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Abstract: For a very long time, finite volume, finite element, or finite difference methods have been used to solve partial 
differential equations (PDEs) numerically. These techniques have been used by researchers for centuries to solve a wide range of 
mathematical, physical, or chemical problems. The complexity of these numerical approaches, for the resolution of the PDEs in 
space dimensions equal to two or higher, can come from the coding, the management, and the good choice of the triangulation or 
the mesh of the domain in which one wishes to locate the solution. The radial basis function collocation method is a meshless 
technique used to numerically solve some partial differential equations and is based on the nodes of the domain and a radial basis 
function is a real-valued function whose value only depends on the separation of its input parameter x from another fixed point, 
sometimes known as the function's origin or center. This method was introduced by KANSA in the 1990s. In this study, the 
numerical simulation of the one-dimensional heat equation was carried out using the RBF Collocation Method and particularly 
the Gaussian function. This model was used to test the accuracy and efficiency of this method by comparing numerical and 
analytical solutions on rectangular geometry with collocation nodes. The results show that the RBF collocation approximate 
solution and the exact solution coincided in test case problems 2, 3 and 4. 
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1. Introduction 

Partial differential equations model various real-world 
problems, then the mathematical model of the heat equation 

2

2

u u
K f

t x

∂ ∂+ =
∂ ∂

, where K  is the heat conduction coefficient 

and f  is the source term, is a parabolic partial differential 

equation introduced in 1811 by the French mathematician and 
physicist Joseph FOURIER that describes the physical 
phenomenon of heat conduction [9]. For centuries, researchers 
have developed various numerical methods to solve PDEs, such 
as finite volume, finite difference, or finite element methods, 
which always involve mesh, or an assemblage of elements, that 
facilitate the interpolation. In a complicated solution geometry, 
the effort involved in constructing such mesh and its 
connectivity data, that is, how each node is associated with 

other nodes in an interpolation scheme, and how each element 
shares the common nodes with other elements, is not trivial. 
The RBF methodology was first introduced by Hardy in 1971 in 
connection with a topological application on quadric surfaces, 
so he introduced the multiquadric approximation scheme [5]. 
Edward Kansa in 1990, first use the multiquadric, a globally 
supported interpolant to solve a PDE known as the Kansa 
method [6, 7, 15]. 

There exist several meshless methods which can be found 
in the literature [12] and also a comparison study between the 
finite element method, finite difference method, and meshless 
method [14]. 

Therefore, we presented the radial basis function 
collocation methods developed in the research [1, 10, 11], 
which is a numerical method based on the quasi-interpolation 
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and on the approximation by the basic radial functions to solve 
the parabolic heat equation. This method does not require a 
subdivision of the method or a mesh as in the case of the finite 
difference method, finite element method, or the finite 
volumes method. The quasi-interpolation method is based on 
the following principle: 

Given the partial differential equation, we first seek to 
quasi-interpolate the forced termination of the equation by 
using the basic radial functions. A very exact approximation of 
the solution can then be obtained by solving the corresponding 
fundamental. 

We solve the system of equations relating to the initial 
condition or the boundary condition. 

Nawaz et al (2020) [2], used the global meshless scheme 

and RK4 to solve the inverse heat source problem. In this 
paper, we used the RBF collocation method to solve and 
model the heat distribution in a rectangular area, and a 
comparative study was conducted under numerical and exact 
solutions to test the effectiveness and accuracy of this 
meshless method and also to check the error made in the 
resolution [1, 4]. 

2. Mathematical Model 

The problem we are interested in is a one-dimensional heat 
equation with some Cauchy-Dirichlet boundary conditions 
given by 

2
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Let L  and Q  be linear operators defined on ( , )∞ Ω ℝC , 

more precisely, |Qu u∂Ω=  is the trace of ( , )u
∞∈ Ω ℝC  on 

∂Ω . u  is the solution to the problem ( )1  and f  is a given 

function of the space ( , )∞ Ω ℝC  called source term. 

As u  is sought in ( , )∞ Ω ℝC , we have 

: ( , ) ( , )Q
∞ ∞Ω → Ωℝ ℝC C , |u u ∂Ω→ . We place ourselves in 

the case where : ( , ) ( , )L
∞ ∞Ω → Ωℝ ℝC C , 
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where *.K ∈ℝ  
Then the problem (1)  can be written as: 

0
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Where 
1

( ; )F f
K

∞= ∈ Ω ℝC  

3. Radial Basis Function Collocation 

Method 

Definition 3.1. A function : dφ →ℝ ℝ is radial if there 

exists a one variable function : [0, )ϕ ∞ → ℝ such that 

( ) ( )x xφ ϕ=
� �

� � , where •� �  is the Euclidean norm. We then 

refer to 2( )kx x xϕ→ −
� � ���

� � , { }, 1, ,dx k n∈ ∈
�
ℝ … as radial 

basis functions centered at kx
���

. 

3.1. Most Commonly Used Radial Basis Function [13] 

We denote 2kr x x= −
� ���
� � and c is a shape parameter. 

1. Gaussian function: 
2( )( ) e , 0.crr cρ −= >  

2. Multiquadric function: 2( ) 1 ( ) , 0.r cr cϕ = + >  

3. Inverse quadratic function: 
2

1
( ) , 0.

1 ( )
r c

cr
ϕ = >

+
 

4. Inverse multiquadric: 
2

1
( ) , 0.

1 ( )
r c

cr
ϕ = >

+
 

5. Polyharmonic spline function: 

( ) , 1,3,5,

( ) ln( ), 2, 4,6,

k

k

r r k

r r r k

ϕ
ϕ

= =

= =

…

…
 

6. Thin plate spline function: 2( ) ln( )r r rϕ = . 

RBF collocation methods have been actively developed 
over the years from global to local approximation and then to 
hybrid methods. RBF methods have been applied to various 
diverse fields like image processing, geo-modeling, pricing 
option and neural network, etc. [6, 8, 15]. The mathematical 
formulation of different RBF methods is discussed for better 
understanding. 

3.2. The General Algorithm: Collocation with RBFs 

We consider the following partial derivatives equations. 
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( ) ( ), ,d
Lu x f x x= ∀ ∈ Ω ⊂ ℝ     (3) 

( ) ( ),Qu x g x x= ∀ ∈ ∂Ω        (4) 

Let 1 1( ) et ( )j j n j n j n mx x + +⊂ Ω ⊂ ∂Ω� � � �  

The RBF collocation method seeks an approximate solution 
*u , of problem (3)  and (4)  in the form 
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Where 2( ) ( )j jx x xφ = φ −� � , φ  is the radial function. L

and Q  are linear operators, substituting (5)  into (3)  and 

(4) , we obtain 

*

1

*

1

( ) ( ) ( ), 1

( ) ( ) ( ), 1

n m

i j j i i

j

n m

i j j i i

j

Lu x L x f x i n

Qu x Q x g x n i n m

λ φ

λ φ

+

=

+

=


= =



 = = + +


∑

∑

� �

� �

                          (6) 

Therefore, we solve the system of equations of the unknowns 1( )j j n mλ +� � , 
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and the approximate solution of the problem (3) and (4) is given by (5). For an evolution problem in dimension d , for instance 
of the form 

0
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We use the θ − scheme to discretize the problem, it’s given by 

1
1

1
( ) ( )

( ( ) ( , )) (1 )( ( ) ( , ), ( , ) [0, ]
n n

n n
n n n

u x u x
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θ θ
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∆
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where 1n nt t t+∆ = −  is the time step, ( 0,1,2,...)n
u n =  is the solution at the time step nt n t= ∆  and [0,1].θ ∈  For 

1

2
θ = , 

we have the Crank-Nicolson scheme. In this case, the approximate solution at time nt  by the RBF collocation method is 

written 

1

( ) ( , ) ( ) ( ).
n m

n
n j n j

j

u x u x t t xλ φ
+

=

=∑≃                                    (10) 

4. Numerical Schemes 

We consider problem (2)  for numerical resolution, using a 

mixed θ -scheme and RBF collocation method, in this study, 
the Crank-Nicolson scheme and the Gaussian basis radial 
function have been considered. 

Let 0( )n n
i i Mu u= � �  and 0( )n n

i i MF F= ��  respectively 

the approximation of the solution u  and the value of the 
function F at the points ( , )i nx t  with 0 i M� �  and

0 n N� � , with ,0 ,ix ih i M= � � ,0 ,nt n t n N= ∆ � � we 

obtain the following θ -scheme: 

1 1
1( , ) (1 ) ( , ) .[ ] [ ]n n n n

i i i n i i i nu t Lu F x t u t Lu F x tθ θ+ +
+− ∆ − + = + − ∆ − +                 (11) 
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Suppose that 

0

( , ) ( ) ( ), ( , ) [0,1] [0, ].
M

j j

j

u x t t x x t Tλ
=

= Φ ∀ ∈ ×∑                             (12) 

Where ( ) (| |), [0,1], {0,1,..., }$j jx x x x j MΦ = Φ − ∀ ∈ ∀ ∈ , the radial function Gaussian basis has been chosen in this study [3, 

4]. 
Substituting equation (12)  into (11)  yields 
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− −Φ = Φ − = the equation (13) becomes 
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Let us denote by 

2 22 2 ( )2
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The equation (13)  can be now written in a matrix form 

1 1n n n n
A Bλ η λ ρ+ +− = +           (20) 

This is, 

1 1 1 1( )n n n nA B Aλ λ η ρ+ − − += + + i        (21) 

The obtained results of (21)  is substituted into (12) , then, 
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5. Results and Discussions 

The comparative tables had been addressed in this section 
between the exact and numerical solutions, the parameters 

, , , ,M N c K h and θ are fixed, the root mean square REMS is 
the error norm in order to overcome with the comparison 
results given by the following equation 

1 1 1
* 1

1
10

( , )

( , )
( )
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i n

n
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u u x t
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u x t

− + +
+

+
+=

−
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The test problem considered in this study are for 

(1 ) x t
f K e

− += +  and 1K ≠ − , the exact solution is given by 

the following relationships [2]: 

0
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The justification of the existence and uniqueness of the 



 American Journal of Applied Mathematics 2023; 11(3): 52-57  56 
 

solution of our problem can be found in the literature related to 
that research field [3, 4]. 

Table 1. For 11, 1, 1, 6, 0.001M N t c K h= = ∆ = = = =  and 0.5θ = . 

1n
u +

∗  1
( , )

i n
u x t +  

32.655313 7.389056 

32.658250 7.381671 

32.661122 7.374293 

32.663928 7.366922 

32.666669 7.359559 

32.669345 7.352203 

32.671955 7.344854 

32.674500 7.337513 

32.676980 7.330179 

32.679394 7.389056 

1.038252RMSE = , shows that there is a divergence between the solutions for 
the case of the Crank-Nicolson scheme, thus the analysis of the result point of 
view proof that the exact and numerical solutions are totally divergence as 
shown in the Figure 1. 

 

Figure 1. Numerical Solution Using 

11, 1, 1, 6, 0.001M N t c K h= = ∆ = = = =  and 0.5θ = . 

Table 2. For 11, 0.05, 781, 10000, 0.1M N t c K h= = ∆ = = = =  and 

0.5θ = . 

1n
u +

∗  1
( , )

i n
u x t +  

1.122037 1.105171 

1.003573 1.000000 

0.908058 0.904837 

0.821645 0.818731 

0.743455 0.740818 

0.672706 0.670320 

0.608690 0.606531 

0.550765 0.548812 

0.498353 0.496585 

0.450928 0.449329 

0.001701RMSE = , shows that there is a convergence between the solutions 

for the case θ -scheme, thus it is clear that from (1, 2) the two curves are 
slightly not coincided from analysis of the result point as shown in the Figure  
2. 

 

Figure 2. Numerical Solution Using 

11, 0.05, 781, 10000, 0.1M N t c K h= = ∆ = = = =  and 0.5θ = . 

Table 3. For 11, 0.05, 781, 10000, 0.1M N t c K h= = ∆ = = = =  and 

0.4θ = . 

1n
u +

∗  1
( , )

i n
u x t +  

1.121413 1.105171 

1.006045 1.000000 

0.910298 0.904837 

0.823671 0.818731 

0.745289 0.740818 

0.674365 0.670320 

0.610191 0.606531 

0.552123 0.548812 

0.499582 0.496585 

0.452040 0.449329 

0.002155RMSE = , shows that there is a convergence between the solutions 

for the case θ -scheme, thus it is clear that from (1, 3) the two curves are 
slightly not coincided from analysis of the result point as shown in the Figure 
3. 

 

Figure 3. Numerical Solution Using 

11, 0.05, 781, 10000, 0.1M N t c K h= = ∆ = = = =  and 0.4θ = . 
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Figure 4. Numerical solution using 

11, 0.05, 781, 10000, 0.1M N t c K h= = ∆ = = = =  and 0.6θ = . 

Table 4. For 11, 0.05, 781, 10000, 0.1M N t c K h= = ∆ = = = =  and 0.6θ = . 

1n
u +

∗  1
( , )

i n
u x t +  

1.122663 1.105171 

1.001108 1.000000 

0.905824 0.904837 

0.819623 0.818731 

0.741626 0.740818 

0.671051 0.670320 

0.607192 0.606531 

0.549410 0.548812 

0.497127 0.496585 

0.449818 0.449329 

0.001471RMSE = , shows that there is a convergence between the solutions for 

the case θ -scheme, thus it is clear that from (1, 2) the two curves are slightly 
not coincided from analysis of the result point as shown in the Figure 4. 

6. Conclusion 

The main purpose of this study has been to seek the 
numerical solution of a parabolic partial differential equation 
more precisely the linear heat equation. Such a study being 
motivated by the fact that many contemporary studies of the 
resolution of partial differential equations are focused on the 
mesh method, we firstly sought an exact solution, secondly the 
problem was set to Cauchy problem, finally the mixed-scheme 
and RBF collocation method was used to solve numerically 
the problem and the results was compared to the exaction. The 
tests problems 2, 3 and 4 given respectively in tables 2, 3 and 4, 
shown that the solution converge and diverge in the test 
problem 1. 
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