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Abstract: The dynamics of evolving processes is often subjected to abrupt changes such as shocks, harvesting, and natural
disasters. Often these short-term perturbations are treated as having acted instantaneously or in the form of “impulses.” In fact,
there are many processes and phenomena in the real world, which are subjected during their development to the short-term
external influences. Their duration is negligible compared with the total duration of the studied phenomena and processes.
Impulsive differential equations take an important place in some area such that physics, chemical technology, population
dynamics, biotechnology, and economics. The study of such equations is relatively less developed due to the difficulties created
by the state-dependent impulses. In the case of impulses at variable times, a “beating phenomenon” may occur, that is to say, a
solution of the differential equation may hit a given barrier several times (including infinitely many times). In this work, we
study the existence of solutions for some partial impulsive functional differential equations with variable times in Banach spaces
by using the fractional power of closed operators theory. We suppose that the undelayed part admits an analytic semigroup. The
delayed part is assumed to be Lipschitz. We use Schaefer fixed-point Theorem to prove the existence of solutions for this first
order equation with impulse in α-norm.
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1. Introduction
In this work, we study the existence of solutions for the initial value problems for first order functional differential equations

with impulsive effects. 
u′(t) = −Au(t) + f(t, ut) for t ∈ J = [0, b], t 6= τk(u(t)), k = 1, ...,m

u(t+) = Ik(u(t)) for t = τk(u(t)−H(t, ut)), k = 1, ...,m

u0 = ϕ ∈ Cα,

(1)

where −A is the infinitesimal generator of compact analytic semigroup on Rn, C and Cα are defined by

C =

{
ψ : [−r, 0]→ Rn, ψ is continuous everywhere except for a finite number
of points at which ψ(s−) and ψ(s+) exist and ψ(s−) 6= ψ(s+)

}

Cα = {ψ ∈ C : ψ(θ) ∈ D(Aα) for θ ∈ [−r, 0] and Aαψ ∈ C},
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0 < α < 1, Aα is the fractional α-power of A, this operator
(Aα, D(Aα)) will be describe later. For t ≥ 0, ut denotes the
history function of Cα defined by

ut(θ) = u(t+ θ) for − r ≤ θ ≤ 0,

f : J×Cα → Rn is an appropriate function, Ik : D(Aα)→
D(Aα) and τk : D(Aα) → R, k : 1, 2, ...,m, are given
functions satisfying some assumptions that will be specified
later.

For more details about impulsive differential equations,
the readers can refer to Bainov and Simeonov [1],
Lakshmikantham et al. [9], and Samoilenko and Perestyuk
[14], Bajo and Liz [2] and Frigon and O’Regan [3] and the
references therein and the recent book of Wang and Feckan
[15].

This work generalize [8] where the author prove their result
in Rn. In [7], the authors built a special strictly ascending
continuous delay for a class of system of impulsive differential
equations. They prove that even though the dynamics of the
system and the delay have ideal continuity properties, the right
side may not even have limits at some points due to the impact
of past impulses in the present. In [6], the authors investigate
the unified theory for solutions of differential equations
without impulses and with impulses, even at variable times,
allowing the presence of beating phenomena, in the space of
regulated functions. They give sufficient conditions to ensure
that a regulated solution of an impulsive problem is globally
defined. In [12], by employing a critical point theorem, the
authors establish the existence of infinitely many solutions for
fourth-order impulsive differential equations depending on two
real parameters. In [10], the authors propose to model the
unequal partitioning of the molecular content at cell division
like to be a source of heterogeneity in a cell population by
using impulsive differential equation (IDE). They consider a
general autonomous IDE with fixed times of impulse and a
specific form of impulse function and establish properties of
the solutions of that equation, most of them obtained under the
hypothesis that impulses occur periodically. They apply those
results to an IDE describing the concentration of the protein
Tbet in a CD8 T-cell, where impulses are associated to cell
division, to study the effect of molecular partitioning at cell
division on the effector/memory cell-fate decision in a CD8
T-cell lineage. In [5], the authors give sufficient conditions
to established the existence of at least one positive periodic
solution for a family of scalar periodic differential equations
with infinite delay and nonlinear impulses.

As in [4], we use Schaefer fixed-point theorem to study the
system (1) by using the fractional power of closed operators
theory.

The organization of this work is as follows, in Section 2, we
recall some preliminary results on the α-norm and Schaefer’s
theorem. In Section 3, we prove our main result.

2. Preliminary Results

Let (X, ‖.‖) be a Banach space and α be a constant such
that 0 < α < 1 and −A be the infinitesimal generator of a
bounded analytic semigroup of linear operator (T (t))t≥0 on
X. We assume that 0 ∈ ρ(A). If 0 /∈ ρ(A), we can substitute
the operator A by the operator (A − σI) with σ large enough
such that 0 ∈ ρ(A−σI). We define the fractional powerAα for
0 < α < 1, as a closed linear invertible operator with domain
D(Aα) dense in X. Since Aα is closed, then D(Aα), endowed
with the graph norm of Aα, |x| = ‖x‖ + ‖Aαx‖, is a Banach
space. Since Aα is invertible, its graph norm |.| is equivalent
to the norm |x|α = ‖Aαx‖. Consequently, D(Aα) endowed
with the norm |.|α, is a Banach space, denoted by Xα. The
space Cα is endowed with the uniform norm topology:

‖ψ‖α = sup
θ∈[−r,0]

|ψ(θ)|α.

For 0 < β ≤ α < 1, the imbedding Xα ↪→ Xβ is compact
if the resolvent operator of A is compact. Also, the following
properties are well known.

Proposition 2.1. [11] Let 0 < α < 1. Assume that
the operator −A is the infinitesimal generator of an analytic
semigroup (T (t))t≥0 on the Banach space X satisfying 0 ∈
ρ(A). Then we have

i) T (t) : X → D(Aα) for every t > 0.
ii) T (t)Aαx = AαT (t)x for every x ∈ D(Aα) and t ≥ 0.
iii) for every t > 0, AαT (t) is bounded on X and there exist

Mα > 0 and ω > 0 such that

‖AαT (t)‖ ≤Mαe
−ωtt−α for t > 0.

iv) If 0 < α ≤ β < 1, D(Aβ) ↪→ D(Aα).
v) There exists Nα > 0 such that

‖(T (t)− I)A−α‖ ≤ Nαtα for t > 0.

Recall that A−α is given by the following formula

A−α =
1

Γ(α)

∫ +∞

0

tα−1T (t)dt,

where the integral converges in the uniform operator topology
for every α > 0.

Consequently, if T (t) is compact for each t > 0, then A−α

is compact.
Definition 2.1. A function f : J × C → Rn is said to be

L2-Carathéodory if:
i) t→ f(t, u) is measurable for each u ∈ C;
ii) t→ f(t, u) is continuous for almost all t ∈ J ;
iii) for each q > 0, there exists hq ∈ L2(J ;R+), such that

‖f(t, u)‖ ≤ hq(t) for all |u| ≤ q and for almost all t ∈ J.

In what follows, we will assume that f is an L2-
Carathéodory function.
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The main result of this paper is based on the following
Schaefer’s fixed-point theorem (cf. [13]).

Theorem 2.1. [13] Let X be a Banach space and N : X →
X be a completely continuous map. If the set

E(N) = {u ∈ X : u = σN(u) for some 0 < σ < 1}

is bounded, then N has a fixed point.

3. Mains Results
Let us start by defining what we mean by a solution of

problem

Definition 3.1. A continuous function u : [−r, b]→ Rnα is a mild solution of equation (1) if

i) u(t) = T (t)ϕ(0) +

∫ t

0

T (t− s)v(s)ds for t ∈ J for t 6= τk(u(t)), k = 1, ...,m

ii) u(t+) = Ik(u(t)) for t = τk(u(t)), k = 1, ...,m

iii) u(θ) = ϕ(θ) for − r ≤ θ ≤ 0

Now, we can prove our existence result under the following hypotheses.
(H1) The operator −A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 on the Banach space Rn , moreover,

we assume that 0 ∈ ρ(A).
(H2) The semigroup ((T (t))t≥0 is compact on Rn for t > 0.
(H3) The functions τk ∈ C1(Rnα,R), for k = 1, ...,m. Moreover,

0 < τ1(x) < ... < τm(x) for all x ∈ Rnα.

(H4) There exist constants ck, such that |Ik(x)| ≤ ck, k = 1, ...,m for each x ∈ Rnα
(H5) There exist a continuous nondecreasing function ψ : [0,+∞[→]0,+∞[ such that p ∈ L2([0,+∞[) and

sup
s∈[0,t]

‖f(s, u)‖ ≤ p(s)ψ(‖u‖α)

for t ∈ J and each u ∈ Cα.
(H6) For all (t, x) ∈ [0, b]× Rnα and for all ut ∈ Cα, we have〈

τ ′k(x),−Au(t) + f(t, ut)
〉
6= 1 for k = 1, ...,m,

where 〈., .〉 denotes the scalar product in Rn.
(H7) For all x ∈ Rnα

τk(Ik(x)) ≤ τk(x) < τk+1(Ik(x)) for k = 1, ...,m.

In what follows, we choose α such that 0 < α <
1

2
.

Theorem 3.1. Assume that (H1), (H2), (H3), (H4), (H5), (H6) and (H7) hold and et ϕ ∈ Cα. Then, problem (1) has at least
one solution u(., ϕ) on [−r, b].

Proof. The proof is done in several steps.
Step 1. Consider the following problem u′(t) = −Au(t) + f(t, ut) for t ∈ [0, b]

u0 = ϕ ∈ Cα.
(2)

We transform equation (2) into a fixed-point problem.
Let K : C([−r, b];Rnα)→ C([−r, b];Rnα) be an operator defined by

K(u)(t) =


T (t)ϕ(0) +

∫ t

0

T (t− s)f(s, us)ds for t ∈ J

ϕ(t) for t ∈ [−r, 0].
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Claim 1. K is continuous.
Let (un)n be a sequence such that un → u in C([−r, b];Rnα). Then using Proposition (2.1), we have

|K(u)(t)−K(un)(t)|α =
∣∣∣ ∫ t

0

T (t− s)(f(s, us)− f(s, uns
))ds

∣∣∣
α

≤
∫ t

0

‖AαT (t− s)(f(s, us)− f(s, uns
))‖ds

≤ Mα

∫ t

0

‖f(s, us)− f(s, uns
)‖e−ω(t−s)

(t− s)α
ds

≤ Mα

(∫ t

0

‖f(s, us)− f(s, uns
)‖2ds

) 1
2
(∫ t

0

e−2ω(t−s)

(t− s)2α
ds
) 1

2

≤ (2ω)2α−1Mα

(∫ t

0

‖f(s, us)− f(s, uns
)‖2ds

) 1
2
(∫ t

0

e−ss−2α+1−1ds
) 1

2

≤ (2ω)2α−1
[
Γ(1− 2α)

] 1
2

Mα

(∫ t

0

‖f(s, us)− f(s, uns
)‖2ds

) 1
2

.

Since f is an L2-Carathéodory function, we have by the Lebesgue dominated convergence theorem

|K(u)−K(un)|α ≤ (2ω)2α−1
[
Γ(1− 2α)

] 1
2

Mα

∣∣∣f(s, us)− f(s, uns
)
∣∣∣
L2
→ 0 as n→ +∞

Claim 2. K maps bounded sets into bounded sets in C([−r, b];Rnα).
In order to apply Ascoli’s Theorem we need to prove that the set {K(u)(t) : u ∈ Bq}, where Bq = {u ∈ C([−r, b];Rnα) :
‖u‖∞ ≤ q} is relatively compact for each t ∈]0, b], where

‖u‖∞ = sup
t∈[−r,b]

|u(t)|α.

Let t ∈]0, b] be fixed, and γ > 0 be such that α < γ <
1

2
. Since (T (t))t>0 is compact, let us pose M = sup{‖T (t)‖ : t ∈

[0, b]}, then using Proposition (2.1) and Definition (2.1), we have

‖AγK(u)(t)‖ ≤ ‖AγT (t)ϕ(0)‖+
∥∥∥∫ t

0

AγT (t− s)f(s, us)ds
∥∥∥

≤ M |ϕ(0)|γ +Mγ

∫ t

0

‖f(s, us)‖e−ω(t−s)

(t− s)γ
ds

≤ M |ϕ(0)|γ +Mγ

∫ t

0

hq(s)e
−ω(t−s)

(t− s)γ
ds

≤ M |ϕ(0)|γ + (2ω)2γ−1
[
Γ(1− 2γ)

] 1
2

Mγ

(∫ b

0

h2q(s)ds
) 1

2

<∞.

Then for fixed t ∈]0, b], {AγK(u)(t) : u ∈ Bq} is bounded in Rn. Using (H2) and the definition of A−γ , we deduce that
A−γ : Rn → Rnα is compact, it follows that {K(u)(t) : u ∈ Bq} is relatively compact set in Rnα.

Claim 3. K maps bounded sets into equicontinuous sets of C([−r, b];Rnα).
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Let t1, t2 ≥ 0, t1 < t2, Bq be a bounded set of C([−r, b];Rnα) as in Claim 2, and let u ∈ Bq . Then we have

K(u)(t2)−K(u)(t1) = (T (t2)− T (t1))ϕ(0) +

∫ t2

t1

T (t2 − s)f(s, us)ds

+

∫ t1

0

(T (t2 − s)− T (t1 − s))f(s, us)ds

= (T (t2)− T (t1))ϕ(0) +

∫ t2

t1

T (t2 − s)f(s, us)ds

+(T (t2 − t1)− I)

∫ t1

0

T (t1 − s)f(s, us)ds

We obtain that

|K(u)(t2)−K(u)(t1)|α ≤ ‖(T (t2)− T (t1))ϕ(0)‖

+(2ω)2α−1
[
Γ(1− 2α)

] 1
2

Mα

(∫ t2

t1

h2q(s)ds
) 1

2

+
∥∥∥(T (t2 − t1)− I)

∫ t1

0

AαT (t1 − s)f(s, us)ds
∥∥∥.

The first part converges to zero as |t2 − t1| → 0. On the other hand, we have∥∥∥∫ t1

0

AαT (t1 − s)f(s, us)ds
∥∥∥ ≤ (2ω)2α−1

[
Γ(1− 2α)

] 1
2

Mα

(∫ t1

0

h2q(s)ds
) 1

2

< +∞.

Consequently since t1 > 0, then the set {∫ t1

0

AαT (t1 − s)f(s, xs)ds, u ∈ Bq
}

is relatively compact in Rn. There is a compact set Ω in Rn such that{∫ t1

0

AαT (t1 − s)f(s, us)ds, u ∈ Bq
}
⊂ Ω.

By Banach-Steinhaus Theorem, we have∥∥∥(T (t2 − t1)− I)

∫ t1

0

AαT (t1 − s)f(s, us)ds
∥∥∥→ 0 as t1 → t2

uniformly in u ∈ Bq . Using similar argument for 0 ≤ t2 < t1 ≤ b, we can conclude that {K(u)(t) : u ∈ Bq} is equicontinuous.
As a consequence of Claims 1, 2 and 3, together with Arzelá-Ascoli’s Theorem, it follows that K is completely continuous.

Claim 4. It remains to prove that the set

E(K) = {u ∈ C([−r, b];Rnα) : u = σK(u) for some 0 < σ < 1}

is bounded.
Let u ∈ E(K). Then, u = σK(u) for some 0 < σ < 1. Thus, for each t ∈ J

u(t) = σ
(
T (t)ϕ(0) +

∫ t

0

T (t− s)f(s, us)ds
)
.
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Using (H5), we can see that for each t ∈ J , we have

|u(t)| ≤ M |ϕ(0)|α +

∫ t

0

|T (t− s)f(s, us))|αds

≤ M |ϕ(0)|α +Mα

∫ t

0

‖f(s, us))‖e−ω(t−s)

(t− s)α
ds

≤ M |ϕ(0)|α +Mα

∫ t

0

‖f(t− s, ut−s))‖e−ωs

sα
ds

≤ M |ϕ(0)|α +Mα

∫ t

0

(sups∈[0,t] ‖f(s, us))‖)e−ωs

sα
ds

≤ M |ϕ(0)|α +Mα

∫ t

0

p(s)ψ(‖us‖α)e−ωs

sα
ds.

Consider the function µ be defined by

µ(t) = sup{|u(s)|α : −r ≤ s ≤ t} for t ∈ J.

Let t∗ ∈ [−r, t] be such that µ(t) = u(t∗). If t∗ ∈ [−r, b], by the previous inequality, we have

µ(t) ≤ M‖ϕ‖α +Mα

∫ t

0

p(s)ψ(µ(s))e−ωs

sα
ds. (3)

Define the function v on R+ by

v(t) = M‖ϕ‖α +Mα

∫ t

0

p(s)ψ(µ(s))e−ωs

sα
ds.

If t∗ ∈ [−r, 0], then µ(t) = ‖ϕ‖α and the inequality (3) holds. Then, we have

c = v(0) = M‖ϕ‖α and µ(t) ≤ v(t) for t ∈ J

Differentiating v, we obtain

v′(t) =
Mαp(t)ψ(µ(t))e−ωt

tα
for almost t ∈ J.

Since ψ is a nondecreasing function, we get

v′(t) ≤ Mαp(t)ψ(v(t))e−ωt

tα
for almost t ∈ J.

Integrating previous equation, we obtain∫ t

0

v′(s)

ψ(v(s))
ds ≤ c1

(∫ t

0

p2(s)ds
) 1

2

< +∞,

where

c1 = (2ω)2α−1
[
Γ(1− 2α)

] 1
2

Mα

By a change of variables we get∫ v(t)

v(0)

ds

ψ(s)
≤
∫ ∞
c0

ds

ψ(s)
≤ c2

(∫ +∞

0

p2(s)ds
) 1

2

< +∞.

Thus, there exists a constant λ, such that v(t) ≤ λ for t ∈ J , hence µ(t) ≤ λ for t ∈ J . Since for every t ∈ J , ‖ut‖α ≤ µ(t),
we have

‖u‖α ≤ λ0 = max{c0, λ},

where λ0 depends on functions p and ψ. This shows that E(K) is bounded.
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Set X := C([−r, b],Rnα). Using Schaefer’s fixed point theorem (see [13, p. 29]), we deduce that K has a fixed-point u which
is a solution to equation (2) denoted by u1.

We define the function rk,1 by
rk,1(t) = τk(u1(t))− t for t ∈ J.

Then by (H3) we have
rk,1(0) 6= 0 for t ∈ J and k = 1, ...,m.

If
rk,1(t) 6= 0 on [0, b] and for k = 1, ...,m,

then
t 6= τk(u1(t)) on [0, b] and for k = 1, ...,m,

consequently u1 is a solution of equation (1). Finally, consider the case when r1,1(t) = 0 for some t ∈ J . Now, since r1,1(0) 6= 0
and r1,1 is continuous, there exists t1 > 0 such that

r1,1(t1) = 0 and r1,1(t) 6= 0 for all t ∈ [0, t1[.

Thus, by (H3), we have
rk,1(t) 6= 0 for all t ∈ [0, t1[ and k = 1, ...,m.

Step 2. Consider now the following problem
u(t) = u1(t) for t ∈ [t1 − r, t1]
u′(t) = −Au(t) + f(t, ut) for almost [t1, b]
u(t+1 ) = I1(u1(t1)).

(4)

Transform equation (4) into a fixed-point problem. Consider the operatorH1 : C([t1− r, b];Rnα)→ C([t1− r, b];Rnα) defined
by

H1(u)(t) =

 I(u(t1)) + T (t)ϕ(0) +

∫ t

t1

T (t− s)f(s, us)ds for t ∈ [t1, b]

u1(t) for t ∈ [t1 − r, t1].

As in Step 1, we can show that K1 is completely continuous and the set

E(K1) = {u ∈ C([t1 − r, b];Rnα) : u = σH1(u) for some 0 < σ < 1}

is bounded.

Set X := C([t1 − r, b],Rnα). By Schaefer’s theorem, we
deduce that K1 has a fixed-point u which is a solution to
equation (4). Denote this solution by u2.

We define the function

rk,2(t) = τk(u2(t))− t for t ≥ t1.

(H3) implies that

rk,2(0) 6= 0 for t ∈]t1, b] and k = 1, ...,m.

If
rk,2(t) 6= 0 for t ∈]t1, b] and k = 1, ...,m,

then

u(t) =

{
u(t1) if t ∈ [0, t1]
u2(t) if t ∈ [t1, b]

is a solution of equation (1). It remains to consider the case
when the case when r2,2(t) = 0 for some t ∈ J . By (H7), we

have

r2,2(t+1 ) = τ2(u2(t+1 ))− t1
= τ2(I1(u1(t1)))− t1
> τ1(u1(t1))− t1
> r1,1(t1) = 0.

Since r2,2 is continuous, there exists t2 > t1 such that

r2,2(t2) = 0 and r2,2(t) 6= 0 for all t ∈]t1, t2[.

By (H3), it follows that

rk,2(t) 6= 0 for t ∈]t1, t2[ and k = 2, ...,m.

Suppose now, that there is s ∈]t1, t2[, such that r1,2(s) = 0.
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From (H7), it follows that

r1,2(t+) = τ1(u2(t+1 ))− t1
= τ1(I(u1(t1)))− t1
≤ τ1(u1(t1))− t1
≤ r1,1(t1) = 0.

Thus, the function r1,2 attains a nonnegative maximum at
some point s1 ∈]t1, b]. Since

u′2(t) = −Au2(t) + f(t, u2t)

and
r′1,2(s1) = τ ′1(u2(s1))u′2(s1)− 1,

then 〈
τ ′1(u2(s1)),−Au(s1) + f(s1, u2s1)

〉
= 1

which is a contradiction by (H6).
Step 3. We continue this process and taking into account

that um+1 := u|[tm,b]
is a solution to the problem u(t) = um(t) for t ∈ [tm − r, tm]

u′(t) = −Au(t) + f(t, ut) for almost t ∈]tm, b[
u(tm

+) = Im(um−1(tm)).

The solution u of equation (1) is then defined by the problem

u(t) =


u1(t) if t ∈ [−r, t1]
u2(t) if t ∈]t1, t2]
...
um+1(t) if t ∈]tm, b].

4. Conclusion
In this work, we have used Schaefer fixed-point Theorem

to prove the existence of solutions for this first order equation
with impulse in α-norm under some assumptions. The proof is
done in several step by bulding a function which is contiuous,
maps bounded sets into bounded and equicontinuous sets.
The controllability in the α-norm of impulsive systems with
nonlocal conditions with variable finite delay will be presented
in next works.
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