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Abstract: This paper presents new formulary solutions for fourth degree polynomial equations in general forms, where we 

present four solutions for any fourth-degree equation with real coefficients, and thereby having the possibility to calculate the 

four roots of any quartic equation nearly simultaneously. In this paper, the used logic to determine the solutions of a fourth-

degree polynomial equation enables to deduce if the polynomial accepts complex roots with imaginary parts different from 

zero and how many of them there are. As a result, we are proposing six new theorems, where two among them are allowing to 

calculate the four roots nearly simultaneously for any fourth-degree polynomial equation in simple forms and complete forms, 

whereas the other four theorems are allowing to deduce the number of complex roots with imaginary parts different from zero 

before conducting further fetching for the values. Furthermore, the proposed formulas in this paper are building the ground to 

concretize precise solutions for polynomial equations with degrees higher than four while relying on radical expressions. Each 

proposed theorem in this paper is presented along with a detailed proof in a scaling manner starting from propositions based on 

precise formulas whereas building on progressive logic of calculation and deduction. Each formulary solution in proposed 

theorems is based on a distributed group of radical expressions designed to be neutralized when they are multiplied by each 

other, which allow the elimination of complexity while reducing degrees of terms. All presented theorems are developed 

according to a specific logic where we engineer the structure of solutions before forwarding calculations to express the precis 

formulas of roots.  

Keywords: Fourth Degree Polynomial, Nearly Simultaneous Calculations, New Four Solutions, New Theorems,  

Solving Quartic Equation 

 

1. Introduction 

Polynomial equations has been center of focus in research 

for centuries, where complexity of roots is dependent on 

degrees of polynomials and implicated coefficients, whereas 

defining one solution for a polynomial equation was always 

sufficient as a first step toward forwarding calculations and 

finding the rest of solutions. However, defining all the 

formulary roots for a polynomial equation in order to 

calculate them simultaneously or nearly simultaneously were 

never before a principal axe of concern. 

Solving ���  degree polynomial equations has been an 

enigmatic problem over hundreds of years, where many 

attempts concluded to the impossibility of elaborating 

universal solution formulas for polynomial equations with 

degrees equal or higher than fifth degree by using radicals. 

However, finding breakthroughs is a living hope for 

mathematicians who seek to solve quantic equations and 

above by using radical expressions. 

Even though solving polynomial equations of fifth degree 

and higher by using radicals is center of focus, defining 

specific formulary solutions for fourth degree polynomial 

equations is still open to find different algebraic expressions, 

which may determine all four roots of any fourth degree 

polynomial in general form or bring different characteristics 

and new theorems. 
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This article presents the results of a research in mathematic 

science, where we present four formulary solutions for any 

fourth degree polynomial equation in general form with real 

coefficients. We attack the problem of solving polynomial 

equations of ��� degree, where (� = 4), with a clear manner 

by using extendable logic, which enables us to elaborate 

different new theorems. 

This paper is an introduction of a large research in 

mathematics to solve ��� degree polynomial equations with 

new direct concepts and methods basing on projecting the 

presented work in this paper on other polynomial equations 

with degrees higher than four, which will be presented in 

other articles. 

Lodovico Ferrari is attributed the credit of discovering a 

principal solution for fourth degree polynomial equation in 

1540, but since his root expression required having a solution 

for cubic equation, which wasn’t published yet by Gerolamo 

Cardano, Lodovico Ferrari couldn’t publish his discovery 

immediately. Ferrari’s mentor, Gerolamo Cardano, in the 

book Ars Magna [1], published this discovered quartic 

solution along with the cubic solution. 

The discovered cubic solution by Cardano [2] for third 

degree equations under the form �� + 	� + 
 = 0 , helps 

Ferrari’s solution to solve quartic equations by reducing them 

from the fourth degree to the second degree, but it doesn’t 

directly help to properly define the four roots of any quartic 

equation. Cardano’s method was also the base to solve 

particular forms of ��� degree equations; such as by giving 

radical expressions under the form ��
 + √� + ��
 − √� 

for � = 2,3,4, …, etc. [3]. 

There are also other elaborated methods and proposed 

solutions for quartic equations such as Euler’s solution [4], 

Galois’s method [5], Descartes’s method [6], Lagrange’s 

method [7] and algebraic geometry [8]. 

Cubic solution was always essential as a base for further 

research to solve polynomial equations of fourth degree and 

above [9, 10], such as trying to prove that quantic equations 

do not accept quadratic expressions as solutions, which is 

discussed in [11-14]. 

A solution for third degree equation was first found in 

1515 by Scipione del Ferro (1465–1526), for some specific 

cases defined by the values of coefficients. However, the 

official form of cubic solution, which is recognized as the 

base of further historical research on solving quartic 

equations and other specific forms of polynomial equations, 

is the published solution by Cardano. 

There are also other recent research dedicated to solve 

quartic equations where the used methods are based on 

expression reduction [15, 17], whereas other research is 

relying on algorithms and numerical analysis to find the roots 

of polynomial equations with degrees higher than four [17, 

18]. 

The advantage of this paper is presenting, with details, the 

expressions of four new formulary solutions for any form of 

fourth degree polynomial equations with real coefficients, 

and thereby having the possibility to calculate the four roots 

of any quartic equation nearly simultaneously. The used logic 

of presented solutions in this paper offers the possibility to 

deduce, directly, if a polynomial equation accepts complex 

solutions with imaginary parts different from zero and how 

many of them there are. As a result, this paper presents six 

theorems on solving fourth degree polynomial equations in 

simple forms and complete forms. 

Furthermore, the presented results in this paper are the 

ground for an advanced work to solve polynomial equations 

of fifth degree [19] and sixth degree [20] in general forms by 

using radicals, which is enabled by reducing these equations 

to a quartic form. As a result, by using the proposed formulas 

in this paper, we are capable of solving polynomial equations 

higher than fourth degree. 

Because the content of this paper is original, and there are 

many new proposed formulas, mathematical expressions and 

theorems related in a scaling manner basing on extendable 

logic; every formula will be proved mathematically and used 

to build the rest of content, and we will go through them by 

logical analysis and deduction basing on structured 

development. 

This paper is structured as follow: Section 2 where we 

present new solutions and theorems for fourth degree 

polynomial equations in simple form, to solve these 

equations and predetermine if they accept roots with 

imaginary parts different from zero. Section 3, where we 

present new solutions and theorems for fourth degree 

polynomial equations in complete form, to solve these 

polynomial equations and predetermine how many solutions 

with imaginary parts different from zero they may accept. 

Finally, Section 4 for discussion. 

2. New Four Solutions for Fourth Degree 

Polynomial Equation in Simple Form 

This section presents new unified formulary solutions for 

fourth degree polynomial equations in simple form (eq.1) 

along with their proof. 

2.1. First Proposed Theorem 

In this subsection we propose a new theorem to solve 

fourth degree polynomial equations that may be presented as 

shown in (eq.1). 

The expressions of proposed solutions are dependent on 

the value of �. 

We are proposing four solutions for � < 0, four solutions 

for � > 0 and four solutions for � = 0. 

The proposed solutions for � < 0 , � > 0  and for � = 0 

are expressed by using ��,� in (eq.12), � in (eq.6), � in (eq.7) 

and (eq.8). 

The proof of this theorem is presented in an independent 

subsection, because it integrates long mathematical 

expressions. 

Theorem 1 

A fourth degree polynomial equation under the expression 

(eq.1), where coefficients belong to the group of numbers ℝ, 

has four solutions: 
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�� + ��� + �� + � = 0                           (1) 

If � < 0, and by using the expressions of ��,� in (eq.12), � 

in (eq.6) and � in (eq.7): 

Solution 1: ��,� in expression (eq.35); 

Solution 2: ��,� in expression (eq.36); 

Solution 3: ��,� in expression (eq.37); 

Solution 4: ��,� in expression (eq.38). 

If � > 0, and by using the expressions of ��,� in (eq.12), � 

in (eq.6) and � in (eq.8): 

Solution 1: ��,� in expression (eq.39); 

Solution 2: ��,� in expression (eq.40); 

Solution 3: ��,� in expression (eq.41); 

Solution 4: ��,� in expression (eq.42). 

If � = 0, and by using the expressions of ��,� in (eq.24) 

and � in (eq.6): 

Solution 1: ��,� in expression (eq.43); 

Solution 2: ��,� in expression (eq.44); 

Solution 3: ��,� in expression (eq.45); 

Solution 4: ��,� in expression (eq.46). 

2.2. Proof and Mathematical Expressions of Theorem 1 

To solve the polynomial equation (eq.1), we propose new 

expressions for the variable �; expressions (eq.2) and (eq.3): 

For � ≤ 0: � = ���  + √�� + √��               (2) 

For � ≥ 0: � = −��� − √�� − √��             (3) 

We propose the expressions (eq.4) and (eq.5) for �� and �� 

successively, in condition of �� ≠ 0. 

�� = − #$%&'� + ()#$%&'� *� − +$,�&'              (4) 

�� = − #$%&'� − ()#$%&'� *� − +$,�&'               (5) 

To reduce the expression of equation (eq.1) and find a way 

to solve it, we propose the following expressions for the 

coefficients � and �: 

−2 -���� + √��� + ���� . = �                (6) 

For � ≤ 0: −8���√��√�� = �                (7) 

For � ≥ 0: 8���√��√�� = �                (8) 

In the following calculation, we replace the variable � with 

the expression (eq.2), where we suppose � < 0: ��  + ���  + �� + � = −0����  + ���� + ����1 +20�������� + �������� + �������� 1 + �  
= − -����  + ���� + ����.�

+ 4 -�������� + ��������+ �������� . + � 
=  4 2− ��  3�2  + �� 4  + ��64��6  +  � − ��4 = 0 

−0����  + ���� + ����1� + 40��������  + �������� +�������� 1 + � = 0 ⇒ ��� + 8� ��� + 8$9�:�, �� − +$,� = 0  (9) 

To solve the resulted expression in (eq.9), we use Cardan’s 

solution for third degree polynomial equations. 
For ;� + �; + � = 0, Cardan's solution is as follow: 

; = (9+� + <3+�4� + 38�4�=  + (9+� − <3+�4� + 38�4�=    (10) 

For �� + ��� + �� + � = 0, we use the form � = 9>%?� , 

and we suppose D = 27� + 2�� − 9�� and C = 9� − 3�� to 

express the cubic solution as follow: 

� = 9>�  + �� (− D�  + <3D�4� + 3E�4�= + �� (− D� − <3D�4� + 3E�4�=
                                    (11) 

By using the expression (eq.11), the solutions of third degree polynomial equation expressed in (eq.9) are ��,�, ��,� 
�� ��,� 

where F = 8�, G; = 9�I+$9�8=%I�8:,�  and J ; = − �8$%�,:�, : 

��,� = 9K�  + �� (− L;�  + <3L;� 4� + 3M ;� 4�= + �� (− L;� − <3L;� 4� + 3M ;� 4�=
                                  (12) 

In condition of ��,� ≠  0 , ��,�  and ��,�  are expressed as 

shown in (eq.13) and (eq.14). 

��,� = − #$%&',N� + ()#$%&',N� *� − +$,�&',N          (13) 

��,� = − #$%&',N� − ()#$%&',N� *� − +$,�&',N        (14) 

We deduce that when �� takes the value ��,�, the value of ��,� is equal to the shown value of �� in (eq.4), and the value 

of ��,� is equal to the shown value of �� in (eq.5). 
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There are three other possible expressions for �  which 

respect the proposition −8���√��√�� = �  when � ≤  0 , 

and they give the same results of calculations toward having 

the shown third degree polynomial in (eq.9). Thereby, they 

give the same values for roots ��,�, ��,� and ��,�. These three 

expressions are � = −���  − √�� + √�� , � = −���  +√�� − √�� and � = ���  − √�� − √��. 

�� + ��� + �� + � = 0 OPQℎ � < 0          (15) 

As a result, there are four solutions for the polynomial 

equation form expressed in (eq.15), and they are as shown in 

(eq.16), (eq.17), (eq.18) and (eq.19). 

Solution 1: ��,� = ���,� + S− #$%&',N� + ()#$%&',N� *� − +$,�&',N  + S− #$%&',N� − ()#$%&',N� *� − +$,�&',N                     (16) 

Solution 2: ��,� = −���,� − S− #$%&',N� + ()#$%&',N� *� − +$,�&',N  + S− #$%&',N� − ()#$%&',N� *� − +$,�&',N                      (17) 

Solution 3: ��,� = −���,� + S− #$%&',N� + ()#$%&',N� *� − +$,�&',N − S− #$%&',N� − ()#$%&',N� *� − +$,�&',N                      (18) 

Solution 4: ��,� = ���,� − S− #$%&',N� + ()#$%&',N� *� − +$,�&',N − S− #$%&',N� − ()#$%&',N� *� − +$,�&',N                      (19) 

There are three other possible expressions for �  which 

respect the proposition 8���√��√�� = � when � ≥  0, and 

they give the same third degree polynomial shown in (eq.9) 

after calculations. These three expressions are � = −���  +√�� + √�� , � = ���  − √�� + √��  and � = ���  + √�� −
√��. 

As a result, the proposed solutions for fourth degree 

polynomial equation shown in (eq.1) when � > 0  are as 

expressed in (eq.20), (eq.21), (eq.22) and (eq.23). 

Solution 1: ��,� = −���,� − S− #$%&',N� + ()#$%&',N� *� − +$,�&',N − S− #$%&',N� − ()#$%&',N� *� − +$,�&',N                  (20) 

Solution 2: ��,� = −���,� + S− #$%&',N� + ()#$%&',N� *� − +$,�&',N + S− #$%&',N� − ()#$%&',N� *� − +$,�&',N                 (21) 

Solution 3: ��,� = ���,� − S− #$%&',N� + ()#$%&',N� *� − +$,�&',N + S− #$%&',N� − ()#$%&',N� *� − +$,�&',N                 (22) 

Solution 4: ��,� = ���,� + S− #$%&',N� + ()#$%&',N� *� − +$,�&',N − S− #$%&',N� − ()#$%&',N� *� − +$,�&',N                (23) 

Concerning d=0: 

The expression of ��,� is as shown in (eq.24) where F = 8�, G; = 9�8=%I�8:,�  and J ; = − �8$%�,:�, , whereas ��,� and ��,� are as 

shown in (eq.25) and (eq.26). 
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��,� = 9K�  + �� (− L;�  + <3L;� 4� + 3M ;� 4�= + �� (− L;� − <3L;� 4� + 3M ;� 4�=
                              (24) 

��,� = − #$%&',N� + ()#$%&',N� *� − +$,�&',N = 0 TU ��,� = − 38� + ��,�4                               (25) 

��,� = − #$%&',N� − ()#$%&',N� *� − +$,�&',N = − 38� + ��,�4  TU ��,� = 0                                (26) 

Because of having either of the expressions ��,� = 0  or ��,� = 0 , and having the intersection between the shown 

forms in (eq.7) and (eq.8) for d=0 (� = ���  + √�� +√�� WTU � ≤ 0 
�� � =  −���  − √��  − √�� WTU � ≥ 0 ); 

there are four solutions for the polynomial equation shown in 

(eq.1) when � = 0  and they are as expressed in (eq.27), 

(eq.28), (eq.29) and (eq.30). 

Solution 1: ��,� = ���,� + <− 38� + ��,�4        (27) 

Solution 2: ��,� = −���,� − <− 38� + ��,�4       (28) 

Solution 3: ��,� = −���,� + <− 38� + ��,�4        (29) 

Solution 4: ��,� = ���,� − <− 38� + ��,�4        (30) 

When we give the value ��,� in (eq.12) to ��, the values of ��,� in (eq.13) and ��,� in (eq.14) become equal to the shown 

values of �� in (eq.4) and �� in (eq.5) respectively. Thereby, 

even when we replace the value of ��,�in the expressions of 

proposed solutions by the values of ��,�or ��,�, the results are 

only redundancies of proposed solutions, because the used 

value of �  in these solutions is expressed as follows: 
8� =

−X���� + ���� + ����Y = −X���,�� + ���,�� + ���,�� Y. 

2.3. Second Proposed Theorem 

In this subsection, we present a second theorem, which we 

rely on to deduce if the polynomial equation in (eq.1) accepts 

complex solutions with imaginary parts different from zero 

and how many of them there are. This proposed theorem is 

based on the proposed expression in (eq.6). 

In the proof, we refer to real part of numbers by Z�(). 

Theorem 2 

Considering the fourth degree polynomial equation �� + ��� + �� + � = 0 where all coefficients belong to the 

group of numbers ℝ. If � ≠  0 and � > 0;  then, this fourth 

degree polynomial equation accepts at least two complex 

solutions with imaginary parts different from zero. 

2.4. Proof of Theorem 2 

To reduce the expression of the shown form in (eq.1) and find 

a way to solve it, we proposed the next expression for the 

coefficient �: −20���� + ���� + ���� 1 = �. We considered 

all coefficients of quartic equation belong to the group of 

numbers ℝ. 

If  � ≠  0  and � > 0 ; then, the fourth degree polynomial 

equation �� + ��� + �� + � = 0 accepts at least two complex 

solutions with imaginary parts different from zero, because: 

� >  0 ⇒  −2 -���� + ���� + ���� . > 0 ⇒  ��  +  �� +  �� < 0 
⇒  Z�(��) < 0 TU Z�(��) < 0 TU Z�(��) < 0 

⇒  3��� ∈  (ℂ\ℝ)4 TU 3��� ∈  (ℂ\ℝ)4 TU (��� ∈  (ℂ\ℝ)) 
⇒ ∃ � ∈  (ℂ\ℝ) | �� + ��� + �� + � = 0 (JT�aP��UP�b Qℎ� ��	U�aaPT�a TW 	UT	Ta�� aTcdQPT�a P� eℎ�TU�f 1. ) ⇒ ∃ i�, �j ∈ (ℂ\ℝ) ∗ (ℂ\ℝ) | �� + ��� + �� + � = 0 
�� �� + ��� + �� + � = 0 

3. Solutions and Theorems for Fourth 

Degree Polynomial Equations in 

Complete Form 

In this section, we solve fourth degree polynomial 

equation in complete form, which is expressed in (eq.31). 

The proposed theorems in this section are extending to 

presented theorems in previous section (section 2). 

3.1. Third Proposed Theorem 

In this subsection we propose the third theorem, which is 

an extending to first proposed theorem by reducing the form 

of fourth degree polynomial equation from expression (eq.31) 

to expression (eq.35). We rely on replacing � with 
9lm%?� . 

The expressions of proposed solutions are dependent on 

the value of 3n>=o=  − ��8>o$  + ,�+o 4. 
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We are proposing four solutions for 3n>=o=  − ��8>o$  + ,�+o 4 <0 , four solutions for 3n>=o=  − ��8>o$  + ,�+o 4 > 0  and four 

solutions for 3n>=o=  − ��8>o$  + ,�+o 4 = 0. 

The proposed solutions for 3n>=o=  − ��8>o$  + ,�+o 4 <0, 3n>=o=  − ��8>o$  + ,�+o 4 > 0  and for 3n>=o=  − ��8>o$  + ,�+o 4 =0 are expressed by using ;�,� in (eq.38), p in (eq.36) and q 

in (eq.36). 

The proof of this theorem is presented in an independent 

subsection, because it integrates long mathematical expressions. 

Theorem 3 

A fourth degree polynomial equation under the expressed 

form in (eq.31), where coefficients belong to the group of 

numbers ℝ and 
 ≠ 0, has four solutions. 
�� + ��� + ��� + �� + � = 0 OPQℎ 
 ≠  0       (31) 

If 3n>=o=  − ��8>o$  + ,�+o 4 < 0, and by using ;�,� in (eq.38), p 

in (eq.36) and q in (eq.36): 

Solution 1: ��,� in expression (eq.53); 

Solution 2: ��,� in expression (eq.54); 

Solution 3: ��,� in expression (eq.55); 

Solution 4: ��,� in expression (eq.56). 

If 3n>=o=  − ��8>o$  + ,�+o 4 > 0, and by using ;�,� in (eq.38), p 

in (eq.36) and q in (eq.36): 

Solution 1: ��,� in expression (eq.57); 

Solution 2: ��,� in expression (eq.58); 

Solution 3: ��,� in expression (eq.59); 

Solution 4: ��,� in expression (eq.60). 

If 3n>=o=  − ��8>o$  + ,�+o 4 = 0, and by using ;�,� in (eq.38), p 

in (eq.36) and q in (eq.36): 

Solution 1: ��,� in expression (eq.61); 

Solution 2: ��,� in expression (eq.62); 

Solution 3: ��,� in expression (eq.63); 

Solution 4: ��,� in expression (eq.64). 

3.2. Proof of Theorem 3 

By dividing the equation (eq.31) on the coefficient 
, we 

have the next form: 

�� + >o �� + 8o ��  + +o � + :o = 0 OPQℎ 
 ≠  0      (32) 

We suppose that � is expressed as shown in (eq.33): 

� = rlm %?�                               (33) 

We replace �  with supposed expression in (eq.33) to 

reduce the form of presented polynomial equation in (eq.32). 

Thereby, we have the presented expression in (eq.34). 

;� + ;�  s−6 3>o4� + �,8o t + ; s8 3>o4� − ��8>o$ + ,�+o t −3 3>o4� + �,8>$o= − ,�+>o$ + �u,:o = 0          (34) 

To simplify the expression of polynomial equation in 

(eq.34), we replace the expression of used coefficients as 

shown in (eq.35) where the values of those coefficients are 

defined in (eq.36). ;� + p;� + q; + Z = 0              (35) 

p = −6 3>o4� + �,8o ; q = 8 3>o4� − ��8>o$ + ,�+o ; Z =−3 3>o4� + �,8>$o= − ,�+>o$ + �u,:o        (36) 

As a next step, we project the developed results to solve 

fourth degree polynomial equation with simplified form 

shown in previous section (section 2). Thereby, we have ; = �;�  + �;� + �;�  for q ≤  0 , ; = −�;�  − �;� −�;�  for q ≥  0  and we have the third degree equation in 

(eq.37) where we search for the expressions of the solutions ;�,�, ;�,� and ;�,�. 
;�� + v�  ;�� + v$9�w�,  ;�  − x$,� = 0           (37) 

By projecting the expressions of shown solutions in 

(eq.12), (eq.13) and (eq.14), the resulted roots for third 

degree polynomial in (eq.37) are ;�,�  in (eq.38), ;�,�  in 

(eq.39) and ;�,�  in (eq.40), where p; = v� , Z; = 9�Ix$9�v=%I�vw,�  and q; = − �v$%�,w�, . 

;�,� =
− v;�  + �� (− w;�  + <3w;� 4� + 3x;� 4�= +

�� (− w;�  + <3w;� 4� + 3x;� 4�=
            (38) 

In condition of ;�,� ≠ 0, ;�,� and ;�,�are as follow: 

;�,� = − y$%?',N� + (zy$%?',N� {� − x$,�?',N          (39) 

;�,� = − y$%?',N� − (zy$%?',N� {� − x$,�?',N          (40) 

By using the shown expressions in (eq.36) and (eq.38), the 

solutions of expressed quartic equation in (eq.35) when )8 3>o4� − ��8>o$ + ,�+o * < 0 are as shown in (eq.41), (eq.42), 

(eq.43) and (eq.44). 

Solution 1: a�,� = �;�,� + S− y$%?',N� + (zy$%?',N� {� − x$,�?',N  + S− y$%?',N� − (zy$%?',N� {� − x$,�?',N              (41) 
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Solution 2: a�,� = −�;�,� − S− y$%?',N� + (zy$%?',N� {� − x$,�?',N  + S− y$%?',N� − (zy$%?',N� {� − x$,�?',N             (42) 

Solution 3: a�,� = −�;�,� + S− y$%?',N� + (zy$%?',N� {� − x$,�?',N − S− y$%?',N� − (zy$%?',N� {� − x$,�?',N             (43) 

Solution 4: a�,� = �;�,� − S− y$%?',N� + (zy$%?',N� {� − x$,�?',N − S− y$%?',N� − (zy$%?',N� {� − x$,�?',N             (44) 

By using the shown expressions in (eq.36) and (eq.38), the 

solutions of expressed quartic equation in (eq.35) when 
)8 3>o4� − ��8>o$ + ,�+o * > 0 are as shown in (eq.45), (eq.46), 

(eq.47) and (eq.48). 

Solution 1: a�,� = −�;�,� − S− y$%?',N� + (zy$%?',N� {� − x$,�?',N − S− y$%?',N� − (zy$%?',N� {� − x$,�?',N             (45) 

Solution 2: a�,� = −�;�,� + S− y$%?',N� + (zy$%?',N� {� − x$,�?',N + S− y$%?',N� − (zy$%?',N� {� − x$,�?',N             (46) 

Solution 3: a�,� = �;�,� − S− y$%?',N� + (zy$%?',N� {� − x$,�?',N + S− y$%?',N� − (zy$%?',N� {� − x$,�?',N             (47) 

Solution 4: a�,� = �;�,� + S− y$%?',N� + (zy$%?',N� {� − x$,�?',N − S− y$%?',N� − (zy$%?',N� {� − x$,�?',N             (48) 

By using the shown expressions in (eq.36) and (eq.38), the 

solutions of expressed quartic equation in (eq.35) when )8 3>o4� − ��8>o$ + ,�+o * = 0 are as shown in (eq.49), (eq.50), 

(eq.51) and (eq.52). 

Solution 1: a�,� = �;�,� + <− 3v� + ;�,�4          (49) 

Solution 2: a�,� = −�;�,� − <− 3v� + ;�,�4         (50) 

Solution 3: a�,� = −�;�,� + <− 3v� + ;�,�4          (51) 

Solution 4: a�,� = �;�,� − <− 3v� + ;�,�4       (52) 

In order to solve the polynomial equation shown in (eq.32), 

we use the expression � = 9lm%?�  where ;  is the unknown 

variable in polynomial equation (eq.34). By using 

expressions (eq.36) and (eq.38) for )8 3>o4� − ��8>o$ + ,�+o * <0, the solutions for equation (eq.31) are as shown in (eq. 53), 

(eq. 54), (eq. 55) and (eq. 56). 

Solution 1: ��,� = − >�o + �� �;�,� + �� S− y$%?',N� + (zy$%?',N� {� − x$,�?',N  + �� S− y$%?',N� − (zy$%?',N� {� − x$,�?',N       (53) 
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Solution 2: ��,� = − >�o − �� �;�,� − �� S− y$%?',N� + (zy$%?',N� {� − x$,�?',N  + �� S− y$%?',N� − (zy$%?',N� {� − x$,�?',N       (54) 

Solution 3: ��,� = − >�o − �� �;�,� + �� S− y$%?',N� + (zy$%?',N� {� − x$,�?',N − �� S− y$%?',N� − (zy$%?',N� {� − x$,�?',N       (55) 

Solution 4: ��,� = − >�o + �� �;�,� − �� S− y$%?',N� + (zy$%?',N� {� − x$,�?',N − �� S− y$%?',N� − (zy$%?',N� {� − x$,�?',N       (56) 

By using the expression � = 9lm%?�  while relying on the expressions (eq.36) and (eq.38) for )8 3>o4� − ��8>o$ + ,�+o * > 0, the 

proposed solutions for equation (eq.31) are as shown in (eq.57), (eq.58), (eq.59) and (eq.60). 

Solution 1: ��,� = − >�o − �� �;�,� − �� S− y$%?',N� + (zy$%?',N� {� − x$,�?',N − �� S− y$%?',N� − (zy$%?',N� {� − x$,�?',N       (57) 

Solution 2: ��,� = − >�o − �� �;�,� + �� S− y$%?',N� + (zy$%?',N� {� − x$,�?',N + �� S− y$%?',N� − (zy$%?',N� {� − x$,�?',N       (58) 

Solution 3: ��,� = − >�o + �� �;�,� − �� S− y$%?',N� + (zy$%?',N� {� − x$,�?',N + �� S− y$%?',N� − (zy$%?',N� {� − x$,�?',N       (59) 

Solution 4: ��,� = − >�o + �� �;�,� + �� S− y$%?',N� + (zy$%?',N� {� − x$,�?',N − �� S− y$%?',N� − (zy$%?',N� {� − x$,�?',N       (60) 

By using the expression � = 9lm%?�  while relying on the 

expressions (eq.36) and (eq.38) for )8 3>o4� − ��8>o$ + ,�+o * =0, the proposed solutions for equation (eq.31) are as shown in 

(eq.61), (eq.62), (eq.63) and (eq.64). 

Solution 1: ��,� = − >�o + �� �;�,� + �� <− 3v� + ;�,�4     (61) 

Solution 2: ��,� = − >�o − �� �;�,� − �� <− 3v� + ;�,�4     (62) 

Solution 3: ��,� = − >�o − �� �;�,� + �� <− 3v� + ;�,�4     (63) 

Solution 4: ��,� = − >�o + �� �;�,� − �� <− 3v� + ;�,�4     (64) 

3.3. Fourth Proposed Theorem 

In this subsection, we propose a fourth theorem based on 

the value of 3− ,>$o$  + �,8o 4 along with proof. This theorem is 

an extending of second proposed theorem after reducing the 

form of fourth degree polynomial from expression (eq.31) to 

expression (eq.34) by replacing � with � = 9lm%?� . 

Theorem 4 

Considering the polynomial equation 
�� + ��� + ��� +�� + � = 0  where all coefficients belong to the group of 

numbers ℝ , if 
 ≠  0  and � ≠  0  and 3− ,>$o$  + �,8o 4 > 0 ; 

then, this fourth degree polynomial equation accepts at least 

two complex solutions, where the imaginary parts are 

different from zero and dependent on the group of 

coefficients i
, �, �j. 
3.4. Proof of Theorem 4 

Considering the equation 
�� + ��� + ��� + �� + � = 0 

where we supposed � = 9lm%?�  to have the expression (eq.34) 

and all coefficients belong to the group of numbers ℝ. By 

projecting the proposed expression in (eq.6) on the value of p 

in (eq.35) and (eq.36), we have the following 
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expression: −6 3>o4� + �,8o =  −2};�� + ;�� + ;�� ~. 
In this proof, we rely on the shown expressions of p, q 

and Z in (eq.36). We refer to real part of numbers by Re(). 

If 
 ≠  0  and � ≠  0  and  3− ,>$o$  + �,8o 4 > 0 ; then, the 

fourth degree polynomial equation 
�� + ��� + ��� + �� +� = 0  accepts at least two complex solutions where the 

imaginary parts are different from zero and dependent on the 

group of coefficients i
, �, �j, because: 

3− ,>$o$  + �,8o 4  >  0 ⇒  −2};�� + ;�� + ;�� ~ > 0  
⇒  ;�  +  ;� +  ;� < 0 ⇒  Z�(;�) < 0 TU Z�(;�) < 0 TU Z�(;�) < 0 

⇒  3�;� ∈  (ℂ\ℝ)4 TU 3�;� ∈  (ℂ\ℝ)4  TU 3�;�∈  (ℂ\ℝ)4 
⇒ ∃ ; ∈  (ℂ\ℝ) | ;� + p;�  + q; +  Z= 0 (JT�aP��UP�b Qℎ� ��	U�aaPT�a TW 	UT	Ta�� aTcdQPT�a P� eℎ�TU�f 3) ⇒ ∃ i;, ;j ∈  (ℂ\ℝ) ∗ (ℂ\ℝ) | ;�  + p;�  + q; +  Z= 0 
�� ;� + p;�  + q; + Z = 0 ⇒  ∃ i�, �j ∈  (ℂ\ℝ) ∗ (ℂ\ℝ) | 
�� + ��� + ��� + �� + �= 0 
�� 
�� + ��� + ��� + �� + � = 0 

3.5. Fifth Proposed Theorem 

In this subsection, we propose a fifth theorem based on the 

value of 3− ,+$:$  + �,8: 4 along with proof. This theorem is an 

extending of fourth proposed theorem after passing from 

expression (eq.31) to expression (eq.65) by supposing = �&. 

Theorem 5 

Considering the polynomial equation 
�� + ��� + ��� +�� + � = 0  where all coefficients belong to the group of 

numbers ℝ, if 
 ≠  0 and � ≠ 0 and 3− ,+$:$  + �,8: 4 > 0; then, 

this fourth degree polynomial equation accepts at least two 

complex solutions, where the imaginary parts are different 

from zero and dependent on the group of coefficients i�, �, �j. 
3.6. Proof of Theorem 5 

We use the expression � = �& in the polynomial equation 

(�
. 31), in order to extend the used logic in Theorem 4 by 

projection on expression (eq.65). We consider all coefficients 

of quartic equation belong to the group of numbers ℝ. 
�� + ��� + ��� + �� + � = 0 Oℎ�U� � ≠  0 ⇒  �� ++: �� + 8: �� + >: � + o: = 0           (65) 

We use the expression � = 9��%��  to replace �  in �� ++:  �� + 8: �� + >: � + o: = 0 , in order to reduce the form of 

polynomial. Thereby, we have the presented polynomial 

equation in (eq.66). O� + � O� + �O + � = 0             (66) 

The coefficients of shown polynomial in (eq.66) are as 

follow: 

� = s−6 3+:4� + �,8: t ; � = s8 3+:4� − ��8+:$ + ,�>: t ;  � =−3 3+:4� + �,8+$:= − ,�>+:$ + �u,o:   

By projecting the proposed expression in (eq.6), we have 

the next expression : )−6 3+:4� + �,8: * =  −2}O�� + O�� +O�� ~, where O is the solution for polynomial equation shown 

in (eq.66). The solution O is expressed as follow: 

O = �O�  + √O� + √O� PW s8 3+:4� − ��8+:$ + ,�>: t ≤  0, and O = −�O�  − √O� − √O� PW s8 3+:4� − ��8+:$ + ,�>: t ≥  0. 

If 
 ≠  0  and � ≠  0  and 3− ,+$:$  + �,8: 4 > 0 ; then, the 

fourth degree polynomial equation in (eq.31) accepts at least 

two complex solutions where the imaginary parts are 

different from zero and dependent on the group of 

coefficients i�, �, �j, because: 

)−6 3+:4� + �,8: * > 0 ⇒  −2}O�� + O�� + O�� ~ > 0  
⇒  O�  +  O� +  O� < 0 ⇒  Z�(O�) < 0 TU Z�(O�) < 0 TU Z�(O�) < 0 

⇒  3�O� ∈  (ℂ\ℝ)4  TU 3�O� ∈  (ℂ\ℝ)4  TU 3�O�∈  (ℂ\ℝ)4 
⇒ ∃ O ∈  (ℂ\ℝ) | O� + � O�  + �O + �= 0 (JT�aP��UP�b Qℎ� ��	U�aaPT�a TW 	UT	Ta�� aTcdQPT�a P� eℎ�TU�f 3. ) ⇒ ∃ iO, Oj ∈  (ℂ\ℝ) ∗ (ℂ\ℝ) | O� + � O�  + �O + �= 0 
�� O� + �O�  + �O + � = 0 ⇒ ∃ i�, �j ∈  (ℂ\ℝ) ∗ (ℂ\ℝ) | 
�� + ��� + ��� + �� + �= 0 
�� 
�� + ��� + ��� + �� + � = 0 

3.7. Sixth Proposed Theorem 

In this subsection, we propose a sixth theorem as an 

extending to Theorem 4 and Theorem 5. This sixth theorem 

is based on the values of 3− ,>$o$  + �,8o 4 and 3− ,+$:$  + �,8: 4, 

and it aims to determine whether a fourth degree polynomial 

equation accepts four complex solutions with imaginary parts 

different from zero or not. 

Theorem 6 

Considering the polynomial equation 
�� + ��� + ��� +�� + � = 0  where all coefficients belong to the group of 
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numbers ℝ, if 
 ≠  0 and � ≠  0 and 3− ,>$o$  + �,8o 4 > 0 and 3− ,+$:$  + �,8: 4 > 0 ; then, this fourth degree polynomial 

equation accepts four complex solutions with imaginary parts 

different from zero. 

3.8. Proof of Theorem 6 

Basing on fourth proposed theorem (Theorem 4) where all 

coefficients of quartic equation belong to the group of 

numbers ℝ , if 
 ≠  0  and � ≠  0  and 3− ,>$o$  + �,8o 4 > 0 ; 

then, the concerned polynomial equation 
�� + ��� + ��� +�� + � = 0 accepts at least two complex solutions ���, ��� ∈(ℂ\ℝ) ∗ (ℂ\ℝ). The imaginary parts of solutions i��, ��j are 

different from zero and dependent on the value of 3− ,>$o$  +�,8o 4. 

Basing on fifth proposed theorem (Theorem 5) where all 

coefficients of quartic equation belong to the group of 

numbers ℝ , if 
 ≠  0  and � ≠  0  and 3− ,+$:$  + �,8: 4 > 0 ; 

then, the concerned polynomial equation 
�� + ��� + ��� +�� + � = 0 accepts at least two complex solutions ���, ��� ∈(ℂ\ℝ) ∗ (ℂ\ℝ). The imaginary parts of solutions i��, ��j are 

different from zero and dependent on the value of 3− ,+$:$  +�,8: 4. 

The value of 3− ,>$o$  + �,8o 4 is dependent on the group of 

coefficients {�, 
, �}, whereas the value of 3− ,+$:$  + �,8: 4 is 

dependent on the group of coefficients i�, �, �j. Thereby, the 

imaginary parts of i��, ��j  and i��, ��j  are dependent on 

different groups of coefficients, which are used to express the 

values of these imaginary parts. 

As a result, we deduce that if 
 ≠  0  and � ≠  0  and 3− ,>$o$  + �,8o 4 > 0 
�� 3− ,+$:$  + �,8: 4 > 0; then, the fourth 

degree polynomial equation 
�� + ��� + ��� + �� + � = 0 

accepts four complex solutions i��, ��, ��, �� j  with 

imaginary parts different from zero, where the imaginary 

parts of i��, ��j are dependent on the value of 3− ,>$o$  + �,8o 4 

and the imaginary parts of {��, ��j  are dependent on the 

value of 3− ,+$:$  + �,8: 4. 

4. Conclusion 

The proposed theorems in this paper are developed basing 

on extended logic where Theorem 3 and Theorem 4 are based 

on Theorem 1 and Theorem 2 successively. The fifth 

proposed theorem (Theorem 5) is an extending of Theorem 4, 

whereas Theorem 6 is an extending by conjunction between 

Theorem 4 and Theorem 5. All proposed theorems are based 

on the mathematical expressions and calculations in the 

proofs of Theorem 1 and Theorem 3. 

The proposed expressions as solutions for fourth degree 

polynomial equations under the form 
�� + ��� + ��� +

�� + � = 0 OPQℎ 
 ≠  0  are developed by replacing �  with rlm %?� , and proposing ; = �;�  + �;� + �;� WTU 3n>=o=  −��8>o$  + ,�+o 4 ≤  0 
�� ; = −�;�  − �;� − �;� WTU 3n>=o=  −��8>o$  + ,�+o 4 ≥ 0. 

The proposed expressions 3− ,>$o$  + �,8o 4 = −2};�� +;�� + ;�� ~ , 3n>=o= − ��8>o$ + ,�+o 4 = −8���√��√�� for 3n>=o=  −��8>o$  + ,�+o 4 ≤  0 and 3n>=o=  − ��8>o$  + ,�+o 4 =8���√��√�� for 3n>=o=  − ��8>o$  + ,�+o 4 ≥  0  are helping to 

pass from a fourth degree polynomial expression in complete 

form (eq.31) to a third degree polynomial equation (eq.37). 

The proposed solutions for fourth degree polynomial 

equations in simple form and complete form are including 

quadratic roots and cubic roots as subparts. The first and 

third proposed theorems enable to calculate the roots of 

quartic equations nearly simultaneously, whereas the other 

proposed theorems enable to define how many complex roots 

from the group of numbers (ℂ\ℝ) a quartic equation may 

accept. 

All the expressions of proposed roots for quartic equations 

include cubic roots and quadratic roots as subparts, and the 

only difference from one proposed quartic root to other three 

proposed roots for a fourth degree polynomial equation is the 

signs of included subparts. Thereby, determining the values 

of these subparts opens the way to calculate the four 

solutions of concerned quartic polynomial equation nearly 

simultaneously. 
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