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Abstract: In this work, we are interested in the mathematical study of the flow of a Newtonian Navier-Stokes fluid, coupled to
the energy equation, in a domain with axial symmetry. The study consists first of all in reducing this problem, which is posed in a
domain in dimension three (3-D), to a problem whose spatial domain is in dimension two, using the transformation of Cartesian
coordinates in cylindrical coordinates, assuming that the problem data does not depend on the angle of rotation. The problem
thus obtained is a so-called axially symmetric problem presenting a degeneracy on the axis of symmetry, hence the interest of
this study. The study of this problem is the subject of the first part of this article which deals with the existence and uniqueness of
the weak solution of the problem in a Sobolev space with appropriate weight. The results of this part have already been published
by the same authors that we recall here with some slight modifications in order to facilitate the reading and understanding of
the second part of the article. In this second part, we approach the existence and the unicity of the numerical solution of the
posed problem. It is obtained using the Lagrange finite element method whose polinomial space is of degree one. The study in
question highlights the necessary algebraic relations between the different physical parameters of the problem to which the flow
in question obeys.

Keywords: Newtonian Fluid, Navier-Stokes Equations, Axisymmetric Problem, Weak Solution, Numerical Solution,
Finite Element Method, Weighted Sobolev Space

1. Introduction and Formulation of the
Problem

1.1. Introduction

For essentially economic reasons, one of the most
widely used technologies currently producing electricity
on the concentrated solar power principle (CSP) is
the parabolic solar concentrator (PTC). The physico-
mathematical modeling of the different processes involved in
this technical device has been the subject of intense studies by
the specialized scientific community for several decades.

Recall that a solar parabolic concentrator is a technology
used in a solar power plant to increase the thermal energy
of a heat transfer fluid charged with transporting heat and
circulating in a collector tube called solar collector. This

fluid, so called is then pumped into conventional exchangers
to produce superheated steam, called a thermodynamic fluid,
which drives a turbine to generate electricity.

For the detailed description and operation of this device we
refer the reader, for example, to works [5, 9, 12, 17] and to the
abundant literature cited in these works.

In this work, we limit ourselves to the mathematical study
(existence and uniqueness of the weak and the numerical
solution) of stationary Navier-Stokes equations modeling the
flow process of a viscous incompressible Newtonian fluid in
the PTC collector tube and subjected to temperature-dependent
gravity force, when this is a solution of the heat equation.
The force of gravity intervening in the Navier-Stokes system
is approximated by the Boussinesq method.

We will formulate the physical problem with respect to
Cartesian coordinates (x, y, z). His mathematical study will be



American Journal of Applied Mathematics 2022; 10(4): 141-159 142

carried out with respect to the cylindrical coordinates (r, θ, z)
in the case of an axisymetrical problem.

1.2. Formulation of the Physical Model

Figure 1. Cylinder.

The model presented here is far from modeling all aspects
of the physical processes involved in a PTC-type device. We
are interested here only in the velocity of the flow and the
temperature generated in the fluid from a given source.

Let Q ⊂ R3 be an open cylindrical tube of the PTC and
placed horizontally with respect to a Cartesian coordinates
system (x, y, z) as shown in the Figure 1. We assume that Q is
occupied by a Newtonian fluid, visqueus and incompressible
such that:

1. the flow is completely developed turbulent;
2. the regime is stationary;
3. the weight of the fluid is the only body force acting on

the fluid.
Note that a turbulence is a flow property and not a fluid

property, which makes sense only in a three-dimensional space
and occurs at high Reynolds numbers.

Let u = (ux, uy, uz)
t be the velocity field of the

through-flow in Q, where by wt we denote the transpose
of the vector (wx, wy, wz) . Then, taking into account the
above assumptions, the flow of a viscous, Newtonian and
incompressible fluid is governed by the following equations:

1) Continuity equation:

∇u ≡ ∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0, (1)

2) Navier-Stokes equations in a vector form:

−ν∆u + (u · ∇) u +
1

ρ0
∇p = z, (2)

where, ∆ and∇ are the usual differential operators of Laplace
and divergence respectively and z = (0, 0,zz)t .

The vector equation (2) in a scalar form can be written as

- flow along the x axis:

−ν
(
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

)
+ ux

∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= − 1

ρ0

∂p

∂x
, (3)

- flow along the y axis:

−ν
(
∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

)
+ ux

∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

= − 1

ρ0

∂p

∂y
, (4)

- flow along the z axis:

−ν
(
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

)
+ux

∂uz
∂x

+ uy
∂uz
∂y

+ uz
∂uz
∂z

= − 1

ρ0

∂p

∂z
+zz, (5)

Where ν is the kinematic viscosity of the fluid, p is the
pressure of the fluid and zz is the gravity vector force.

Since Q is subjected to an external heat source, then
assuming that its density depends only on the temperature T ,
and placing itself in the standard Boussinesq approximation,
the gravitational forcezz can be written in the following form:

zz = β0T.

Here, β0 = ρβg0/ρ0, where β is the thermal expansion
coefficient of the fluid, g0 is the gravity acceleration and ρ is
the density of the fluid.

On the other hand, the temperature T satisfies the following
equation:

3) Energy equation:

−λ∆T + (u.∇)T = g, (6)

where λ is the thermal diffusivity, g is a source term depending
only on the domain Q.

To establish the equation (6), it is assumed that the flow has
a very low Mach number, i.e. the ratio between the speed of
flow and that of sound is very low.

Note that the coefficients λ, ν and β are evaluated at a
reference temperature T0 which is the free stream temperature.

We associate to the système (1) − (6) the homogeneous
boundary conditions of Dirichlet:

u|∂Q = T |∂Q = 0, (7)

where ∂Q is the boundary of the domain Q.
The mathematical study of the problem (1) − (7) has been

the subject of many works, for a long time, see for example
[2, 6, 16].
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1.3. Formulation of the Axisymmetric Problem

Figure 2. Cartesian coordinates.

In the following, instead of treating the problem (1)− (7) in
Cartesian coordinates, we will do it in cylindrical coordinates
(r, θ, z), where x = r cos θ, y = r sin θ, z = z, r > 0,
0 ≤ θ < 2π (see the orientation of co-ordinates sytem on the
Figure 1), while assuming that the fluid flow, coupled with the
equation of energy, is axisymmetric flow, i.e. the components

of the flow velocity, the pressure and the temperature will not
depend on the angle of rotation θ. In this case, one speaks
of an axisymetric flux without swirl. For more details about
the relation between the swirl flux and the no swirl flux, see
[4]. In Thus, the vector u of velocity of the fluid is reduced
to two components, one is radial ur, the other is axial uz , i.e.
u = (ur, uz) with respect the basis

(−→
ir ,
−→
k
)

, where

−→
ir = (cos θ, sin θ, 0) ,

−→
k = (0, 0, 1) ,

see [1]. Not to be confused turbulent flow and swirl flow.
Then, according this transformation and taking into account

the fact that the component uθ along the axis rotation is
zero (no swirl flow), we obtain the following system (For
calculating derivatives with respect to cylindrical coordinates
we refer the reader to ([19], p.838):

1) Continuity equation:

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0. (8)

2) Navier-Stokes equations:
- flow along the r axis:

−ν
[

1

r

∂

∂r

(
r
∂ur
∂r

)
+
∂2ur
∂z2

− ur
r2

]
+ ur

∂ur
∂r

+ uz
∂ur
∂z

= − 1

ρ0

∂p

∂r
+ β0T, (9)

- flow along the z axis:

−ν
[

1

r

∂

∂r

(
r
∂uz
∂r

)
+
∂2uz
∂z2

]
+ ur

∂uz
∂r

+ uz
∂uz
∂z

= − 1

ρ0

∂p

∂z
. (10)

3) Energy equation:

−λ
[

1

r

∂

∂r

(
r
∂T

∂r

)
+
∂2T

∂z2

]
+ ur

∂T

∂r
+ uz

∂T

∂z
= g. (11)

Let’s put r = x1, z = x2, ur = u1, uz = u2, T = u3, u = (u1, u2)
t and U = (u1, u2, u3)

t, where (x1, x2) ∈ Ω,
Ω =]0, 1[×]0, 1[, see Figure 2, where the axis (Oz) represents that of the cylinder Q in Figure 1.

Therefore, we can write the equations (8) , (9)− (10) and (11) in the following vector form:

−∆rU + (u · ∇) U = f(p, u3), (12)

where

∆rU = (ν∆ru, λ∆ru3)t, ∆ru = (∆ru1,∆ru2)
t
,

∆ru1 =
1

x1
D1 (x1D1u1) +D2

2u1 −
u1

x2
1

, Di =
∂

∂xi
(i = 1, 2);

∆ruj =
1

x1
D1 (x1D1uj) +D2

2uj ( j = 2, 3) ;

(u · ∇) U =
∑2

i=1
uiDiU, DiU = (Diu1, Diu2, Diu3) ;

f(p, u3) = (f1(p, u3), f2(p), f3)t,

f1(p, u3) =
∂p

∂x1
+ β0u3, f2(p) = − ∂p

∂x2
, f3 = g,

equipped with the boundary conditions

U|Γ = 0, Γ = ∂Ω\Γ0, Γ0 = {(0, x2) : 0 < x2 < 1} . (13)
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Our goal is to establish the existence and uniqueness of the
weak solution of the vectorial axisymetrical problem (12)−
(13) in an appropriate weighted sobolev space.

Unlike the approach of decoupling the field of flow
velocities from temperature to study the existence and
uniqueness of the weak solution of the Navier-Stokes problem
coupled to the energy equation (3D), see [2, 6, 16], here
we treat the corresponding axisymmetric problem (2D) in
vectorial form. Of course, here, the study takes place in an
appropriate weighted Sobolev space.

The mathematical study of the axisymmetric problem of the
Navier-Stokes equations has been the subject of many works
under different aspects, existence uniqueness and regularity of
the weak solution of the problem, see for example [1, 4, 15, 20]
and the references cited in these works.

In the case of an elliptical problem with axial symmetry, we
refer the reader to the article [14].

2. Functional Space of Study

2.1. Weighted Sobolev Spaces

In this paragraph, we introduce some appropriate functional
spaces in which the system (12)− (13) will be studied.

Let C∞0
(
Ω
)

be the space of infinitely differentiable
functions on Ω equipped with the norm

‖u‖p,µ =

(∫
Ω

|u|p x1dx

)1/p

,

where dx = dx1dx2. In the follow, instead of x1dx we write

dµ (x), where µ (Ω) =
∫

Ω
x1dx is a density measure.

Let Lp (Ω, µ) be the completed of C∞0
(
Ω
)

with respect to

the norm ‖u‖p,µ, i.e. Lp (Ω, µ) = C∞0
(
Ω
)‖·‖p,µ

, see [8].
We denote by W k,p (Ω, µ) , 1 ≤ p < ∞, the so called

weighted Sobolev space of all scalar functions u = u (x)
which are defined a.e. on Ω and whose generalized derivatives
Dαu (x) ∈ Lp (Ω, µ) for all α such that |α| ≤ k, where

Dα = Dα1
1 Dα2

2 =
∂|α|

∂α1x1∂α2x2
, |α| = α1 + α2.

The space W k,p (Ω, µ) is a Banach space as completed
space of C∞0

(
Ω
)

with respect to the norm

‖u‖k,p,µ =

∑
|α|≤k

∫
Ω

|Dαu (x)|p dµ (x)

1/p

,

i.e W k,p (Ω, µ) = C∞0
(
Ω
)‖·‖k,p,µ

, see also [10]. If k = 0, we
write W 0,p (Ω, µ) = Lp (Ω, µ).

The spacesL2 (Ω, µ) andW k,2 (Ω, µ) are the Hilbert spaces
with respect to the scalar product:

(u, v) =

∫
Ω

(uv) (x) dµ (x) , (u, v)k =
∑
|α|≤k

(Dαu,Dαv) ,

respectivily.
In the case of the standard Sobolev space W k,2 (Ω), we

write

‖u‖k,p =

∑
|α|≤k

∫
Ω

|Dαu (x)|p dx

1/p

.

We note Em the m− th cartesian product E × . . .× E︸ ︷︷ ︸
m−times

of any set E.

Consider the space:

C1
0,Γ

(
Ω
)

=
{
v ∈ C1

(
Ω
)

: v|Γ = 0
}
,

and denote

V =
{

v = (v1, v2)∈
(
C1

0,Γ

(
Ω
))2

: ∇rv ≡ 1
x1
D1 (x1v1) +D2v2 = 0

}
,

andW = V×C1
0,Γ

(
Ω
)
.

By V andW we denote, respectively, the closure of V andW with respect to the norm

|V|1,2,µ =

 2∑
j=1

|vj |21,2,µ

1/2

and |V|1,2,µ =

 3∑
j=1

|vj |21,2,µ

1/2

.

Sometimes, we denote the norm in V (resp. in W ), by ‖·‖V (resp. by ‖·‖W).
We introduce the following weighted subspace

W 1,2
0,Γ (Ω, µ) =

{
v ∈W 1,2 (Ω, µ) : v|∂Ω\Γ = 0

}
⊂W 1,2 (Ω, µ) ,
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equipped with the norm

|u|1,2,µ =

(
2∑
i=1

‖Diu‖22,µ

)1/2

.

Let’s mention that the space W 1,2
0,Γ (Ω, µ) is the closure of C1

0,Γ

(
Ω
)

with respect to the norm |·|1,2,µ , i.e.

W 1,2
0,Γ (Ω, µ) = C1

0,Γ

(
Ω
)|·|k,p,µ

.

For more details on the weighted sobolev spaces we refer the reader to the monograph [13].

2.2. Some Prelimenary Results in the SpaceW k,p (Ω, µ)

To establish the variational formulation of problem (12) and (13), we will need the following lemma:
Lemma 2.1. Let ui ∈ W 1,2

0,Γ (Ω, µ) , i = 1, 2, 3 and v ∈ W 1,2
0,Γ (Ω, µ) ∩ C1

(
Ω
)
. Then, there is a sequence x1,k ∈]0, 1[, k = 1,

2, . . . , lim
k→∞

x1,k = 0, such that

lim
k→∞

∫ 1

0

x1,k
∂ui (x1,k, x2)

∂x1
v (x1,k, x2) dx2 = 0, i = 1, 2, 3. (14)

Proof For the proof of this lemma, see [11].
The following lemma play an essential role in the proof of unicity and existance of the weak solution the problem (12)− (13) .

For the proof of this lemme, we use the density of the space C1
0,Γ

(
Ω
)

in the space W 1,2
0,Γ (Ω, µ) .

Lemma 2.2. Let v ∈W 1,2
0,Γ (Ω, µ). Then, we have the following apriori estimate

‖v‖2,µ ≤
1

2
|v|1,2,µ . (15)

In addition, for all v = (v1, v2) ∈ V we have(∫
Ω

(
v1 (x)

x1

)2

dµ (x)

)1/2

≤
√

2 |v|1,2,µ . (16)

Proof For all v ∈ C1
0,Γ

(
Ω
)
, we have

|v (x1, x2)| =
∣∣∣∣−∫ 1

x1

D1v (ξ1, x2) dξ1

∣∣∣∣ ≤ (∫ 1

x1

1

ξ1
dξ1

) 1
2
(∫ 1

0

x1 |D1v (x)|2 dx1

) 1
2

,

from where, after multiplying by x1/2, we derive

x1 |v (x1, x2)|2 ≤ (−x1 lnx1)

∫ 1

0

x1 |D1v (x)|2 dx1.

Integrating the above inequality over Ω, we obtain (because −
∫ 1

0
x1 lnx1dx1 =

1

4
):

‖v‖22,µ ≤
1

4
‖D1v‖22,µ ≤

1

4

(
‖D1v‖22,µ + ‖D2v‖22,µ

)
,

from where we deduce the estimate (15) by density of C1
0,Γ

(
Ω
)

in W 1,2
0,Γ (Ω, µ).

For the proof of (16) , let v = (v1, v2) ∈ V . Then, from the equality:

D1 (x1v1) + x1D1v1 = v1 + x1 (D1v1 +D2v2) = 0.

We deduce
v1

x
1/2
1

= −x1/2
1 (D1v1 +D2v2) .
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Therefore, we obtain∫
Ω

(
v1

x1

)2

x1dx ≤ 2

∫
Ω

(
(D1v1)

2
+ (D2v2)

2
)
x1dx ≤ 2

(
|v1|21,2,µ + |v2|21,2,µ

)
= 2 |v|21,2,µ

And by density of V in V we conclude (13).
The following theorem is a consequence of Theorem 2.2 in [10], see also [3].
Theorem 2.1. Let p, q ∈ (1,+∞) such that

1

q
− 1

p
+

1

3
> 0.

Then, for all v ∈W 1,2
0,Γ (Ω, µ) there is a constant MS such that

‖v‖q,µ ≤MS |v|1,p,µ . (17)

Let’s rematk that, if p = 2 then the estimate (17) is true for all 1 < q < 6.
Remark 2.1. The inequality in (15) is a Poincaré-type inequality. It can be obtained for a more general weight function, see

([6], p. 5).
So, the inequalities (15) and (17) justify the existence of the following constants:

P = sup
v∈W 1,2

Γ (Ω,µ)

‖v‖2,µ
|v|1,2,µ

, S = sup
v∈W 1,2

Γ (Ω,µ)

‖v‖4,µ
|v|1,2,µ

, (18)

called Poincaré-Friedrichs’s constant and Sobolev’s constant, respectively, and we have

P ≤ 1

2
and S ≤MS . (19)

3. Weak Formulation of the Problem

In this paragraph and those that follow, we will most often work in the space V andW . The results obtained will be true in the
spaces V andW by density of the first in the second.

First, let’s go to the variational formulation of the problem (12)− (13) in the spaceW by using the Lemma 2.1.
Let’s put Ωk =]x1,k, 1[×]0, 1[, where x1,k > 0 is the point from the Lemma 2.1. Let V ∈ W and multiply scalarly the

equation (12) by x1V= (x1v1, x1v2, x1v3) and integrate the result on Ωk. We obtain the following integral equation:

−
∑3
j=1 νj

(∫
Ωk
D1 (x1D1uj) vjdx+ +

∫
Ωk

D2 (x1D2uj) vjdx

)
+ ν

∫
Ωk

u1v1

x2
1

x1dx

+

2∑
i=1

3∑
j=1

∫
Ωk

ui (Diuj) vjx1dx = − 1

ρ0

∫
Ωk

(
∂p

∂x1
v1 +

∂p

∂x2
v2

)

x1dx+ β0

∫
Ωk

u3v1x1dx+

∫
Ωk

gv3x1dx, (20)

ν1 = ν2 = ν, ν3 = λ.

Integrate by parts the terms
∫

Ωk
Di (x1Diuj) vjdx,

i = 1, 2.

For i = 1, we obtain:∫
Ωk

D1 (x1D1uj) vjdx =

∫ 1

0

x1,kD1uj (x1,k, x2)× vj (x1,k, x2) dx2 −
∫

Ωk

D1uj (x1, x2)D1vj (x1, x2)x1dx.

Let’s now pass to the limit in the above equality when k →∞, by using the Lemma 2.1. We derive

−
∫

Ω

D1 (x1D1uj) vjdx =

∫
Ω

D1uj (x1, x2)D1vj (x1, x2)x1dx. (21)
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For i = 2, we obtain∫
Ωk

D2 (x1D2uj) vjdx =

∫ 1

x1,k

x1D2uj (x1, x2) vj (x1, x2)|1x2=0 dx1 −
∫

Ωk

D2uj (x1, x2)D2vj (x1, x2)x1dx

= −
∫

Ωk

D2uj × (x1, x2)D2vj (x1, x2)x1dx,

because v (x1, 0) = v (x1, 1) = 0, ∀x1 ∈ (0, 1) . Then, after passing to the limite when k →∞, we derive

−
∫

Ω

D2 (x1D2uj) vjdx =

∫
Ω

D2uj (x1, x2)D2vj (x1, x2)x1dx. (22)

On the other hand, because of the equality∫
Ω

p

(
∂(x1v1)

∂x1
+
∂(x1v2)

∂x2

)
dx =

∫
Ω

p

(
1

x1

∂(x1v1)

∂x1
+
∂v2

∂x2

)
x1dx = 0,

We obtain, after passing to the limit k →∞

− 1

ρ0

∫
Ω

(
∂p

∂x1
v1 +

∂p

∂x2
v2

)
x1dx+ β0

∫
Ω

u3v1x1dx+

∫
Ωk

gv3x1dx = β0

∫
Ω

u3v1x1dx+

∫
Ωk

gv3x1dx. (23)

Therefore, by combining the equalities (21), (22) and (23) with the equality (20), we get

ar(U,V) + b(u,U,V) = (f (U) ,V) , ∀V ∈ W, (24)

where

ar(U,V) =

3∑
j=1

νj

∫
Ω

 2∑
i=1

3∑
j=1

νjDiujDivj + ν
u1v1

x2
1

 dµ (x) , (25)

b(u,U,V) =

∫
Ω

(u · ∇) U ·Vdµ (x) =

2∑
i=1

3∑
j=1

∫
Ω

ui (Diuj) vjdµ (x) , (26)

(f (U) ,V) = β0

∫
Ω

u3v1dµ (x) +

∫
Ω

gv3dµ (x) . (27)

Definition 3.1. We say that a function U ∈W is a weak solution of the problem (12)− (13), if U verify the integral equation
(24) for all V ∈W.

Let’s remark that b(·,·, ·) is a trilinear form on the spaceW.
Proposition 3.1. For all U = (u, u3) ∈W and V,W ∈W we have the following estimates:

ν0 |U|21,2,µ ≤ ar (U,U) ≤ 3λ0 |U|21,2,µ , (28)

|b (u,V,W)| ≤
√

2S2 |u|1,2,µ |V|1,2,µ |W|1,2,µ (29)

|(f (U) ,V)| ≤
(
β0P

2 |U|1,2,µ + γ
)
|V|1,2,µ , (30)

where

ν0 = min (ν, λ) , λ0 = max (ν, λ) , γ = sup
0 6=v∈W 1,2

0 (Ω,µ)

∣∣∫
Ω
gvdµ (x)

∣∣
|v|1,2,µ

, g ∈ L2 (Ω, µ) . (31)

Proof Of (28). According to the definition of the form ar (·, ·) , we have

ar(U,U) =

∫
Ω

 2∑
i=1

3∑
j=1

νj (Diuj)
2

+
u2

1

x2
1

 dµ (x) ≥ ν0

∑
i,j

∫
Ω

(Diuj)
2
dµ (x) = ν0

3∑
j=1

|uj |21,2,µ = ν0 |U|21,2,µ .
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On the other hand, according the estimate (16), we obtain

ar (U,U) =
∑3

j=1
νj |uj |21,2,µ + ν

∫
Ω

u2
1

x2
1

dµ ≤ λ0

(
|U|21,2,µ + 2 |u|21,2,µ

)
≤ 3λ0 |U|21,2,µ

Therefore, by combining the above inequality with the previous one, we obtain (28) .
Proof of (29). Let’s now apply the generalized Hölder’s inequality to the second side of the following equality:

x1uiDivjwj =
(
x

1/4
1 ui

)(
x

1/2
1 Divj

)(
x

1/4
1 wj

)
.

We obtain ∣∣∣∣∫
Ω

uiDivjwjdµ (x)

∣∣∣∣ ≤ (∫
Ω

|ui|4 dµ (x)

)1/4

×
(∫

Ω

|Divj |2 dµ (x)

)1/2

×
(∫

Ω

|wj |4 dµ (x)

)1/4

≤ ‖ui‖4,µ |vj |1,2,µ ‖wj‖4,µ .

According to the second equality of (18), we deduce:∣∣∣∣∫
Ω

uiDivjwjdµ (x)

∣∣∣∣ ≤ S2 |ui|1,2,µ |vj |1,2,µ |wj |1,2,µ .

Therefore, according to the Cauchy-Schwarz inequality, we deduce from the inequality above

|b (u,V,W)| ≤ S2
2∑
i=1

|ui|1,2,µ

 3∑
j=1

|vj |21,2,µ

1/2

×

 3∑
j=1

|wj |21,2,µ

1/2

= S2
∑2
i=1 |ui|1,2,µ |V|1,2,µ |W|1,2,µ ≤

√
2S2 |u|1,2,µ |V|1,2,µ |W|1,2,µ .

Proof of (30) . Let U = (u1, u2, u3) ∈ W and V = (v1, v2, v3) ∈ W. According to definition (27) and the inequality of
Hölder taking and the first inequality in (18), we obtain

|(f (U) ,V)| ≤ β0

∫
Ω

|u3v1| dµ+

∣∣∣∣∫
Ω

g (x) v3dµ

∣∣∣∣ ≤ β0 ‖u3‖2,µ ‖v1‖2,µ + sup
v3 6=0

∣∣∫
Ω
g (x) v3dµ (x)

∣∣
|v3|1,2,µ

|v3|1,2,µ

≤ β0P
2 |u3|1,2,µ |v1|1,2,µ + γ |v3|1,2,µ ≤

(
β0P

2 |U|1,2,µ + γ
)
|V|1,2,µ .

Lemma 3.1. The bilinear form ar (·, ·) : W×W→ R is continuous, i.e. there is a constant C = 3λ0 such that

|ar (U,V)| ≤ 3λ0 |U|1,2 |V|1,2 . (32)

Proof Let U ∈ W and V ∈ W. So, according to the inequalities of Hölder and Cauchy-Schwarz and the estimate (16), we
obtain

|ar (U,V)| =

∣∣∣∣∣∣
3∑
j=1

2∑
i=1

∫
Ω

DiujDivjdµ (x) + ν

∫
Ω

u1v1

x2
1

dµ (x)

∣∣∣∣∣∣ ≤
≤ λ0

 3∑
j=1

2∑
i=1

‖Diuj‖2,µ ‖Divj‖2,µ + 2 |u|1,2,µ |v|1,2,µ

 ≤
≤ λ0

(∑3
j=1

(∑2
i=1 ‖Diuj‖22,µ

)1/2 (∑2
i=1 ‖Divj‖22,µ

) 1/2

+ +2 |u|1,2,µ |v|1,2,µ
)

=

= λ0

 3∑
j=1

|uj |1,2,µ |vj |1,2,µ + 2 |u|1,2,µ |v|1,2,µ

 ≤ λ0

(
|U|1,2 |V|1,2 + 2 |u|1,2,µ |v|1,2,µ

)
≤ 3λ0 |U|1,2 |V|1,2 .
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Proposition 3.2. Let u ∈V and V,W ∈W. Then

b (u,V,V) = 0, (33)

b (u,V,W) = −b (u,W,V) . (34)

Proof Let u ∈V and V = (v1, v2, v3) ∈ W . Then, using the integration by part, we obtain:

2∑
i=1

∫
Ω

x1ui (Divj) vjdx =
1

2

(∫
Ω

x1u1D1v
2
jdx+

∫
Ω

x1u2D2v
2
jdx

)

=
1

2

(∫ 1

0

(
x1u1v

2
j

∣∣1
x1=0

)
dx2 −

∫
Ω

D1 (x1u1) v2
jdx

)
+

1

2

(∫ 1

0

x1

(
u2v

2
j (x1, x2)

∣∣1
x2=0

)
dx1 −

∫
Ω

D2 (x1u2) v2
jdx

)
= −1

2

∫
Ω

x1

(
1

x1
D1 (x1u1) +D2u2

)
v2
jdx = 0.

In the last equality above, we used the fact that (x1u1) (0, x2) = 0 (since u1 ∈ C1
(
Ω
)
) and u2 (x1, 0) = 0 and the condition

1

x1
D1 (x1u1) +D2u2 = 0. So, we get (33) by density of V (resp. W) in V (resp. inW).

From the property (33) we deduce (34). Indeed, according to the trilinearity of b (·, ·, ·), we obtain

0 = b (u,V + W,V + W) = b(u,V,V + W) + b(u,W,V + W)

= b(u,V,V) + b(u,V,W) + b(u,W,V) + b(u,W,W) = b(u,V,W) + b(u,W,V).

In the following, we shall establish the uniqueness and the exitence of the weak solution of the variational problem (24) in the
space W, by applying a similar approach to that followed in the case of the Navier-Stokes equations without coupling with the
energy equation, see [6, 18].

4. Uniqueness of the Weak Solution

Lemma 4.1. Let the condition:
ν0 − β0P

2 > 0, (35)

be fulfilled. Then, if U ∈W be a weak solution of (24) , the estimate

|U|1,2,µ ≤
γ

ν0 − β0P 2
(36)

holds
Proof Let U ∈W be a weak solution of (24). Then, according the property (33) and the definition (27) , we deduce

ar (U,U) = (f (U) ,U) = β0

∫
Ω

u3u1dµ+

∫
Ω

gu3dµ.

Therefore, by using the estimates (28) and (30),we obtain

ν0 |U|21,2,µ ≤ ar (U,U) = (f (U) ,U) ≤ β0P
2 |U|21,2,µ + γ |U|1,2,µ

From where, we deduce (36) .
Proposition 4.1. Let U = (u, u3) ∈W be a weak solution of the problem (24) and the following conditions are fulfilled

ν0 − β0P
2 > 21/4γ1/2S. (37)

Then the weak solution U is unique.
Proof Let U∗ = (u∗, u∗3) ∈W and U∗∗ = (u∗∗, u∗∗3 ) ∈W be two solutions of the problem (24), i.e. ∀V ∈W

ar (U∗,V) + b (u∗,U∗,V) = (f (U∗) ,V) ,
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ar (U∗∗,V) + b (u∗∗,U∗∗,V) = (f (U∗∗) ,V) ,

where u∗ = (u∗1, u
∗
2) ∈ V and u∗∗ = (u∗∗1 , u

∗∗
2 ) ∈ V.

Let’s put U = U∗ −U∗∗. Then,

ar
(
U,V

)
+ b (u∗,U∗,V)− b (u∗∗,U∗∗,V) = β0

∫
Ω

(u∗3 − u∗∗3 ) v2dµ. (38)

On other hand,
b (u∗,U∗,V)− b (u∗∗,U∗∗,V) = b (u,U∗,V) + b

(
u∗∗,U,V

)
. (39)

Let’s put V =U in (38). Then, taking into account (39) , we obtain the following equation

ar
(
U,U

)
+ b

(
u,U∗,U

)
= β0

∫
Ω

u3u2dµ (x) , (40)

According to the Hölder’s inequality and the first equality in (18), we have∣∣∣∣∫
Ω

u3u2dµ (x)

∣∣∣∣ ≤ ‖u3‖2,µ ‖u2‖2,µ ≤ P
2 |u3|1,2,µ |u2|1,2,µ . (41)

So, according to the estimates (28) , (29) and (30), we derive from (40) taking into account the estimates (16) , (29) and
(41) :

ν0

∣∣U∣∣2
1,2,µ

≤ ar
(
U,U

)
≤ S2

√
6 |u|1,2,µ

∣∣U∣∣
1,2,µ
|U∗|1,2,µ + β0P

2 |u3|1,2,µ |u2|1,2,µ

≤
√

2S2
∣∣U∣∣2

1,2,µ
|U∗|1,2,µ + β0P

2
∣∣U∣∣2

1,2,µ
≤ γS2

√
2

ν0 − P 2β0

∣∣U∣∣2
1,2,µ

+ β0P
2
∣∣U∣∣2

1,2,µ
=

(
γS2
√

2

ν0 − P 2β0
+ β0P

2

)∣∣U∣∣2
1,2

From where, we deduce(
ν0 − β0P

2 −
√

2γS2

ν0 − P 2β0

)∣∣U∣∣2
1,2,µ

≤ 0.

If the conditions (34) are verified, then
∣∣U∣∣2

1,2,µ
= 0, i.e.

U∗ = U∗∗.

5. Existence of the Weak Solution

We shall apply the Galerkin method to establish the
existence of the weak solution of the variational problem (24).
For the definition of this method see for example ([18], p. 134).

The space W is separable as a subspace of the

space
(
W 1,2

0,Γ (Ω, µ)
)3

and it is a completion of W in(
W 1,2

0,Γ (Ω, µ)
)3

. Therefore, there is a sequence W1, W2,

. . . ,Wm, . . . of linearly independent elements of W which is
total, i.e. it generates a dense subspace inW. It is also linearly
independent and total inW .

For all fixedm ≥ 1, we define a sequence of an approximate
solution Um of the form

Um =

m∑
i=1

ξi,mWi, ξi,m ∈ R, i = 1, . . . ,m, (42)

such that

ar(Um,Wk) + b(um,Um,Wk) = (f (Um) ,Wk) , (43)

k = 1, . . . ,m

The equations (43) define a system of nonlinear equations
with respect to the unknowns ξi,m ∈ R, i = 1, ...,m.

The existence and uniqueness of the solution of the system
(43) follows from the following lemma.

Lemma 5.1. LetX be a finite dimensional Hilbert space with
scalar product [·, ·] and norm [·] and let P : X → X be a
continuous operator such that

[P (η) , η] > 0 for [η] = r > 0,∀η ∈ X. (44)

Then there is an element ξ ∈ X with [ξ] ≤ r such that

P (ξ) = 0. (45)

For the proof of the Lemma 5.2, see ([18], p. 134).
Let’s apply the Lemma 5.1 to establish the existence of Um

in (42) verifying (43) .
Let apply this lemma to prove the existence of Um in the

following way. As a space X of finite dimension, we take
the space Wm generated by W1, W2, . . . , Wm. The scalar
product in Wm is the induced scalar produc ar (·, ·) of W and
let Pm : Wm→Wm be the operator defined by the following
equality:

ar (Pm (U) ,V) = ar (U,V) + b (u,U,V)− (f (U) ,V) , (46)
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V ∈Wm,∀U = (u, u3) ∈Wm,∀V ∈Wm.

Let us mention that the existence of such element Pm(U) ∈ Wm follows from Riesz’s theorem, because the left side of (46)
is actually a scalar product inWm and the right hand side in (46) is a bounded linear functional of V ∈Wm.

Lemma 5.2. The operator Pm defined by (46) is continuous on Wm, i.e. for all sequence {Un}∞n=1 in Wm convergent to
U0 ∈Wm:

lim
n→∞

|Un−U0|1,2,µ = 0,

we have lim
n→∞

Pm (Un) = P (U0) inWm.

Proof Let (Un) be a sequence inWm strongly convergent to U0 ∈Wm, i.e.

lim
n→∞

|Un−U0|1,2,µ = 0. (47)

Then, because the trilinearity of b (·, ·, ·), for all V ∈Wm, we have

ar (P (Un)− P (U0) ,V) = ar (Un−U0,V) + b (un,Un,V)− b (u0,U0,V)− (f (Un) ,V) + (f (U0) ,V)

= ar (Un−U0,V) + b (un − u0,Un,V) + b (u0,Un −U0,V)− (f (Un)− f (U0) ,V) . (48)

Let’s now estimate the terms in the right side of (48).
According to the inequalities (31) , (29) , (30) and the limit (47) , we obtain

|ar (Un−U0,V)| ≤ C |Un−U0|1,2,µ |V|1,2,µ → 0 n→∞; (49)

|b (un−u0,Un,V) + b (u0,Un−U0,V)| ≤ C |V|1,2,µ
(
|Un−U0|1,2,µ |Un|1,2,µ

+ |Un−U0|1,2,µ |u0|1,2,µ
)
→ 0 n→∞; (50)

|(f (Un) ,V)− (f (U0) ,V)| ≤ β0

∣∣∣∣∫
Ω

(un,3 − u0,3) v2dµ (x)

∣∣∣∣ ≤ C |Un−U0|1,2,µ |V|1,2,µ → 0 n→∞. (51)

Therefore, by combining the estimates (49)− (51) with the equality (48), we derive

|ar (P (Un)− P (U0) ,V)| ≤ |a (Un−U0,V)|+ |b (un−u0,Un,V)|

+ |b (u0,Un−U0,V)|+ |(f (Un) ,V)− (f (U0) ,V)| →
n→∞

0

i.e.
lim
n→∞

ar (P (Un)− P (U0) ,V) = 0, ∀V ∈Wm.

Because the spaceWm is finite, this is enough to establish the convergence lim
n→∞

P (Un) = P (U0).

Now we will try to use Lemma 5.1. First, we are looking the condition (44) . According to the apriori estimates (28) and (30),
we obtain

[Pm (U) ,U] = ar (Pm (U) ,U) = ar (U,U)− (f (U) ,U) ≥ ν0 |U|21,2,µ −
(
β0P

2 |U|1,2,µ + γ
)
|U|1,2,µ

=
(
ν0 − β0P

2
)
|U|21,2,µ − γ |U|1,2,µ =

((
ν0 − β0P

2
)
|U|1,2,µ − γ

)
|U|1,2,µ

i.e.
ar (Pm (U) ,U) ≥

((
ν0 − β0P

2
)
|U|1,2,µ − γ

)
|U|1,2,µ .

The above inequality implies that the condition (44) is fulfilled for |U|1,2,µ = r, if

r >
γ

ν0 − β0P 2
,

which is true for large enough r.
Thus, according to Lemma 5.1, we deduce that there exists a solution Um of the form (42) verifying the system (43) .
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Let’s now multiply (43) by ξk,m and sum the obtained equalities for k = 1, . . . ,m. We obtain

ar (Um,Um) + b (um,Um,Um) = (f (Um) ,Um) ,

from where, in view of (32)
ar (Um,Um) = (f (Um) ,Um) .

Therefore, using (28) and (30), we get
|Um|1,2,µ ≤

γ

ν0 − β0P 2
.

Since Um is bounded sequence inW, then there exists an element U ∈W and there is a subsequence Um′ such that

Um′ ⇀ U weakly inW and Um′ → U in norm of (L2 (Ω, µ))
3

i.e.
lim

m′→∞
ar (Um′ , V ) = ar (U,V) , ∀V ∈W, (52)

and
lim

m′→∞
‖Um′ −U‖2,µ = 0. (53)

Lemma 5.3. If {Un = (u1,n, u2,n, u3,n)}∞n=1 be a sequence weakly converges to a function U ∈ W, strongly convergent in
(L2 (Ω, µ))

3 and uniformely bounded inW, then

lim
n→∞

b (un,Un,V) = b (u,U,V) , ∀V ∈ W , (54)

lim
n→∞

(f (Un) ,V) = (f (U) ,V) , ∀V ∈ W . (55)

Proof Because the properties (33) and (34), we have

b (un,Un,V) = −b (un,V,Un) = −
∑
i,j

∫
Ω
un,iun,jDivjdµ

= −
∑
i,j

(∫
Ω

(un,i − ui)un,jDivjdµ+ +

∫
Ω

ui (un,j − uj)Divjdµ+

∫
Ω

uiujDivjdµ

)

= −
∑
i,j

(∫
Ω

(un,i − ui)un,jDivjdµ+ +
∫

Ω
ui (un,j − uj)Divjdµ

)
+ b (u,U,V) . (56)

As V is smooth, Un is uniformely bounded, then according to the Hölder inequality and the strongly convergence of (Un) in
(L2 (Ω, µ))

3, we deduce∣∣∣∣∫
Ω

(un,i − ui)un,jDivjdµ

∣∣∣∣ ≤ ‖un,i − ui‖2,µ ‖un,i‖2,µ ‖Divj (x)‖∞,0 →n→∞ 0. (57)

Similarly, we have ∣∣∣∣∫
Ω

ui (un,j − uj)Divjdµ

∣∣∣∣ ≤ ‖un,j − uj‖2,µ ‖un,i‖2,µ ‖Divj (x)‖∞,0 →n→∞ 0. (58)

Therefore, by combining the inequalities (57) and (47) with the equality (56), we derive (54) .
According to the Hölder’s, we obtain

|(f (Un) ,V)− (f (U) ,V)| ≤ β0

∫
Ω

|un,3 − u3| |v2| dµ ≤ β0P
2 |un,3 − u3|1,2,µ |v3|1,2,µ → 0, n→∞,

i.e. we obtain (55)
Then we will go to the limit m′ → ∞ in (43) by the

subsequence (Um′) and by using the limits (52), (54) and (55)
we deduce that for all V = W1, W2, . . ., we have

ar (U,V) + b (u,U,V) = (f (U) ,V) , (59)

where U ∈W is a weak limit of the subsequence (Um′) . The
equation (59) is also fulfilled for all linear combinaison V of

W1,W2, . . . As these combinations are dences inW, then the
equation holds for all V ∈W. In this way, we have proved the
following theorem

Theorem 5.1. Under the condition (37), the variational
problem (24) admits a unique weak solution U = (u, u3) ∈
W.
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6. Numerical Solution
In this paragraph, we will establish the existence and

uniqueness of a numerical solution, obtained by the finite
element method, approaching the weak solution of the
variational problem (24) .

6.1. Finite Element Method

Let Th be a regular triangulation of Ω formed by triangles
Ki ⊂ Ω, i = 1, . . . , N of diameter hKi , see [7], and let put

h = max
K∈Th

hK → 0,

where hK = max
x,y∈K

|x− y| .
Let Uh be the set of vertices of all the triangles K ∈ Th.

We denote by
◦
Uh,Γ the set of vertices belonging to the interior

of the domain ΩΓ = Ω�Γ. Here, the nodes located on the
boundary Γ0 = {(0, x2) : 0 < x2 < 1} of the boundary ∂Ω

belong to the set
◦
Uh,Γ.

Here, any triangle K ∈ Th has nonempty interior
◦
K and

Lipschit boundary ∂K, moreover, any two triangles K and K ′

satisfies the condition
◦
K∩

◦
K ′ 6= ∅ and no vertex of one belongs

to a side of the other.
Let P1 (K) be the space of polynomials of first degree

defined on K. It is shown that there exist unique linearly
independent polynomials λK,i (x) ∈ P1 (K) , i = 1, 2, 3, such
that

λK,i (aj) = δij ,

3∑
i=1

λK,i (x) = 1. (60)

called nodal functions or barycentric functions, where δij is
the Kronecker symbol, see

We call finite element the triple (K,PK ,ΣK) ,where ΣK =

{λK,i}3i=1 .
In the following instead of P1 (K) we simply write PK . In

this way any polynomial p ∈ PK can be written in the form

p (x) =

3∑
i=1

λK,i (x) p (ai,K) . (61)

Note that given the geometric simplicity of our domain Ω,
we have

Ω =
⋃

K∈Th

K, K = K ∪ ∂K.

6.2. Definition of the Finite Element Approximation Space

At the triangulation Th we associate the space Vh of
functions vh ∈ C1

0,Γ

(
Ω
)

whose restriction vK = vh|K ∈ PK ,
such that

Vh =
{
vh ∈ C1

0,Γ

(
Ω
)

: vhK = vh|K ∈ PK
}
.

Note that the space Vh is a subspace of the weighted Sobolev
space W 1,2

0,Γ (Ω, µ) : Vh ⊂ W 1,2
0,Γ (Ω, µ). In the following, we

consider the space Vh of functions vh ∈ Vh × Vh such that∫
K

divrvhdx = 0 ∀K ∈ Th (62)

and we put Wh = Vh × Vh which is a subspace

of
(
W 1,2

0,Γ (Ω, µ)
)3

, which is called a finite element
approximation space. The space Wh is a Hilbert space with
respect of the induced scalar product:

((U,V)) =

2∑
i=1

3∑
j=1

∫
Ω

DiujDivjdµ.

Let τB ⊂ Th be the set of all the elements of Th having

a common vertex B ∈
◦
Uh,Γ. Consider a continuous function

whB on τB such that:
(i) its restriction whB |K = whB,K on each element K ∈

τB is a first degree polynomial whB,K ∈ PK ,
(ii) whB (B) = 1 and whB (M) = 0 ∀M ∈

◦
Uh,Γ, M 6= B.

According to the properties (60), we deduce that for all
Uh = (uh, uh,3) ∈Wh we have

Uh =
∑

B∈
◦
Uh,Γ

Uh (B)whB =

 ∑
B∈
◦
Uh,Γ

uh (B)whB ,
∑

B∈
◦
Uh,Γ

uh,3 (B)whB

 (63)

Note that the approximation space Wh is not a subspace of the energy space W, Vh  W, since for everything vh (x) ∈ Vh
the divergence divrvh (x) is not necessarily zero on Ω.

Proposition 6.1. For all vh ∈ Vh, there is a constant P > 0 no depending of h such that

‖vh‖0,2,µ ≤ P |vh|1,2,µ , (64)

where P is the Poincaré constant (see (18)):

P = sup
vh 6=0

‖vh‖0,2,µ
|vh|1,2,µ

< 2.

.
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Proof According to Green’s formula, we have∑
K∈Th

∫
K

∂

∂x1

(
x1v

2
K

)
dx =

∑
K∈Th

∫
∂K

x1u
2
Kν1dx,

where ν1 = cos (x1, ν) is the exterior normal to ∂K. The scalar function xα1 v
2
K is continuous on Ω, and therefore, on each side

of the element K ∈ Th, moreover, it cancels out on Γ and on the boundary Γ0 = {(0, x2) : 0 < x2 < 1} . In this way, if γ is a
side common to two adjacent elements K and K ′ of Th, then we will have

x1v
2
Kν1

∣∣
γ∈K = − x1v

2
Kν1

∣∣
γ∈K′ .

Therefore, ∑
K∈Th

∫
∂K

x1v
2
Kν1dx = 0.

On the other hand, we have ∫
Ω

∂

∂x1

(
x1v

2
h

)
dx =

∫
Ω

v2
h + 2x1vh

∂vh
∂x1

dx = 0,

from where ∫
Ω

v2
hdx = −2

∫
Ω

x1vh
∂vh
∂x1

dx.

By Hölder’s inequality, we get

‖vh‖20,2 =

∫
Ω

v2
hdx ≤ 2

(∫
Ω

x1v
2
hdx

)1/2
(∫

Ω

x1

(
∂vh
∂x1

)2

dx

)1/2

≤ 2 ‖vh‖0,2,µ |vh|1,2,µ .

Therefore
‖vh‖20,2,µ =

∫
Ω

x1v
2
hdx ≤ ‖vh‖

2
0,2 ≤ 2 ‖vh‖0,2,µ |vh|1,2,µ ,

i.e.
‖vh‖0,2,µ ≤ 2 |vh|1,2,µ .

From where, we deduce

‖vh‖0,2,µ
|vh|1,2,µ

≤ P = sup
vh 6=0

‖vh‖0,2,µ
|vh|1,2,µ

≤ 2

The inequality (64) is similar to the Poincaré inequality.
Proposition 6.2. For all vh ∈ Vh, there is a constant S > 0 no depending of h such that

‖vh‖0,4,µ ≤ S |vh|1,2,µ , (65)

where S ≤ P is the so-called Sobolev constant, see (18) .
Proof By Hölder’s inequality, we get

‖vh‖40,2,µ =

∫
Ω

(
x

1/4
1 |vh|

)1−ε (
x

1/4
1 |vh|

)3+ε

dx ≤
(∫

Ω

x
1

2(1−ε)
1 |vh|2 dx

)(1−ε)/2

×
(∫

Ω

(
x

1/4
1 |vh|

)2 3+ε
1+ε

dx

)(1+ε)/2

≤
(∫

Ω

x
1

2(1−ε)
1 |vh|2 dx

)(1−ε)/2

×
(∫

Ω

(
x

1/4
1 |vh|

)2 3+ε
1+εp

dx

)(1+ε)/2p

× (mes (Ω))
(1+ε)/2p′

,

where 1/p+ 1/p′ = 1. Therefore, taking p = 2 (1 + ε) / (3 + ε) in the above inequality, we get

‖vh‖40,4,µ ≤ ‖vh‖
1−ε
0,2,µ ‖vh‖

3+ε
0,4,µ , mes (Ω) = 1,
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whence, taking into account (64) :

‖vh‖1−ε0,4,µ ≤ ‖vh‖
1−ε
0,2,µ ≤

(
P |vh|1,2,µ

)1−ε
.

Therefore
‖vh‖0,4,µ
|vh|1,2,µ

≤ sup
vh 6=0

‖vh‖0,4,µ
|vh|1,2,µ

= S ≤ P

6.3. Formulation of the Discrete Problem

Let uh ∈ Vh × Vh, Vh ∈Wh, Wh ∈Wh and consider the following trilinear form:

bh (uh,Vh,Wh) = b′ (uh,Vh,Wh) + b′′ (uh,Vh,Wh) , (66)

where

b′ (uh,Vh,Wh) =
∑
K∈Th

2∑
i=1

3∑
j=1

1

2

∫
K

uK,i (DivK,j)wK,jdµ,

b′′ (uh,Vh,Wh) = −
∑
K∈Th

2∑
i=1

3∑
j=1

1

2

∫
K

uK,ivK,j (DiwK,j) dµ.

It is easy to verify that for all uh ∈ Vh × Vh and Vh,Wh ∈Wh, we have

bh (uh,Vh,Vh) = 0, bh (uh,Vh,Wh) = −bh (uh,Wh,Vh) (67)

Discreet problem: we search Uh = (uh, uh,3) ∈Wh of the form ( 63) such that

ar (Uh,Vh) + bh(uh,Uh,Vh) = (f (uh,3) ,Vh) , ∀Vh ∈Wh (68)

where uh = (uh,1, uh,2),

ar(Uh,Vh) =

3∑
j=1

2∑
i=1

∫
Ω

νj(Diuh,j)(Divh,j)dµ+ ν

∫
Ω

uh,1vh,1
x2

1

dµ,

(f (uh,3) ,Vh) = β0

∫
Ω

uh,3vh,2dµ+

∫
Ω

gvh,3dµ.

Proposition 6.3. Let Uh ∈Wh be a solution of (68) and let that the condition (35) holds. Then

|Uh|1,2,µ ≤
γ

ν0 − β0P 2
, (69)

where

γ = sup
06=v∈Vh

∣∣∫
Ω
gvdµ (x)

∣∣
|v|1,2,µ

, g ∈ L2 (Ω, µ)

Proof Let Uh = (uh,1, uh,2, uh,3) ∈Wh verify (65). Then, by property (70), we deduce that

ar (Uh,Uh) = (f (uh,3) ,Uh) = β0

∫
Ω

uh,3uh,2dµ+

∫
Ω

guh,3dµ.

Hence, by Hölder’s inequality, we get

ν0 |Uh|21,2,µ ≤ ar (Uh,Uh) = (f (uh,3) ,Uh) ≤ β0 ‖Uh‖20,2,µ +

∣∣∣∣∫
Ω

guh,3dµ

∣∣∣∣
≤ β0 ‖Uh‖20,2,µ + sup

0 6=vh,3∈Vh

∣∣∫
Ω
gvh,3dµ (x)

∣∣
|vh,3|1,2,µ

|uh,3|1,2,µ ≤ β0P
2 |Uh|21,2,µ + γ |Uh|1,2,µ .

From where, we deduce (
ν0 − β0P

2
)
|Uh|1,2,µ ≤ γ.
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The inequality (69) is analogous to the inequality (36).
Let Uh = (uh, uh,3) ∈Wh and lh (Uh) : Wh → R be a linear functional defined by the following equality:

〈lh (Uh) ,Vh〉 = (f (uh,3) ,Vh) . (70)

The linearity here of lh (Uh) is relative to Vh.
Proposition 6.4. Let Uh = (uh, uh,3) ∈Wh be a solution of (68). If the condition (35) holds, then

‖lh (Uh)‖∗ = sup
Vh 6=0

|〈lh (Uh) ,Vh〉|
|Vh|1,2,µ

≤ ν0γ

ν0 − β0P 2
. (71)

Proof We have

|〈lh (Uh) ,Vh〉| = |(f (uh,3) ,Vh)| ≤ β0 ‖Uh‖0,2,µ ‖Vh‖0,2,µ + γ |vh,3|1,2,µ ≤ β0P
2 |Uh|1,2,µ |Vh|1,2,µ + γ |Vh|1,2,µ .

Then

‖lh (Uh)‖∗ = sup
Vh 6=0

||(f (uh,3) ,Vh)||
|Vh|1,2,µ

≤ β0P
2 |Uh|1,2,µ + γ ≤ γβ0P

2

ν0 − β0P 2
+ γ =

ν0γ

ν0 − β0P 2

Proposition 6.5. For all uh∈ (Vh)
2 ⊂

(
W 1,2

0,Γ (Ω, µ)
)2

and Vh,Wh ∈ (Vh)
3 ⊂

(
W 1,2

0,Γ (Ω, µ)
)3

, we have

|bh (uh,Vh,Wh)| ≤ S2
√

2

2
|uh|1,2,µ |Vh|1,2,µ |Wh|1,2,µ , (72)

where S is the Sobolev constant, see (18) .
Proof The estimate of the term b′ (uh,Vh,Wh). Let us apply Hölder’s generalized inequality to the right side of

the following equality: ∫
K

uK,i (DiVK,j)WK,jdµ =

∫
K

(
x

1/4
1 uK,i

)(
x

1/2
1 DivK,j

)
×
(
x

1/4
1 wK,j

)
.

We find ∣∣∣∣∫
K

uK,i (DivK,j)wK,jdµ

∣∣∣∣ ≤ (∫
K

|uK,i|4 dµ (x)

)1/4

×

×
(∫

K

|DivK,j |2 dµ (x)

)1/2

×
(∫

K

|vK,j |4 dµ (x)

)1/4

≤ ‖uK,i‖0,4,µ |vK,j |1,2,µ ‖wK,j‖0,4,µ .

According to (65), we deduce:∣∣∣∣∫
K

uK,i (DivK,j)wK,jdµ

∣∣∣∣ ≤ S2 |uK,i|1,2,µ |vKj |1,2,µ |wK,j |1,2,µ

where

|ϕK |1,2,µ =

(∫
K

(
|D1ϕK |2 + |D2ϕK |2

)
dµ

)1/2

.

Therefore, applying the Cauchy-Schwarz inequality to the above inequality, we find

|b′ (uh,Vh,Wh)| ≤
∑
K∈Th

2∑
i=1

3∑
j=1

1

2

∣∣∣∣∫
K

uK,i (DivK,j)wK,jdµ

∣∣∣∣ ≤
≤ S2

2

∑
K∈Th

2∑
i=1

|uK,i|1,2,µ

 3∑
j=1

|vK,j |21,2,µ

1/2

×

 3∑
j=1

|wK,j |21,2,µ

1/2

≤
√

2
2 S

2
∑
K∈Th |uK |1,2,µ |VK |1,2,µ |WK |1,2,µ ≤

S2
√

2
2 |uh|1,2,µ |Vh|1,2,µ |Wh|1,2,µ .
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The estimate of the term b′′ (uh,Vh,Wh). We proceed in the same way as in the previous case. We have∣∣∣∣∫
K

uK,ivK,j (DiwK,j) dµ

∣∣∣∣ =

∣∣∣∣∫
K

(
x

1/4
1 uK,i

)(
x

1/4
1 vK,j

)(
x

1/2
1 DiwK,j

)∣∣∣∣
≤
(∫

K

|uK,i|4 dµ (x)

)1/4(∫
K

|vK,j |4 dµ (x)

)1/4

×
(∫

K

|DiwK,j |2 dµ (x)

)1/2

≤ S2 |uK,i|1,2,µ |vK,j |1,2,µ |wK,j |1,2,µ .

Therefore, we get

|b′′ (uh,Vh,Wh)| ≤ 1

2

∑
K∈Th

2∑
i=1

3∑
j=1

∣∣∣∣∫
K

uK,ivK,j (DiwK,j) dµ

∣∣∣∣
≤ S2

2

∑
K∈Th

2∑
i=1

|uK,i|1,2,µ

 3∑
j=1

|vK,j |21,2,µ

 1
2

×

 3∑
j=1

|wK,j |21,2,µ

 1
2

≤ S2
√

2

2
|uh|1,2,µ |Vh|1,2,µ |Wh|1,2,µ

7. Existence and Uniqueness of the Approximate Solution

According to the Lemma 5.1, for all h > 0, there exists an approximate solution Uh = (uh, uh,3) ∈ Wh satisfying the
discrete problem (68). Indeed, let us take X = Wh which is a finite dimensional Hilbert space, endowed with the induced scalar
product ((·, ·)) . Let P : Wh →Wh be an application defined by

((P (Uh) ,Vh)) = ar (Uh,Vh) + bh (uh,Uh,Vh)− 〈l (Uh) ,Vh〉 ,

for all Uh = (uh, uh,3) ∈Wh and Vh ∈Wh.
From (69), (71) and (72), we show that the operator P is continuous. On the other hand, from (68) , (69) and (71), we have

((P (Uh) ,Uh)) = ar (Uh,Uh)− 〈l (Uh) ,Uh〉 ≥ |Uh|1,2,µ

(
ν0 |Uh|1,2,µ −

ν0γ

ν0 − β0P 2

)
.

Therefore, if |Uh|1,2,µ = k and k >
γ

ν0 − β0P 2
then ((P (Uh) ,Uh)) > 0. In this way, the condition (45) holds, and so

there exists at least one element Uh ∈Wh such that

((P (Uh) ,Vh)) = 0 ∀Vh ∈Wh,

which is equivalent to the equation (68) .
Suppose there are two solutions U∗h and U∗∗h of the equation (68). Let’s pose Uh = U∗h −U∗∗h = (uh, uh,3). Then

ar (Uh,Vh) + bh (u∗h,U
∗
h,Vh)− bh (u∗∗h ,U

∗∗
h ,Vh) = β0

∫
Ω

uh,3vh,2dµ.

On the other hand, we have

bh (u∗h,U
∗
h,Vh)− b (u∗∗h ,U

∗∗
h ,Vh) = b (uh,U

∗
h,Vh) + b (u∗∗h ,Uh,Vh) . (73)

Let’s take Vh = Uh in (73). Then, taking into account (67), we get

ar (Uh,Uh) + b (uh,U
∗
h,Uh) = β0

∫
Ω

uh,3uh,2dµ (x) . (74)

By Hölder’s inequality and (64), we find
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∣∣∣∣∫
Ω

uh,3uh,2dµ (x)

∣∣∣∣ ≤ ‖uh,3‖2,µ ‖uh,2‖2,µ ≤ P 2 |uh,3|1,2,µ |uh,2|1,2,µ . (75)

On the other hand, by (72), we have

|bh (uh,U
∗
h,Uh)| ≤ S2

√
2

2
|uh|1,2,µ |Uh|1,2,µ |U

∗
h|1,2,µ (76)

Thus, by combining (75) and (76) with (74) and taking into account (69), we obtain

ν0 |Uh|21,2,µ ≤ ar (Uh,Uh) ≤ |b (uh,U
∗
h,Uh)|+ β0

∣∣∣∣∫
Ω

uh,3uh,2dµ (x)

∣∣∣∣ ≤
≤ S2

√
2

2
|uh|1,2,µ |Uh|1,2,µ |U

∗
h|1,2,µ + β0P

2 |uh,3|1,2,µ |uh,2|1,2,µ

≤

(
S2
√

2

2
|U∗h|1,2,µ + β0P

2

)
|Uh|21,2,µ ≤

(
γS2
√

2

2 (ν0 − β0P 2)
+ β0P

2

)
|Uh|21,2,µ ,

From where, we derive(
ν0 − β0P

2 − γS2
√

2

2 (ν0 − β0P 2)

)
|Uh|21,2,µ ≤ 0.

Thus, if the following inequality:

(
ν0 − β0P

2
)2 − √2

2
γS2 > 0, ν0 − β0P

2 > 0 (77)

holds, then |Uh|1,2,µ = 0, i.e. U∗h = U∗∗h .
In this way, we have just proved the existence and

uniqueness theorem of the following approximate solution:
Theorem 7.1. If the conditions (77) hold, then for all h > 0,

there exists a single element Uh ∈Wh solution of the discrete
problem (68).

8. Conclusion
The main objective of this work is the mathematical study

of the stationary flow of an incompressible Newtonian fluid
governed by the Navier-Stokes equations in a cylinder. It
is a question of establishing the existence and the unicity of
the weak and numerical solution of the variational problem
associated to this problem with respect to the cylindrical
coordinates by supposing that the data of the problem do
not depend on the angle of rotation. In this case, we are
reduced to dealing with the problem in dimension two instead
of three. However, the transition from Cartesian coordinates
to cylindrical coordinates gives rise to a problem which
degenerates on the axis of symmetry. Its study therefore
requires the introduction of an appropriate functional space,
namely the weighted Sobolev space. On the other hand, this
study allows us to establish the necessary algebraic conditions
which must be verified by the values of the physical parameters
of the problem, see (37) and (77).

In this work, we do not deal with the question of numerical
simulation which is the subject of another work in preparation
to be published later.
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