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Abstract: An adherence dominator on a topological space X is a function π from the collection of filterbases on X to the
collection of closed subsets of X satisfying AΩ ⊂ πΩ where AΩ is the adherence of Ω and πΩ =

⋂
Ω πF =

⋂∑
F,F∈Ω πV ,

where
∑
F represents the collection of open sets containing F . The π-adherence may be adherence, θ-adherence, u-adherence

s-adherence, f -adherence, δ-adherence, etc., of a filterbase. Pervin deined a partition (or a separation) of a set in a topological
space as a pair of subsets (P,Q) satisfying P ∩ clQ = clP ∩ Q = ∅, where clP represents the closure of P and a set K is
said to be connected if K = ∅ or K 6= P ∪ Q where (P,Q) is a partition. In this paper, a πpartition (or a πseparation) is a
pair of subsets (P,Q) satisfying P ∩ πQ = πP ∩ Q = ∅ where π is an adherence dominator and a subset K of a space X is
πconnected relative to X lf K = ∅ or there is no πpartition (P,Q) such that K = P ∪ Q. This paper investigates these new
forms of connectedness. Theorems due to A. D. Wallace and J. D. Kline are generalized. Geralizations of C-compact spaces and
functionally compact spaces are also presented.
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1. Introduction
An adherence dominator on a topological space is a

function π from the set of filterbases to the set of closed
subsets satisfying AΩ ⊂ πΩ, where AΩ is the adherence
of Ω and and πΩ =

⋂
Ω πF =

⋂∑
F,F∈Ω πV , where

∑
F

represents the collection of open sets containing the set F .
If π is an adherence dominator, a nonempty subset B in a
space X is πclosed if πB = B and a space to be a πspace
if {x} is πclosed for every x ∈ X. A partition is defined
in a topological space as a pair of subsets (P,Q) satisfying
P ∩ clQ = clP ∩ Q = ∅ where clP represents the closure of
P and K is said to be connected if K = ∅ or K 6= P ∪ Q
where (P,Q) is a partition [19]. For a space X and P ⊆ X , if
P 6= ∅, clP ⊆ πP.

The π-adherence may be adherence, θ-adherence, u-
adherence s-adherence, f -adherence δ-adherence, etc., of a
filterbase [22, 6, 7, 10, 20, 9, 11, 8, 12, 21]. These closure
operators are not individually stated here. Please refer to
the appropriate references for the definitions of each of these

closure operators.
This article is divided into six sections. In thise section

for introduction, concepts which motivated the study of
connectedness via an adherence dominator are presented;
next section on πconnectedness, πconnected sets and their
properties are given. In the third section, generalizations
of continuity are presented. The fourth section gives some
generalizations of compactness through adherence dominator
and in the fifth section components relative to a space are
presented through adherence dominator. Sixth section remarks
on conclusion of tthis study.

Following result is stated without proof as it can be easily
verified.

Theorem 1 A T1 space X is a πspace if and only if
π
∑
{x} = {x} for every x ∈ X, where Σ{x} represents

the collection of open sets containing x and π
∑
{x} =⋂∑

{x} πV .
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2. πConnectedness

The concept of a πconnected subset is defined in the model
of the connected subset, using πclosure, instead of closure of
a set.

Definition 1 A subset K is called πconnected relative to X
if K = ∅ or K 6= P ∪Q,P ∩ πQ = πP ∩Q = ∅, where π is
an adherence dominator on X, that is to say K = ∅ or K has
no πpartition (or πseparation).

It is clear that connected subsets are πconnected relative to
the space. The following two examples illustrate the following:
They are given here to show that (1) πconnected relative to a
space need not be connected and (2) that these two classes may
coincide in spaces which are not regular, using πΩ = adθΩ,
where adθΩ represents the θ-adherence of Ω.

Example 1 [2]. Let I be the unit interval [0, 1], Y =
I × {0}, X = I × I with the topology generated by the
following base for the open sets: (1) the relative open sets
from the plane in X − Y (2) and for x ∈ Y , sets of the form
(V ∩ (X − Y )) ∪ {x} where V is open in the plane with
x ∈ V. It is clear that Y is discrete in the relative topology
from X and hence is not connected. Suppose π = clθ, the
θ-closure operator, and that (P,Q) a πseparation relative to
X , and Y = P ∪ Q. Choose (r, 0) ∈ P and without loss
of generality, assume that there is an s ∈ I with r < s and
(s, 0) ∈ Q. Let

c = sup{r ∈ I : r < s and (r, 0) ∈ P}.

We see easily that (c, 0) ∈ πP. Hence (c, 0) ∈ P. Since it
is readily seen that (c, 0) ∈ πQ, a contradiction is reached and
Y is πconnectcd relative to X(π = clθ).

Example 2 [2]. Let E be the set of even positive integrs,
O the set of odd positive integers, and let X = {0} ∪ E ∪
O ∪ {j + n−1 : j, n ∈ (E ∪ O) − {1}} be endowed with
the topology from the following open set base: (1) the relative
open sets from the reals in X − {0, 1}, (2) all subsets of the
form {0} ∪ {j + n−1 : n ∈ E, j ≥ j0}. where j0 > 1 and (3)
all subset of the form {1}∪ {j+n−1 : n ∈ O−{1}, j ≥ j0}.
where j0 > 1. It is not difficult to see that the collection of
πconnected subsets and the collection of connected subsets are
both the collection of singletons (π = clθ).

The addherence operator π subsumes the adherence of a
filterbase based on different closure operators. As we have
seen above, a πconnected relative to the space need not be
connected. However, note that if for a space X , the collection
of closed sets coincide with the collection of πclosed sets, then
πconnected sets will be connected. Therefore, investigating
on additional condition(s) which will make sets which are
πconnected relative to the space to be connected, one notice
that neither θ-closure operator nor u-closure operator are
Kuratowki closure operators [13]. In the cited paper, it
was shown that if the topology on the space agree with the
semiregularization topology Ts, that is, the topology generated
by the regularly open subsets of the space, where the collection
of closed sets is the collection of regularly closed sets, then
clθ(clθA) = clθA and clu(cluA) = cluA. (A set is regularly

open (regularly closed), if it is the inerior of a closed (closure
of an open) set. Complement of a regularly open set is
regularly closed. Also, for any space X , if Tk denotes
the topology on X generated by the θ-closures of regularly
closed subsets and Tu denotes the topology generated by u-
closed subsets, then Tk = Tu [13]. So, when π-closure is
a Kuratowski operator for a space X , if Tπ dnotes the the
topology generated by the π-closed subsets of X , then for
(X,Tπ), the class of πconnected relative to X subsets will
coincide with the class of connected subsets of X . Note that
the space in Example 2 is semiregular and as is observed,
in that the collection of connected sets coincide with the
collection of πconneccted sets, where π = clθ.

The following concept and results are used in the sequal and
hence are included in this section

Definition 2 A set A ⊆ X is said to be πrigid , if each filter
base Ω on X satisfying the property that F ∩ πV 6= ∅, for all
F ∈ Ω and V ∈ ΣA also satisfies that πΩ ∩A 6= ∅ [4].

The above definition of a πrigid set subsumes the concepts
of θ-rigid, urigid, srigid sets when the adherence dominator π
is the θ-closure or u-closure or s-closure operator respectively
[4].

It is to be noted that in a π space, π{x} = {x} for each
x ∈ X and for any set A ⊆ X,

⋃
A π{x} ⊆ πA. It can be

shown that πA =
⋃
A π{x} for any πrigid A ⊂ X .

Theorem 2 If A is πrigid, then πA =
⋃
A π{x}.

Proof Let A be πrigid and let x ∈ πA. Then the constant
net {x} is frequently in πV for all V ∈ ΣA. Hence there is
a y ∈ A such that {x} is frequently in πV for all V ∈ Σ{y}.
So, x ∈ π{y}. Therefore, πA ⊆

⋃
A π{x} and hence πA =⋃

A π{x}.
The following cahracterization of πrigid subsets is used later

in this article.
Theorem 3 A subset K of a space X is πrigid if and only if

for every cover Ω of K with open subsets of X there is a finite
Ω∗ ⊂ Ω,K ⊂ int(

⋃
Ω∗ πV ).

Proof Suppose that A is πrigid and Ω is an open cover of
A with subsets of X . Suppose that for any finite subfamily
Ω∗, of Ω, A 6⊆ int(

⋃
Ω∗ πF ). Then A ∩ (X − int(πF )) =

A ∩ cl(X − πF ) 6= ∅, for each F ∈ Ω. The family
F = {A ∩ cl(X − πF ), F ∈ Ω} is a filterbase on X and
(X − πF ) ∩ πV 6= ∅ for V ∈ Σ(A). Hence πF ∩A 6= ∅. So,
(∩(X − F )) ∩A = (X − ∪ΩF ) ∩A 6= ∅, a contradiction.

Conversely, suppose that the open cover condition holds and
Ω is a filterbase onX with πΩ∩A = ∅. Then there is an F ∈ Ω
such that πF ∩A = ∅ which imples that πV ∩F = ∅ for some
V ∈ Σ(A), F ∈ Ω. Hence A is πrigid.

Definition 3. Let (X, τ) be a topological space and let
τ ⊂ τ∗. Then τ∗ will be called a simple extension of τ if
there exists an A 6∈ τ such that τ∗ = {U ∪ (V ∩ A), with
U, V ∈ τ} and τ∗ = τ(A), a simple extension of τ through A
[18].

Theorem 4 The following statements are equivalent for a
T1space X:

1. The space X is a πspace;
2. Each πrigid subset of X is πclosed;
3. Each compact subset of X is πclosed;
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4. Each continuous function on X to a πspace maps
compact sets onto πclosed sets;

5. Each continuous bijection ontoX maps compact subsets
onto πclosed sets.

Proof (1) ⇒ (2). Let A be πrigid. Then πA =⋃
A π({x}) =

⋃
A{x} = A, since X is a πspace. So, A is

πclosed.
(2)⇒ (3). A compact subset is πrigid.
(3)⇒ (4)⇒ (5). Obvious.
(5) ⇒ (1). Let x ∈ X and let X∗ be X with the simple

extension of X through the set {x}[18]. The identity function
g : X∗ → X is a continuous bijection onto X and {x} is
compact in X∗. So πg(x) = π{x} = {x}.

Corollary 1 The following statements are equivalent for a
space X:

1. The space X is a Hausdorff (Urysohn) [regular] space;
2. Each θ-rigid (urigid)[srigid] subset of X is θclosed

(uclosed) [sclosed];
3. Each compact subset of X is θclosed (uclosed)

[sclosed];
4. Each continuous function on X to a Hausdorff

(Urysohn) [regular] space maps compact sets onto
θclosed (uclosed) [sclosed] sets;

5. Each continuous bijection ontoX maps compact subsets
onto θclosed (uclosed) [sclosed] sets.

The proof of the following result is easy and follows in the
same line of proof as for a connected set A.

Theorem 5 The following statements are equivalent for A ⊂
X:

(1) A is πconnected relative to X;
(2) For each two points x, y ∈ A, there is a πconnected

relative to X set B ⊂ A with x, y in B;
(3) If (P,Q)) is a πseparation relative to X and A ⊂ P ∪Q

then either A ⊂ P or A ⊂ Q.
Theorem 6 The following statements hold for spaces X,Y :
(1) Connected subsets of a space X are πconnected relative

to X;
(2) A pair V,W of disjoint open subsets of X is a

πseparation relative to X;
(3) IfA is πconnected relative toX andA ⊂ B ⊂ πA, then

B is πconnected relative to X;
(4) If Ω is a family of subsets πconnected relative to X no

pair of which is a πseperation relative to X then
⋃

Ω F
is πconnected;

(5) If Ω is a family of subsets πconnected relative to X and
there is an F0 6= ∅, F0 ∈ Ω, (F0, F ) fails to be a a
πseperation relative to X for each F ∈ Ω, then

⋃
Ω F is

πconnected. relative to X;
(6) If Fn is a sequence of πconnected relative to X subsets

and (Fn, Fn+1) fails to be a πseparation relative to X
for all n then

⋃
n∈N Fn is πconnected relative to X;

(7) IfA,B are πconnected relative toX and Y respectively,
then A×B is πconnected relative to X × Y ;

(8) If A is πconnected relative to X and and X0 ⊂ X
satisfies A ∩ intX0 6= ∅, A ∩ int(X − X0) 6= ∅ then
A ∩ bdX0 6= ∅;

(9) If Ω is a family of πconnected relative to X subsets and

⋂
Ω F 6= ∅ then

⋃
Ω F is πconnected.

Proof Only proofs of (3) and (7) are given here.
Proof of (3). Let (P,Q) be a πseparation relative to X and

supposeB ⊂ P∪Q. ThereforeA ⊂ P orA ⊂ Q. SoB ⊂ πQ
or B ⊂ πP.

Proof of (7): Let (x, y), (u, v) ∈ A × B. Then (x, v) ∈
(A× {v}) ∪ ({x} ×B) where both (A× {v}) and({x} ×B)
are πconnected relative to X × Y since πconnectivity is a
topological invariant, as is shown in Theorem 11. It follows
that

(x, v) ∈ (A× {v}) ∩ {x} ×B)

and

(x, y), (u, v) ∈ (A× {v}) ∩ ({x} ×B) ⊂ A×B.

Hence, in view of Theorem 5 (2), the proof is complete.
Theorem 7 If {X(n)}Λ is a family of spaces and {A(n)}Λ

is a family of sets such that A(n) is πconnnected relative to
X(n) for each n ∈ Λ then

∏
ΛA(n) is πconnected relative to∏

ΛX(n)
Proof Let (P,Q) be a πseparation relative to

∏
ΛX(n) such

that ∏
Λ

A(n) ⊂ P ∪Q.

Let x ∈
∏

ΛA(n), and for each n ∈ Λ, Let Pn :∏
ΛX(n) → X(n) ∩ Pn(P ) be the projection intersected

with the projection of P. There is a basic open set V =⋂
Λ(x) p

−1
n W (n) with x ∈ V , Λ(x) a finite subset of Λ, and

Q ∩ πV = ∅. Choose y ∈
∏

ΛA(n) and let

J(y) = {z ∈
∏
Λ

A(n) : z(n) = y(n), n ∈ Λ− Λ{x}}.

J(y) is homeomorphic to
∏

Λ(x)A(n) and Theorem 6(7)
may be used with induction to show that

∏
Λ(x)A(n) is

πconnected relative to
∏

ΛX(n). This implies J(y) ⊂ P since
we see z defined by z(n) = x(n) when n ∈ Λ{x}, z(n) =
y(n) when n ∈ Λ− Λ(x), it follows that z ∈ J(y) ∩ V ⊂ P.

The following theorem is a generalization of a result of J. R.
Kline remarking on a paper of Knaster and Kuratowski [16],
[17].

Definition 4. A set X is totally πdisconnected if the
singletons are the only non-empty π conncted subsets of X .

Theorem 8 If X is πconnected relative to X and for y ∈ X ,
X −{y} is totally πdisconnected then X −{x} is πconnected
relative to X for every x 6= y, x ∈ X.

Proof For every A ⊂ X − {y}, with more than one point,
there is a πseparation (P,Q) of A. Let x ∈ X − {y}. The set
X−{y} has at least two elements x, z. If there is a πseparation
(P,Q) of {x, z}, for each z 6∈ {x, y}, we get a π separation
for the π conncted set X , a contrtadiction. Hence X − {x} is
πconnected relative to X for every x 6= y.
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3. Genralizations of Continuity Through
Adherence Dominators

Below, some generalizations of continuous functions are
provided in terms of adherence dominator. One of the well-
known charcterizations of continuity of a function f : X → Y
is that f(clA) ⊆ clf(A) for each subset A of X . It is this
characterization which is used as a model to define the notion
of a πcontinuous function.

Definition 5. A function f : X → Y is πcontinuous if
f(πΩ) ⊂ πf(Ω) for every filterbase Ω.A function f : X → Y
is weakly-πcontinuous if f(AΩ) ⊂ πf(Ω) for every filter Ω.
A function f : X → Y is θπcontinuous if f(θΩ) ⊂ πf(Ω) for
every filter Ω, where θΩ is used here for the θ adherence of Ω
and AΩ denotes the adherence of Ω.

Theorem 9 The following are equivalent:
1. The function f : X → Y is πcontinuous;
2. The function f : X → Y satisfies f(πA) ⊂ πf(A) for

each nonempty A ⊂ X;
3. The function f : X → Y satisiies πf−1(B) ⊂
f−1(πB) for each nonempty B ⊂ Y ;

4. The function f : X → Y satisiies πf−1(Ω) ⊂
f−1(πΩ) for each filterbase Ω on Y ;

5. The function f : X → Y satisfies
⋂∑

A πf
−1(V ) ⊂

f−1(πA) for each A ⊂ X.
Proof (1)⇔ (2). For (1)⇒(2), consider the filterbase {A},

for A ⊆ X . For (2)⇒(1), note that for each F ∈ Ω, f(πF ) ⊆
πf(F ) and hence (1) follows.

(2)⇔ (3). Assume (2). Let B ⊂ Y . Then f(πf−1(B)) ⊂
πf(f−1(B)) ⊂ πB. So, πf−1(B) ⊂ f−1(πB).

Now, suppose we have (3). let A ⊂ X . Clearly, A ⊆
f−1(f(A)). So, πA ⊂ πf−1(f(A)) ⊂ f−1(πf(A)). Hence,
f(πA) ⊂ πf(A).

Proofs of (3)⇒(4)⇒(5)⇒(3) are clear.
Corollary 2 If X,Y are spaces and π is an adherence

dominator on X , a function f : X → Y is πcontinuous if
and only if πf−1(W ) ⊂ f−1(πW ) for each open W.

Proof The function f : X → Y satisiies πf−1(B) ⊂
f−1(πB) for each B ⊂ Y .

For weakly πcontinuous (θπ continuous) functions, we have
the following:

Theorem 10 The following are equivalent for spaces X,Y
and function f : X → Y.

1. f : X → Y is weakly πcontinuous (θπ continuous);
2. clf−1(B) ⊂ f−1(πB)(clθf

−1(B) ⊂ f−1(πB) for
each non-empty B ⊂ Y ;

3. f(cl(A) ⊂ πf(A)(f(clθ(A) ⊂ πf(A)) for every A ⊂
X;

4. The function f : X → Y satisiies Af−1(Ω) ⊂
f−1(πΩ)(adθf

−1(Ω) ⊂ f−1(πΩ)) for each filterbase
Ω on Y ;

5. The function f : X → Y satisfies
⋂∑

A clf
−1(V ) ⊂

f−1(πA)
(
⋂∑

A clθf
−1(V ) ⊂ f−1(πA)) for each A ⊂ X.

Proof Proof is similar to the proof of Theorem 9.

Theorem 11 If f : X → Y is a πcontinuous function and K
is πconnected relative to X , then f(K) is πconneted relative
to Y .

Proof Let (P, Q) be a πpartition such that f(K) ⊂ P∪Q,P∩
πQ = ∅, Q∩πP = ∅. ThenK ⊂ f−1(P )∪f−1(Q).However,
f being πcontinuous, πf−1(P ) ∩ f−1(Q) ⊂ f−1(πP ) ∩
f−1(Q) = f−1(Q ∩ πP ) = ∅. Similarly, πf−1(Q) ∩
f−1(P ) = ∅. That is, f−1(P ) and f−1(Q) are π separated.
Thus, K being πconnected, K ⊂ f−1(P ) or K ⊂ f−1(Q)
according to Theorem 5(3). So, f(K) is πconnected.

4. Some Generalizations of Compactness

Before introducing the generalizations compactness
through adherence dominators, the following results of filter
convergence, which will be used in the sequel, are provided.
The concepts of functionaly compact spaces and C-compact
spaces are some of the generalizations of compactness
considered here. See [1], [23].

Theorem 12 If F is a filter on a πspace X and O =
{V open in X : F ⊂ V for some F ∈ F}, then O is an open
filter and πF = πO.

Proof O is an open filter and O ⊆ F . So, πF ⊂ πO.
For the reverse inclusion, if x 6∈ πF , then x 6∈ πF for some
F ∈ F . Therefore, there exist F ∈ Fand V ∈

∑
{x} such that

πV ∩ F = ∅. Therefore, F ⊂ X − πV. Hence, X − πV ∈ O,
and πV ∩ (X − πV ) = ∅. So x 6∈ πO.

Corollary 3 If F is an ultrafilter on a πspace X and O =
{V open in X : F ⊂ V for some F ∈ F}, then O is an open
filter and πF = πO. [3]

Proof Note that O ⊂ F .
Definition 6. If O is an open filter, then πO =

⋃
O π{x}.

Corollary 4. If F is a fillter on a πspace X, then πF =⋃
F π{x}.
Proof If O is an open filter, then πO =

⋃
O π{x}. Theorem

12 then completes the proof.
Definition 7. If π is an adherence dominator on a πspace X,

then X is πclosed if πΩ 6= ∅ for each filterbase Ω on X.
The following result is immediate.
Theorem 13 If X is πclosed and Ω is a filterbase on X , then

πΩ is quasi πclosed relative to X , where a set X is said to be
quasi πclosed if πΩ 6= ∅ for each filterbase Ω on X , but X is
not necessarily a πspace.

Corollary 5. If X is an H-closed (Urysohn-
closed)[regular-closed] space and Ω is a filterbase on X then
adhθΩ(adhuΩ)[adhsΩ] is quasi H-closed (quasi Urysohn-
closed) [quasi regular-closed] relative to X . [2]

Definition 8. If π is an adherence dominator on a space X,
then X is rim πclosed if each x ∈ X has a base of open sets
with πclosed boundaries.

Theorem 14 IfX is a space,A is a nonempty compact subset
of X and Ω is a filter on X such that A ∩ F 6= ∅ for every
F ∈ Ω, there exists x ∈ A such that F ∩ V 6= ∅, F ∈ Ω, V ∈∑
{x}.
Proof Suppose that for each x ∈ A,Fx ∩ Vx = ∅, Fx ∈

Ω, Vx ∈
∑
{x}. Then, there exists finite B ⊂ A such that
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A ⊂
⋃
B Vx = V, F =

⋂
B Fx ∈ Ω, V ∈

∑
A,F ∩ V = ∅.

Therefore, there exists x ∈ A such that F ∩ V 6= ∅, F ∈
Ω, V ∈

∑
{x}.

Theorem 15 If X is a πspace, A is a nonempty compact
subset of X and U is an ultrafilter on X such that A ∩ F 6= ∅
for every F ∈ U there exists x ∈ A such that U → x.

Proof Follows easily from Theorem 14, for an ultrafilter U
on X .

Theorem 16 The following are equivalent for a πspace X
and adherence dominator π on X.

1. X is compact;
2. Each nonempty closed subset of X is πclosed, and πU

is compact for each ultrafilter U on X;
3. The boundary bdV is πclosed for each open, non-empty

proper subset ofX and πU is compact for each ultrafilter
U on X;

4. X is rim πclosed, and πU is compact for each ultrafilter
U on X .

Proof (1)⇒(2)⇒(3)⇒(4). Immediate.
(4)⇒(1). Let U be an ultrafilter on X and let V ∈∑
π{x}, x ∈ πU . Then F − V = ∅ for some F ∈ U . If

not, V, bdV ∈ U , a contradiction. So U → π{x}. Since π{x}
is a closed, and therefore compact subset of πU , there exists
z ∈ π{x},U → z, in view of Theorems 14 and 15.

Recall that a Hausdorf space X is C-compact (functionally
compact)[1] if each closed set is an H-set (if each open
filterbase Ω on X satisfying AΩ = IΩ is an open set base for
IΩ) [23], [1]. Below we define and charecterize these concepts
using adherence dominators.

Definition 9. If X is a space, a non-empty set A ⊂ X is a
πset if each filterbase Ω on A satisfies πΩ ∩A 6= ∅.

Definition 10. A spaceX is πC-compact if every non-empty
closed set A ⊂ X is a πset.

Definition 11. A filterbase F is said to πconverge to x (to a
set A), if for each V ∈ Σx (ΣA), there is an F ∈ F such that
F ⊆ πV .

Theorem 17 If X is a πclosed space and ∅ 6= A ⊂ X, then
πA is a πset.

Proof Let ∆ be a filterbase on πA. Since for any filterbase Ω
onX , πΩ∩πA 6= ∅, and ∆ is a filterbase onX , adh∆∩πA 6=
∅.

Proposition 1. Let X be a space and A ⊂ X be πclosed. If
(P,Q) is a πseparation of A relative to X, then P and Q are
πclosed in X.

Proof Let A = P ∪ Q, with P ∩ πQ = πP ∩ Q = ∅.
Since A is πclosed, πA = πP ∪ πQ = A = P ∪ Q. Since
P ∩ πQ = πP ∩ Q = ∅, this implies that πP ⊆ P and
πQ ⊆ Q.

The following Theorem gives characterizations of πC-
compact spaces in terms of ultrafilters.

Theorem 18 The following are equivalent for a πspace X :
1. X is πC-compact;
2. For each closed subset B ⊂ X each ultrafilter U , B ∈
U ,U πconverges to some point of B;

3.
⋂
B πB, where B is the collection of closed sets in U , is

a singleton for each ultrafilter U .
Proof (1)⇒(2). Follows from the fact that in a πC-compact

space, every non-empty closed set is a πset. Hence the
ultrafilter U has non-empty πadherence in B and therefore,
U π converges to some point of B.

(2) ⇒ (3). Let U be an ultrafilter on X and let B be the
collection of closed sets in U . Suppose that {x, y} ⊆

⋂
B πB,

with x 6= y. Then, in view of (2) and since πB being closed,
U → x and U → y, a contradiction. Hence (3).

(3)⇒(1). Let A be a closed set and let Ω be a filterbase on
A. let U be an ultrafiler containing Ω. In view of (3), there is a
singlton set {x} =

⋂
B πB, where B is the collection of closed

sets in U . Since A is closed and Ω is a filterbase on A, x ∈ A.
Hence A is a π set.

Corollary 6. The following are equivalent for a Hausdorff
space X :

1. X is C-compact;
2. For each closed subset B ⊂ X and each ultrafilter U

with B ∈ U ,U θconverges to some point of B;
3.
⋂
B clθB, where B is the collection of closed sets in U ,

is a singleton for each ultrafilter U .
Theorem 19 In a πC-compact space, for any two disjoint

πclosed sets P and Q, there are open sets V and W such that
P ⊂ V,Q ⊂W,πV ∩ πW = ∅.

Proof Let P and Q be two disjoint π closed sets of the πC-
compact space X . Since each π closed set is closed, P and
Q are π sets. Suppose that for each V ∈ ΣP and W ∈ ΣQ,
with πV ∩ πW 6= ∅. Then Ω = {πV ∩ πW, V ∈ ΣP and
W ∈ ΣQ} is a filterbase in πP as well as in πQ and has
non-empty adherence in πP and in πQ, a contradiction since
πP ∩ πQ = ∅.

Corollary 7. In a C-compact space, any two disjoint θ-
closed sets are separated by disjoint open subsets.

Theorem 20 Let X be a πC-compact space and let Ω be a
filterbase of πconnected relative to X subsets. Then πΩ is
πconnected relative to X if πΩ is πclosed in X.

Proof Let (P,Q) be a π separation relative toX of πΩ. Then
P and Q are disjoint and πclosed in X from the Proposition
1. Since X is πC-compact, there are sets V ∈

∑
P,W ∈∑

Q,V ∩ πW = πV ∩W = ∅. Note that πΩ is πclosed and
hence is closed in the C-compact spaceX . Also πΩ ⊆ V ∪W .
So there is an F ∈ Ω, F ⊂ V ∪ W. Since F is πconnected
relative toX and (V, W) is a π separation relative toX,F ⊂ V
or F ⊂ W. Hence πF ⊂ πV or πF ⊂ πW. So πΩ ⊂ πV
or πΩ ⊂ πW. Therefore, πΩ ∩ P = ∅ or πΩ ∩ Q = ∅, a
contradiction.

Corollary 8. Let X be a C-compact space and let Ω be a
filterbase of θconnected relative to X subsets. Then adθΩ is
θconnected relative to X if adθΩ is θclosed in X. [2]

Arguments similar those in the proof of the last theorem lead
to the following.

Theorem 21 Let X be a πC-compact space and let Ω be a
filterbase of connected subsets. Then πΩ is connected if open
and closed subsets are πclosed in X.

Definition 12. A πspace X is πfunctionally compact if each
open filterbase Ω of the space satisfying the contion πΩ = IΩ
is an open set base for IΩ, where IΩ represents the intersection
of members of Ω.

Theorem 22 The following are equivalent for a πspace X:
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1. The space X is πfunctionally compact;
2. Each open filterbase Ω on X satisfying πΩ = IΩ

converges to Ω;
3. Each filterbase Ω on X satisfying πΩ = IΩ converges

to IΩ.
Proof (1)⇒ (2). Follows from the definition of πfunctionaly

compact spaces. (2)⇒ (3). Note that πΩ = AΩ(ΣπF ).
(3)⇒(1). Follows easily.
Corollary 9. A Hausdorff spaceX is functionally compact if

and only if each filterbase Ω onX witth adθΩ = IΩ converges
to IΩ. (Theorem 3.12 [13])

When the π adherence represents uadherence, we have the
following result.

Corollary 10 [13] The following are equivalent for a
Urysohn space X:

1. X is ufunctionally compact;
2. Each open filterbase Ω on X witth aduΩ = IΩ

converges to IΩ;
3. Each filterbase Ω on X satisfying aduΩ = IΩ

converges to IΩ.
The Wallace Theorem states that if A and B are compact

sets in X and Y respectively and A × B ⊂ H,H open in
X × Y, there exists V open in X,W open in Y such that
A ⊂ V,B ⊂ W,V × W ⊂ H. (see Theorem 12 p. 142
[15])

The following is a restatement of the Wallace Theorem in
terms of closures.

Theorem 23 Let X,Y be spaces and A,B be compact
subsets of X,Y respectively. Let K ⊂ X × Y satisfy
(A × B) ∩ clK = ∅. Then there are V ∈

∑
A,W ∈

∑
B

satisfying (V ×W ) ∩ clK = ∅.
The next theorems generalize Wallace’s theorem to πrigid

subsets.
Theorem 24 Let X,Y be spaces and let B ⊂ Y be πrigid.

Let x ∈ X,K ⊂ X × Y satisfy ({x} × B) ∩ πK = ∅.
Then there are open sets V ∈

∑
{x},W ∈

∑
B such that

(V ×W ) ∩ πK = ∅.
Proof For each y ∈ B, there are open sets V (y) ∈∑
{x},W (y) ∈

∑
(y), (V (y) × W (y)) ∩ πK = ∅. There

is a finite B∗ ⊂ B with

B ⊂ int

(⋃
B∗

πW (y)

)
= W,

in view of Theorem 3. Let V =
⋂
B∗ V (y). Then V ∈∑

{x},W ∈
∑
B. Therefore (V ×W ) ∩ πK = ∅.

Theorem 25 Let X,Y be spaces and A,B be πrigid subsets
of X,Y respectively. Let K ⊂ X × Y satisfy (A × B) ∩
πK = ∅. Then there are V ∈ ΛA,W ∈ ΛB satisfying
(V ×W ) ∩ πK = ∅, where ΛA =

∑
πA.

Proof From the prof of the last theorem, Theorem 24, for
each x ∈ X there exists V (x) ∈

∑
(x),W (x) ∈ Λ(B)

satisfying (V (x)×W (x))∩πK = ∅. There is a finiteA∗ ⊂ A
with A ⊂ intπ (

⋃
A∗ V (x)) = V. Let W =

⋂
A∗ W (x), Then

V,W have the required properties.
Definition 13. A relation (or a multifunction) λ from X to

Y is a function λ : X → 2Y − {∅}. A relation λ from a space

X to a space Y is upper semicontinuous (u.s.c.) if for every
W ∈

∑
λ(x) there is a V ∈

∑
(x) such that λ(V ) ⊂ W . A

multifunction λ from a space X to a space Y has a π-strongly
closed graph if πλ(

∑
(x)) = λ(x) for each x ∈ X .

Theorem 26 If λ is an u.s.c. multifunction on X and π is an
adherence dominator then πλΣ{x} = πλ{x}.

Proof Clearly πλ{x} ⊂ πλ(Σ{x}) and for each W ∈∑
λ(x), some V ∈

∑
{x} satisfies λ(V ) ⊂ W , since λ is

u.s.c. and thus πλΣ{x} ⊂ πλ{x}.
Corollary 11. An u.s.c. multifunction λ has a π strongly-

closed graph if and only if λ has πclosed point images.
It is established for θ-closures that if x and y are points in

a space X , then y ∈ clθ(x) if and only if x ∈ clθ(y) [5],
The following definition is modelled after this property of θ-
closures.

Definition 14. We say that x is equvalent to y if πx=πy and
use the notation x ≡ y. For the adherence dominators being
considered, x ∈ πy if and only if y ∈ πx. If v ∈ X , a πspace,
then π

⋂∑
{v}W = {v}.

In a πspace the πclosure of each point is trivially compact
and maximal in the set of πclosures of points ordered by
inclusion. We use the last theorem to prove that in any space,
the πclosures of points satisfy a maximally condition, when
the πclosure of some point is compact.

Theorem 27 Let Y be a space and let y0 ∈ Y with πy0

compact. Then there is a y ∈ Y such that (1) πy0 ⊂ πy and
(2) πy is maximal in the set of π closures of points when this
set is ordered by inclusion.

Proof Let X = {y ∈ Y : πy0 ⊂ πy}. For each y ∈ X
we have y ∈ πy0. Moreover if v ∈ AX and W ∈

∑
{v}

then some y ∈ W satisfies πy0 ⊂ πy ⊂ πW. Hence
πy0 ⊂ πv. So, v ∈ X and X is closed in Y. Moreover, for
each y ∈ X, y ∈ πy0 since πy0 ⊆ πy. That is, y0 ∈

⋂
X πy.

Hence if y ∈ X, y ∈ πy0 and πy0 is compact. Therefore X is
a compact subset of Y . Since the identity function from X to
Y is u.s.c., the proof is complete, in view of Theorem 11 (1)⇒
(2) [4].

5. πComponents Relative to a Space

A πcomponent relative to a spaceX is a πconnected relative
toX subset which is not properly contained in any πconnected
relative to X subset. Since πA is πconnected relative to
X whenever A is πconnected relative to X, it follows that
a π component relative to X is πclosed. It is easy to see
that each πconnected relative to a space X is contained in
a πcomponent relative to X. It is not difficult to see that if
H,K are two distinct πcomponents relative to a space X then
either H ∩ πK = ∅ or K ∩ πH = ∅. If ∅ 6= A ⊂ X
and if x, y ∈ A, we say that x and y are equivalent if
whenever (P,Q) is a πseparation of A relative to X, {x, y} ⊂
P or {x, y} ⊂ Q. If Ax represents the equivalence
class of x with respect to this relation on A, call Ax a
πquasicomponent of A relative to X. A πquasicomponent
of A relative to A is a quasicomponent of A. If A ⊂ X
and x ∈ A let πS(A, x) = {P ⊂ X : for some Q ⊂
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X, (P,Q) is a πseparation ofA relative to X, satisfying A =
P ∪ Q, andx ∈ P}. The following proposition of Ax follows
easily.

Proposition 2. If X is a space and ∅ 6= A ⊂ X, then for
each x ∈ A,Ax =

⋂
S(A,x) P.

Proposition 3. If X is a space and ∅ 6= B ⊂ A ⊂ X, then
Bx ⊂ Ax for each x ∈ B.

Proof Let x ∈ B, y ∈ Bx, (P,Q) a πseraration ofA relative
to X. If P ∩ B = ∅ or (Q ∩ B) = ∅), then {x, y} ⊂ Q or
({x, y} ⊂ P ). Otherwise, (P ∩ B,Q ∩ B) is a πseraration of
B relative to X. So {x, y} ⊂ Q ∩ B (or {x, y} ⊂ P ∩ B).
Therefore, y ∈ Ax.

The following improves the well-known fact that
quasicomponents are closed.

Proposition 4. If X is a space and ∅ 6= A ⊂ X, then Ax is
πclosed in A for each x ∈ A.

Proof Let x ∈ A, y ∈ A − Ax. Then there is a πpartition
(P,Q) of A relative to X, y ∈ P,Ax ⊂ Q. Hence y 6∈ πAx in
X . It foffows that y 6∈ πAx in A

Corollary 12. In a πclosed space X , πquasi components are
πrigid.

Proof Follows from the fact that in a πspace, πclosed sets
are πrigid.

Theorem 28 If X is a space and A is a non-empty subset of
X , thenAx is a πcomponent ofA relative toX for each x ∈ A
for which Ax is πconnected relative to X .

Proof Suppose that x ∈ A and Ax is πconnected relative to
X . Let B ⊆ A be a πconnected relative to X and suppose that
Ax ⊂ B. Let y ∈ B and A = P ∪ Q, where (P,Q) is a π
separation relative to X for A. Then B ⊂ P or B ⊂ Q. So,
either {x, y} ⊂ P or {x, y} ⊂ Q. Hence y ∈ Ax. Hence Ax
is a π component of relative to X , since, thus, Ax πconnected
relative to X .

Corollary 13. πconnected πquasicomponents are
πcomponents.

We conclude this article with the following result which
states that in a πC-compact space X , each πquasicomponent
relative to X of a πclosed set A is a πcomponent relative to X
of A.

Theorem 29 Let X be πC-compact and let A ⊂ X be a
non-empty πclosed set. Then each πquasicomponent Ax of A
relative to X is a πcomponent of A relative to X .

Proof Let A ⊂ X be non-empty and πclosed and suppose
that x ∈ A. We shall show that Ax is πconnected relative to
X and then in view of Theorem 28, Ax will be a πcomponent
of A relative to X . Let y ∈ Ax and let Ω = {B ⊂ A such
that B is πclosed in X,x ∈ B, y ∈ Bx}. Then Ω 6= ∅ since
A ∈ Ω. Order Ω by set inclusion and let Ω∗ be a chain in
Ω. Let C =

⋂
Ω∗ F. Since each F ∈ Ω∗ is πclosed and

x ∈ F for each F ∈ Ω∗, x ∈ C. Let (P,Q) be a π separation
relative to X of C where both P and Q are πclosed in X and
x ∈ P, y ∈ Q. Since X is πC-compact and P and Q are
two disjoint πclosed sets, in view of Theorem 19, there are
disjoint open sets V and W containing P and Q respecively
with πV ∩ πW = ∅. Since C ⊂ V ∪W , there is an F0 ∈ Ω∗

such that F0 ⊂ (V ∪W ). This gives a πseparation for F0 as

F0 = (F0∩V )∪(F0∩W ), x ∈ (F0∩V ), y ∈ (F0∩W ). This
is a contradiction since F0 ∈ Ω. Therefore, C is a lowerbound
for Ω and hence by Zorn’s Lemma, has a minimal element,
say C0. To show that C0 is πconnected relative to X , suppose
that (P,Q) is a πseparation relative to X with C0 = P ∪ Q.
Assume that P 6= C0 and that x, y ∈ P . Since P is πclosed
in X , there exist P1 and P2 such that (P1, P2) is a πseparation
for P relative to X , with x ∈ P1 and y ∈ P2. This gives a π
separation relative to X for C0 with C0 = P1 ∪ (P2 ∪ Q),
and x ∈ P1, y ∈ (P2 ∪ Q). This is a contradiction since
C0 ∈ Ω. Thus C0 is πconnected relative to X and C0 = Cx
and {x, y} ⊂ C0 ⊂ Ax. Therefore, inview of Theorem 5 (2),
Ax is πconnected relative to X . Hence in view of Theorem
28, Ax is a πcomponent relative to X .

6. Conclusion
Connectedness of a set in a topological space depends on

how close are the points of that set to each other and hence
depends on the closure operator of that space. The adherence
dominator concepts subsumes different closure operators.
So, this article brings the study of different topological
concepts such as continuity, convergence, compactness and
their generalizations in a unified frame work. Recently,
the authors have studied and compiled several topological
properties using the adherence dominator operator [14].

Every attempt is made to give the appropriate citation
whenever a result or concept is used from a source.
Connectedness, compactness, maximality conditions using the
Zorn’s lemma, continuous function, multifunctions, regularly
open sets, regularly closed sets, semiregularization etc are
concepts and results which could be found and have been in
literature on general topology and related topics and hence
when these are stated, no particular citation is given. However
we do not claim authorship for them.
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