Since 
( )

inf ( )g g
g R f

A I u
∈

= , ( )f R f
∧

∈ ,  

( )
f

I u∧

∧
≥ A . 

So that,  

( )
f

I u∧

∧
= A . 

Since 
1

( ) ( )
2f

I u f∧

∧ ∧
= − Φ , 

( )

( ) sup ( )
g R f

f g
∧

∈
Φ = Φ . We 

complete the proof. 

4. Conclusions 

In this paper, we are focusing on the maximization 

problem: 

( )Max  
( )

inf ( )
g R f

g
∈

Φ  

where ( ) gg gu dx
Ω

Φ = ∫ , 
and gu is the unique solution of the 

equation ,( )fPλ : 

( ) ( ), ,

0,

s

N

L u V x u f x x

u x R

θ λ− − = ∈ Ω


= ∈ − Ω
 

with the right hand term f replaced by its rearrangement 

( )∈g R f .  

Since the term uxV )(λ− is no longer non-decreasing 

with respect to the second variable u , the arguments of the 

uniqueness of the solution of the equation )( , fPλ  in [10] 

are not valid here. By using reduction to absurdity and the 

tools of the rearrangement theory, we can obtain the 

uniqueness of the solution of the equation )( , fPλ and prove 

that the maximization problem (Max) is solvable. To the best 

of our knowledge, the result obtained here is new.  
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