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Abstract: First, we prove a theorem on the integral representation of functions of three variables at the middle of a domain in
S. L. Sobolev space with a dominant mixed derivative on a three-dimensional parallelepiped. Further, an integral representation
of periodic functions of three variables is given at the middle of the domain in the space of S. L. Sobolev with a dominant mixed
derivative. A theorem is also given on the integral representation of homogeneous functions of three variables at the middle of a
domain in S. L. Sobolev with a dominant mixed derivative. In addition, a theorem is given on the integral representation of odd
functions of three variables at the middle of a domain in S. L. Sobolev with a dominant mixed derivative. Next, we present a
theorem on the integral representation of even functions of three variables at the middle of a domain in S. L. Sobolev with a
dominant mixed derivative. The above theorems are directly applicable to the qualitative theory of differential equations. In this
article, in the most general form, an integral representation of functions of several variables at the middle of a domain in S. L.
Sobolev with a dominant mixed derivative on a multidimensional parallelepiped. In this article, such an integral representation of
functions in Sobolev space is used to study a boundary value problem in the middle of a domain for the Bianchi
integro-differential equation, which is a class of dominating mixed differential equations. For the Bianchi integro-differential
equation, the boundary value problem in the middle of the domain in the classical form is reduced to a nonclassical boundary
value problem. In this setting, no additional conditions such as matching are required. Then the non-classical boundary value
problem posed in the middle of the region is reduced to an operator equation. With the method of integral representations of
functions for the boundary value problem, an equivalent integral equation is constructed. Using this integral equation, we prove
the homeomorphism theorem. By definition, this theorem is demonstrated by the correct solvability of the considered boundary
value problem in the middle of the domain.

Keywords: Integral Representation of Functions, S. L. Sobolev Space, Periodic Function, Homogeneous Function,
0Odd Function, Even Function, Function with Many Variables, Boundary Value Problem

. iven by any analytic expression. In Euler's time, a function
1. Introduction given bil/ dityferenty equatipons in different parts of an interval
was not considered a "real" function. Already in 1822, the
French mathematician Fourier actually used the most
general concept of a function in his research, but did not
clearly define this concept. The modern definition of a
numerical function was given independently by the Russian
mathematician N. 1. Lobachevsky in 1834 and the German
mathematician L. Dirichlet in 1837. The main idea of both
sides is that: in the concept of a function, it does not matter

Currently, the teaching part of the differential and integral
calculus of mathematics is called mathematical analysis. The
systematic doctrine of differential calculus was developed by
the German mathematician and philosopher G. Leibniz
(1646-1716) and the English mathematician and founder of
modern mathematical science 1. Newton (1643-1727).

The term "function" was first used by Leibniz. But for a
long time, this name was understood only as functions
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by what rule a certain value f(x) is assigned to each

number X, only the definition of that correspondence is
important. The definition of a function with an arbitrary
domain of definition and an arbitrary set of values (which
may not be numeric), as well as modern terminology and
notation, were actually given as recently as the first half of
the 20th century.

In the mathematical literature, integral representations of
functions from type spaces (from Sobolev spaces with
dominant mixed derivatives of a general form) are studied in
the works of T. I. Amanov [1], S. S. Akhiev [2], O. V. Besov,
V. P. Ilyin and S. M. Nikol’skii [3], A. J. Jabrailov [4], P. L.
Lizorkin and S. M. Nikol’skii [5], I. G. Mamedov [8], A. M.
Najafov [9], S. M. Nikol’skii [10] and others. In this paper,
one integral representation of a function in the space of S. L.
Sobolev is found. This formula in a sense generalizes the
Newton-Leibniz formula. The result obtained can be applied
in problems of the qualitative theory of partial differential
equations. Such an integral representation for functions of
several variables in S. L. Sobolev spaces was applied in a
boundary value problem for one class of 3D Bianchi
integro-differential equations.

2. Formulation of the Problem
Let G=G; %G, xGy
Gz =(J’0sJ/1)s G3 = (ZOsZI);
Sobolev  W""(G)={ u0L,(G)/ D} D] DfuDIL, (G);

G =(x5,%),

Consider the spaces of S. L.

where

i, j,k=0,1}, where 1< p<o Norm in space W,ﬁl‘l’l)(G)

we will define the equality

"D/ DFu

z

g

||W<lll)(G) ‘L (G)
i,j,k=0

2.1. Integral Representation of Three-Dimensional
Functions in Sobolev Space with a Dominant Mixed
Derivative

Theorem 1. If u(x,y,z)0 Wél’l‘l) (G), then the function

u(x,y,z) can be represented as

x ¥y
+ + + +
u(rp2) a0 DI B IE o [y @ 070 B g [, (O g 2 g
Xptx; Yoty
2 2
I X tx J’O"‘J’l toT Zpt7 T Xo Tx
+ J. uz( 2 7’7)dl7+ J. J. uxy(Tvgrz )de{'F J‘ J‘ uyz —’E’”)d{d”*-
2tz Xotx Yotn Yot 2%z
2 2 2 2 2

o] [we

Xotx Zptz

Yot n
2

Xotx; Yoty zptz
2 2 2 2 2

Proof. From the Newton-Leibniz formula it is clear that

,n)drdf7+j T juxyz(r,f,n)drdc‘dn

X
Yotn zptz J‘ Yoty zptz Xy Yotn zotz
u(x,——,—) = u (r,—/—/—,——)dr+u ,
75 2 ) ) (7 y e 2 2 ) 1
XoTX
2
y
Xo*x zgtz J' X +x1 y0+J’1 Zy tz
u s Vo - u d 4
> y 5 ) y( 5 Cr )Cr ( 5 > ), )
Yotn
2
XotX Yoty j‘ X tX yo YO"‘Yl 2yt 2z
— ., ,Z)= uz -~ 5 d + s
2 2 ) ( 2 L 2 2 ), 3)
zytz
2
Now we calculate the following double integral:
i r h zytz + zytz
[ ] wy@e® aras= | [u;r,y, e 1)}&:
Xotx Yoty Xo+x

2 2 2
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Zy t 7 Xo tx Zy tz Yot Zptz Xo+tx Yotn 2otz
=u(x, y, -u , Vs —u(x, s +u > >
(yz)(zyz)(zz)(222
Hence we get that
x oy
Zp t 2z J‘ J‘ Zp t 2z Yoty ztz Xotx Zptz
u(x, y, = u_ (7,¢, drd & +u(x, , +u . Vs -
(yz)+y+yxy(t;‘2)5(2 2)(23/2)
XX Yo
PR 4)
_u(xo"'xl’J’o"'J’l’Zo"'Zl)
2 2 2
Similarly, we find:
y z
Xo tx _ J' J‘ Xo tx XotXx zptz Xotx; Yoty
u LV, 2) = u, (——,émdédn +u Y, +u , ,Z)—
(2y) y2<‘/7)€/7(2y2)(2 2)
Yoty z20tz
2 2
Xotx Yoty ztz
—u b b 2 5
( 2 3 3 ) (5)
Yoty | _ jC' j‘ Yot Yot zptz Xo X Yot
u(x,———,z) = u,. (T, , rdn +u(x, , +u , ,Z)—
( 5 )HXHZ,C( 2/7)0’/7( 5 2)(2 5 )
021 021 (6)
Xy + X + +
_u(o 1’yo yI’ZO Zl)'
2 2 2
Calculating the integral
x y z
_[ _[ _[ Usyz (7. ¢,mdrdédn and given the expressions (1)-(6), we get:
XotX Yoty Ztz
2 2 2
x y z x y ZO+ZI
[ ] | wewenaragan= [ [ |u,@.&2-u, @622 arae=
e e

p + + + +
= [ |u@ro-u @2 u @y A v @ A 2 ar =
: ST : 2 : 2 2
X tx
2
Xo t X

txo oyt Zptz

+
=u(x,,2) Uy ) (e 2 2 (T 2 ) (2 ¢
Xotx o zptz Yoty ztz Xotx Yoty ztz
tu A +u(x, ) —u ) , =
( PR ) +u( 5 5 ) —u( 2 2 2 )
Xo+x Yoty ztz Yoty 2tz Xotx zptz
=u(x,y,z)—u s s +u(x, , +u A +
(x, y,2) ~u( 2 2 2 ) +u( 2 2 ) +u( 2 2 )
Xo tXx; Yoty T T zytz Xo tx zy tz
ot X Yot 0 %2 0 tX 0%
L 2 - [, @6 drdE P -
2 2 2 2 2
Xotx Yotn
2 2
y z
Yoty Zotz Xo+tx Yotn ztz Yo X
e, P F T (R A DA [ (L Epdédn -
2 2 2 2 2 2
Yoty zptz

2 2
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Xotx zptz Xo tx J’o"'J’l +x1 J’o"'J’l Zo tz
—u 5 Vs —u ,z)+ s -
( L) ) —u( 2 ) ( 2 2 )
[ Yo N Yotn 2z tz Xo+tx Yoty
- u,_ (T, mdrdn —u(x, s -u R ,z)+
jjm(zn)n(zz)(zz)
Xotx zp*+z)
2 2
Xo+rXx Yot Zo+21 X y0+y1 2otz
+u N u(x, y,z)+2u R -
( 5 5 5 ) =u(x,y,2) ( > 5 5 )
Yoty zZotz Xotx o zptz Xo ¥ X Yotn
_u x’ 9 _u b b _u bl b -
( 2 2 ) —u( L) ) —u( 2 2 z)
T y zytz
- [ | w@e 2 drae-
Xotx Yotn 2
2 2
y z X+ x X z y y
- [ [ e amagan- [ [ w2 pdrn =
Yo +y1 Zy +z1 Xo +)cl E +z]
2 2 2 2
X y X V4
=ura- [ u,@e 2 arae~ [ [ u. @2 pyardn-
Xo+x Yo+ Xotx Zptz
2 2 2 2
X J/o T Zptz
j j u,, (U EmydEdn + 2u( A
Yoty zptz
2 2
X
+ zytz Xy tXx + Zytz
_J’M(T’yo yl’O l)dT—u(O 1’J’o J’l’o 1)_
VT 2 2 2 2 2

2
y
Xo T X Zy tz Xotx Yotnm zptz
- u ,<, dé-u , , -
{ B e

2
r +
Xo TX yo
- [

o TX Yotn Zptz
9 b d 9 9 =
2 L. mdn - ( 2 2 3 )
Zptz
2
x y
+ + + +
=u(x, y,2) - J‘ ux(r’yozh’zo Zl)dr— .[ uy(xole’f’zo Zl)df—
Xo X Yoty
2 2
¢ X +x Y +y +z
- [ u (S S - I j ty (1,6, 70270 TdE -
Zy+z Xotx Yoty
2 2 2
y z X z
Xg +x Yoty Xo+tx, Yoty zptz
- | [ we@ P amagan= [ [ ua@ 22 pdran a2 0 A,
2 2 2 2
Yoty Zotz Xo+x Zp*z
2 2 2 2

Hence we have:
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X ¥
Xy T X + + + + Xy T X +
07X Vo™ 2o Zl)+ J‘ u(T’)’o N % Zl)dz_+ J‘ uy(o I,E,Zozzl)d<‘+

u(x7 y’ Z) = u( 2 b 2 b 2 2 b 2 2
Yot Yoty
2
¢ + +
+ J- uz(x0—2xl’y0 Y1 ’”)d,7+ .[ J- uxy(r E 0 )dz'df+ .[ .[ uyz E/])d{d/7+ (7)
ZO+Zl Xo*tX% Yoty Yotn 2tz
2 2 2 2

] wxr°;”,den+f ] jz%An&mdm&M-

Xo+x; Yoty zptz

Xo+x Zptzy +Zl
2 2 2

2

The theorem has been proven.

3
It is obvious that if Gg = (xg,hg), $= = |_| Gg and u(x;,x,,x3)0 W,E“’” (G), then formula (7) can be written in

the following compact form

0 3 X
+h X +h, x)+h
LR Th BT,
(3, %) T u( §)j . dm+
2 2 i=1 0+ X /_: j¢1 Xi=q
2
X; X; X ) X5 3
0%u u
+§ I, dada; + _ |‘| das.
Ox;0x; o e o / 3 E=ag 213
i<j 0 0 iV x - KELJXZ0  =q 0 0 0 =l
<] x)+h, X0+h; 7o TkE A XDy XS +hy x5 +h |_| Ox ¢=
2 2

u(x; +1y,x, +1,,%; +T 3) =u(x;,x,,x3), those. function u

2.2. Integral Representation of Periodic Functions in —
is periodic with period 7; relative to variable x;, j =1,3, then

Sobolev Space with Dominant Mixed Derivative
function u(x;,x,,%;) can be presented in the form

Theorem 2. If u(x,x,,x;)0 Wél’l’l)(G) and, besides,

3 +
XXk X +h, XD +h Oou
S B W B T T
u(xy, %5, %5) = u( , —/ da; +
1572543 2 2 d x)+h; i
=10 Yix, = SR,
N
X, 4T Xj+r; 62 x 41 x, +T) x, 4T, 63 3
u u
+z .[ J- ~—— - o da;da; + J- .[ .[ 3—/X _ da;.
i<j 0 0 axiaxj X =R kR X =0,  —g aees e
) x4y X0+, k= i XDl xRy X3 +h |_| O =
2 22 2 | LY

2.3. Integral Representation of Homogeneous Functions in i=1,_3, then function u(x;,X,,X;) can be presented in the

Sobolev Space with Dominant Mixed Derivative form

Theorem 3. If u(x,x,,x;)0 Wél’l’l)(G) and, besides,

u(txy, xy,06) = t%u(x,, x,,x3) for tOR, | those. function
relative to variable Xx;,

(X, Xy, %3) = —
t

U is homogeneous with order &
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1x;
xlo +h xg +h, X+, 3 ou
u( > s + N 0 a’,. +
2 2 2 i= axi X :x/+h J#LX;
=1, i =a
2
1x; x;
0%u
> / dada; +

hl
<7 e e, axiaxj Xp= 2 KELj = o=,

2 2

x, 29 x.

1 2 3
0u
T fee
3 <‘ =ag.&=13
A +hy X+ 33 +”3 I_l ax{

2 2

Theorem 4. If u(x;,x,,x;)0 W,ﬁl’l’l)(G) and, besides,

2.4. Integral Representation of Odd Functions in Sobolev
u(=x;,=%,,=x3) = —u(x, x,,x3) , those. function odd in each

Space with Dominating Mixed Derivative
variable, then function u(x;,x,,X;) can be presented in the

Now suppose that the area G symmetrical. Then it is

obvious that the origin of coordinates is included in G. form
X+ x)+h X +h3 S| ou
u(xy, x5, %3) = u( , , ) - Z .[ 67/ o da, -
2 2 =, | O =
2
X Y 2 X TX, X
> j ou , da,da.—j .[ j a Hdag
0x,-0x- X :M,kﬁ',/}x:a L J f ag.£=13
i<j v”+h x) +h TTk= R "1 +hl Xz+h'> v; +h3 ax{
2 2
, A u(=xp, =%y, =X3) :”(xlaxzsxz) those. functi i h
2.5. Integral Representation of Even Functions in Sobolev » thoSE. Tunction even 1n €ac
Space with Dominating Mixed Derivative variable, then the function (X1, %3, %3) can be presented in
O (G the form
Theorem 5. If u(x, %y, %3) U p and,
0 3N
Xtk XDtk x2 +h3 Ou
u(x;, Xy, %3) = u( s —/ da; +
' : ’ 2 2 gl x0+ axt x/ :Xj‘;h] J#i, X,g !

-xoTx, X

Pu
. I I . dada; + I I '[ da
> 6x ax x M,kvti,j,x‘:a o Y 3 g ag.¢=13 ¢
ISP +h x)+h Ll VAL iy X3 +hy x3+h3 I_l 6x5
T2 T 2 2

2.6. Integral Representation of Functions of Several Variables in Sobolev Space with Dominating Mixed Derivative
Now suppose that G; = (X}, h),i =1,n, G= ” G,.

Theorem 6. If u(x;,x,,...,x,) 1 ngl‘l """ Y(G), then function #(x,%,,...,x,) can be presented in the form
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0 0 0 n N
X, th ox) +h x, +h, N Ou o+
R o a
. i
=1 7»,0‘”71 i v/— JELX =g
2
X X;
‘ 0%u
+Z Ox.0 / X0 +h daida/+
— IX;0X ; KTk
l</xi07+hix(j);h/‘ i) X e 2 k#t/x—a 5 =a,
2 2
X
i 3
+ +..+
S i P
i <iy <’zx +h xU +h xU +h xz = 2 ,/7515,{:1,3,):,_{ =ai{ =
3
2 2 2 &=

®)

anl
¥ da +
A
=L j#i, &=ln-lx, =a, | &=
i %

j <i <.< 0 X, =
Lt i x +h, )c2+h2 N 1 ax J 2
2 2 2

% % A n
S [] .
3
x]U+h] x3+h2 x2+h” ¢=

2 2 2 | e

3. Integral Representations of a Function in the S. L. Sobolev Space and Their
Application

Formula (8) has a general form. Note that with the help of this formula, the classical boundary value problem in the middle of
the domain is reduced to a new type of boundary value problem [6, 7].

3.1. Boundary-Value Problem in the Non-Classical Interpretation of a Domain Given in the Middle
Consider the 3D Bianchi integro-differential equation
)X, ¥, 2) Sy, (X, 3, 2) + Ay g gu(X, v, 2) + A4 g gu, (%, ,2) +
Ay 10Uy (X, 3, 2) ¥ Ay o qu, (X, 9, 2) + Ay gy, (X, 9, 2) + Ay gy, (X, 9, 2) +

X y zZ
4 oty (X, y,2) + I I j [KO’O’O(T,E,n;x,y,z)u(r,f,n)+K1’0’0(T,{,/7;x,y,z)><
Xotx Yoty Zptz
2 2 2

Xux (Ta {7,7) +K0,l,0 (Ta 5,’7;)@ y,Z)”y (Ta 57’7) +K0,0,l (Ta {7,79 X, ), Z)x
XuZ (Ta 55,7) +K1,1,0(T7 5,’7;)@ Yy, Z)ny (Ta 59’7 +K0,l,l (Ta {7,79 X, Y, Z)x

Xuyz (Ta {7,7) +K1,0,1 (Ta 5,’7;)@ y,Z)”xz (Ta 57’7)] drdgd” = ﬂ,l,l (X, ya Z)a (X, y7 Z) D G

©

Equation (9) is a hyperbolic equation that has three real
. . simple characteristics. This equation arises, for example,
G A jx =44 (%.7.2) given measurable functions on Whepn studying the issues of fslluid filtration in media \sith

G=GxG, %G5, tne Gy = (x5, %), G, = (o) porosity, moisture transfer in soils, propagation of pulsed ray
waves, modeling various biological processes of phenomena,
G as well as in the theory of inverse problems.

) In addition, the Riemann function of Eq. (9) has been

Here u=u(x,y,z) desired function defined on

Gy =(29,21);  #11(x,»,2) given measurable function on
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constructed in the literature see for example [11-19], so far
only for the case when

K x(T,6,1:%,,2) and functions 4 ;4 (X,¥,2) are
sufficiently smooth /i. e. when functions

4k (X, 9,2) continuous with derivatives
D, D) D! 4 ;,(x,y,2) inarea G/.
The Dirichlet and Neumann problems for partial

differential equations with nonsmooth coefficients are studied
in the works [20-22].
In this paper, equation (9) is studied for the first time in the

general case when the coefficients 4 (x,¥,2Z) and

K; ;4 (T,6,17;%,9,2) are nonsmooth functions satisfying
only the following conditions:

Ay 0,0 (x,y,2)UL,(G),

A00 (5 1,V LS, (G),
Aoo(x, ¥, 2) DL, (G),
Ay (x,y,2)UL ypzoo(G)
A0 (x, 3, 2) DL, (G,

A011(x »,z)UL }oozoo(G)
1,0,1 (xﬂ Y Z) D L)t:o’,y;;,zoo (G)a

Ki,j,k (Ts {7,7) X, Y, Z)

Under these conditions, the solution u#(x,y,z) we will
look for equations (9) in the space of S. L. Sobolev
w0 (G)={ u0L,(G)/ DL D] DEuDL, (G);
i, j,k=0,1}

where 1< p<_ Norm in space """ (G) we will define

the equality

D’Dk

Iz :

"W“ WG = ‘L (G)

i,j,k=0

For equation (9), the conditions at the middle of the domain
of the classical form can be specified in the form

u/ _X0+X1 :CD()’sZ)a
N
ul ey =W 2), (10)
2
u/Z:ZO+Zl :g(xay)a
2

where @(y,z), W(x,z) and g(x,y) given measurable
functions on G . Obviously, in the case of conditions (10) the
functions P, W, g , in addition to the conditions

eOWM (G, xGy),  WOW (G xGy),  gOW™ (G xG,),

must also satisfy the following conditions:

+x
o -l lh )
2
+z X, + X
o ,0 1y = 0 1’ ’ 1
6% 5 ) =g( 5 ») (11)
zytz Yot
Yix ,—)=gx ,—),
( 2 ) =g( 2 )

which are terms of agreement.

The presence of agreement conditions in the formulation of
problem (9), (10) means that conditions (11) also specify some
redundant information about the solution of this problem.
Therefore, the question arises of finding boundary conditions
that do not contain redundant information about the solution
and do not require the fulfillment of some additional
conditions such as agreement.

In this regard, consider the following boundary conditions
Vo oot Eu(xo tx 2o ) fo +Zl

” 2 2
Yot Zo

2

)=® 0.0

N0,0)(x) Eu, (x,———— ) A o,0(x),

+
(Vo1,00)(¥) Euy, (x0 ol Vs Lt )= B0,

xl yo

(Vo.01u)(2) = u( L,7)= Boi1(2),  (12)

2

+z
(Vl,l,Ou)(x7 y) = uxy ()C, Vs &l ) : ) = ¢I,1,0 (xa y)a

Xy tx
Vo), 2) Sy, ( e ) @11y, 2),

Lzo)= Ao (x,2),

(Vl 0, lu)(x Z) Uy, (x

where @0 LR is a given number, and the rest @ ; are
given functions that satisfy the conditions:

Boo(X)UL,(G)), B01(2)TL,(G3), @10(V)DTL,(G,),
Ao UL, (G XGy), @11 (v, 2)UL, (G, XG3), @, (x,2) UL, (G XGC3).
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If the function u O Wp(l’l’l) (G) is a solution to a problem with conditions in the middle of a domain of the classical form (9),

(10), then it is also a solution to problem (9), (12) for & ;« defined by the following equalities

Yoty 2otz

Xg T X

=Pp(—— =y
BR.00 ( 5 T o ) [ >

2

Boo(x) =W, [x ,

¢I,1,0 (xﬂ y) = gxy ('x’y )9
%,1,1 (y’ Z) = (Dyz(y s Z )’
Aol (x,z)=W,_ (x ,Z ),

It is easy to prove that the converse is also true. In other words,

tz Yo
‘x b b
2 j g, ( > )

)s

otz |- XotX Yoty
T2 2 72

0

X, T X P A
%,I,O(y):gy( 0 lay ):q)y(ya 0 1)’
2 2
Yoty Xg T X
%,0,1(Z)=¢z(%,2 )=, (%,Z ], (13)

if the function u O W,EI‘I’I) (G) isasolution to problem (9), (12),

then it is also a solution to problem (9), (10), for the following functions ®,W, g:

Note that, in this case, functions (14) have one important
property, related to the fact that for them the matching

conditions (11) are satisfied automatically for all & ;i ,
having the above properties having the above properties.

@ (y,z)OWM (G, xGy),
W (x,z) DG xGy),
g(x,y)OW (G xGy),

satisfying the matching conditions (11).

Thus, problems with conditions in the middle of the region
of the classical form (9), (10) and of the form (9), (12) are
equivalent in the general case. However, problem (9),

(9) (12) is more natural in formulation than problem (9),
(10). This is due to the fact that in the formulation of problem

),

y z y z
0.2 = oot [ BB+ [ @uwdy+ [ [ @uBydpdy.
Yot 0tz Yoth Zotn
2 2 2 2
V)= @oot | deo@dat [ @omdy+ [ | au@pdady, (14)
xo+xl zo+zl x0+x] zU+z]
2 2 2 2
x Y X y
g =Roo* | Goo@da+ | @B+ [ | @@ pdads
Xotx Yotn XotX Yoty
2 2 2 2

(12) on the right-hand sides of the boundary conditions, no
additional conditions of the matching type are required.

Therefore, problem (9), (12) can be considered as a problem
with conditions in the middle of a new type of domain.

3.2. Operator View of a Boundary Value Problem Given in
the Middle of a Domain

Problem (9), (12) we will study by the method of operator
equations. We first write problem (9), (12) as an operator
equation

Vu =g, (15)

where V' is a vector operator defined by the equality
= . LL1 LL1
V= (VE),O,O’ I/i,O,O= I/E),1,0= VO,O,I > I/i,l,O’ I/E),l,l > I/i,O,l s I/i,l,l) . VVg() )(G) - E; )

and @ there is a given vector element of the form
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O=(B.0.0-B0.0-B1.0- %015 A0 B11>Ro1-Ar1) out of

space

EQM = Rx L, (x, %)% L, (39, ¥) %L, (20, 2) XL, (G xGy)*x L, (G, XG3)x L, (G, XG3)x L, (G).

Note that in space E(pl’l’l) we will define the norm in a natural way, using the equality

= Hlavol, o 180l o, Hloal, oy * Aol +a *loa] *aul, -
||¢||E(pl,l,l) "%,O,OHR D00 L (vg1) B0 L, (o) 0,1 L () A0 L,(GxGy) @11 L, (G,%Gy) Ao.1 L,(GxGy) A1 L,(6)

To study the boundary value problem (9),(12), we will use the integral representation from (7), according to which any

function u(x,y,z)0 Wp(l’l’l) (G) uniquely representable in the form

y z

u(x,3.2) = (OB 1.2) Zbygo + [ bgg@da+ [ by BB+ [ bygu(ndy+

Xo™h

2

X v y z

Yot N 2otz
2 2

X z

+ I I bio(a, Bdad B+ I I bosy (B, y)dBdy+ I I b, (@, pdady+

Jotn Yoty Yotn zo*a otn Zo*a
2 2 2 2 2 2
X y z
[ [ [ btu@Bydadpay a6

Xotx Yoty Zotz

2 2 2

through a single element

— (LL1)
b= (89,0,0561,0,0500.1,0520,0.1P1,1,0> 5011581015 D111 U Ep :

There are positive constants M, and M} such that

MY "b"E(pl.m s "Qb)(x,y, Z)”W,gl.l.n(G) <M; "b"E(me > forany 60 E([:’l’l)

It is obvious that the operator 0 :ES™) - w " (G) isa
linear bounded operator. Inequality (17) shows that the
operator O also has a bounded inverse operator defined on

the space W ""(G) . Hence the operator QO is a
11

E, and
W;I’l’l)(G) . Therefore, the solution of equation (15) is

equivalent to the solution of the equation

Vob =g,

homeomorphism between Banach spaces

(18)

Equation (18) will be called the canonical form of equation

(15).

In addition, formula (16) shows that any function
ud Wlfl’“) (G) has traces:

NG 0t 2t WP pta, Nt %t
9 b 9uxx’ 9 b 9
Uy Ty T Iy

Nt XNt R XX Dth
ul——, VU \———,V,Z hu,lx,
( S5 2 it 5 Y bt (

JZ)

7Z 7u)9}(x ’y 2

and the operations of taking these traces are continuous from
W (G) B R,

(17)

L,(%0>%) L, 001 L, (20,2 Ly (G XGy), Ly (G XGy), L, (G X G)

respectively.
Further, for these traces, the equalities are also valid:

Xo X Yoty Zotz
u 5 5 :b 5
2 2 2 ) =by0.0
YotV zotz
Uy (x,%,%) =by (%),
Xy T X, zytz
uy( 02 l:y ’ 02 1)=b0,1,0(y)7
XgtXx; Yoty
u (S T2 ) Sl (2),
zZy tz
uxy (x:y :%) :bl,l,O(x: y)7
Xy X
Uy, (=, 2 ) = by (3, 2),
+
w62 2y = (v, 2),

2
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3.3. Equivalent Integral Equation for a Boundary Value representation (7) of the functions u OW """ (G). Formula
Problem (7) shows that the function that satisfies conditions (12) has
the form:

We will study problem (9), (12) using the integral

X N 2
uc =g @rar [ [ [ w.@ByR(@Byxy.)dadpdy

Xotx Yot n Zotz

2 2 2
where
x y z
Q1) = oot | Boo@da+ [ @uBdp+ [ @+
Xotx Yotn Zptz
2 2 2
X y y z X z
[ | aw@pdadpr [ [ guBydpdy [ [ qoi@pdady
Fotn yotn Yoty 2otz Xty Zotz
2 2 2 2 2 2
and
Ry(a,B.V;x,y,2) =0(x—a)0(y = B)O(z - y),
1,z>0
6(z) where is the Heaviside function on R ,itc é(z)= 0.2< O.Then after replacing
,Z <

u=g,+u, where

Rl ol Z
icy= [ [ | R(@ByxyaU,. (@ By)dadpdy.

Xotx Yoty 2otz
2 2 2

equation (9) can be written as
(I/i,l,lﬁ)(xayaz) :2(xayaz)a (19)

where Z=¢,, 1,180 -
It is obvious that the derivative functions # can be calculated using the equalities

y z
i,z [ [ weBydBay.
Yotn zptz
2 2

X z

i,0= [ [ ug@ypdady,

Yot Zptz)

2 2
X y
i,z [ [ w.(@B2dadp,
Xo+x Yoty
2 2

iy (322 [ . (e, dy,
Zotz
2



69 Ilgar Gurbat Mamedov and Aynura Jabbar Abdullayeva: Integral Representations of a Function in the S. L. Sobolev

Space and Their Application to Boundary Problems

X

i (32 = [ ug(@r.2)da,
Xotx
2

y
(00,22 [ (6 B.2)dB,
Yot
2

ﬁxyz (xa ) Z) = uxyz (x5 s Z)'

Now we consider the dominant derivative as an unknown function,

in other words, we make the change
Uy, (X, ¥,2) =b(x,y,2). Then equation (9) can be written as:

X y z
W) 32 =b 2+ [ [ [ dpo(en R (@ Buyixy (@, Byydad fdy +

Xotx yoty zptz

2 2 2
y z X z
s [ Apterobe BpdBdy [ [ dyeey.2biay, ydady+
Yoty zotz Yotx zptz
2 2

2 2

X y z X

[ ] prop@pBadadBr [ a,00n by pdy+ [ g, (k@ 2da+
Xo+x; Yo+

Zgtz
2 2

Xotx
2

2

+ f 1‘11,0,1(?C»)’aZ)b(X,[S’aZ)dﬁ‘"ji j' j j j i’[Ko,o,o(T,f,ﬂ;X,y,Z)Ro(O',ﬁ,V;x,y,Z)x

Yoty YotX Yoty zotz | Xotx Yoty 2tz
2 2 2 2 2 2 2
é n
xb(@. Bydadfdy+ | [ Koo @ &y 2. B.y)d Bdy+
Yoty zotz
2 2

T T

n
+ [ ] Keo@émyyab@ & pdady+ |

Xotx Zp*z

4
.[ KO,O,I (Ta 57,7’ X5 Vs Z)b(aa B’”)X

Xo*u Yoty

2 2 2 2
7 r
xdadf+ | K@ ERx @ ENdy+ [ Koy @&y, ab@ énda+
2*a o+
2 2

U
+ .[ Kl,O,l(Tafan;xayaz))b(raﬂa”)dﬁ deEdU:Z(xay,Z)s (xayaz)DGs (20)
Yotn

2

Operator N equation (20) is linear. Using the conditions

has the only solution u [J ng’l‘l) (G) such that
imposed on the coefficients 4; ;« , one can prove that this

operator is a bounded operator from L,(G) B L,(G) "”"W;LLD(G) =M, |M|E<pl.1.1>,
I<Sp<o,

Definition. If  problem (9) (12) for any then we will say that the operator ' problem (9), (12) (or
P=(B00-Boo0 D10 Bots@ro>B ’ Aoso @) DECLD equation (15)) is a homeomorphism from
SOOI L0 L T T i w D (G) on or problem (9), (12) is everywhere correctly
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solvable. Here constant independent of.

Obviously, if the operator problem (9), (12) is a
homeomorphism from in, then there is a bounded inverse
operator.

The operator is a Volterra operator with respect to a point.
This means that if the functions in area satisfy the condition,
then the condition for almost everyone, where arbitrary point.

Using the Volterra property of the operator, using, for
example, method of successive approximations can be proved,
that equation (20) for any right-hand side has a unique solution,
where, and this solution satisfies the condition this solution
satisfies the condition, where constant independent of. Further,
it is obvious that if, To. In addition, if is a solution to equation
(20), then the solution to problem (9), (12) can be found using
the equality. Therefore

Theorem 7. The operator of problem (9), (12) is a
homeomorphism from and.

4. Conclusion

In this work, an integral representation is found for a
function of several variables in the space of S. L. Sobolev with
dominant mixed derivatives. The result obtained was applied
to study one boundary value problem in the middle of the
domain for the 3D Bianchi integro-differential equations.
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