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Abstract: The Lyapunov method is one of the most effective methods to analyze the stability of stochastic differential equations
(SDEs). Different authors analyzed the stability of SDEs based on Lyapunov techniques when the origin can be considered as an
equilibrium point. When the origin is not necessarily an equilibrium point, it is still possible to analyze the asymptotic stability
of solutions concerning a small neighborhood of the origin. The purpose is to study the asymptotic stability of a system whose
solution behavior is a small ball of state space or close to it. Thus, all state trajectories are bounded and close to a sufficiently
small neighborhood of the origin. In this sense, the limited boundedness of solutions of random systems, or the chance of
convergence of solutions needs to be analyzed on a ball centered on the origin. This is the so called “Practical Stability”. In this
article, we mainly investigate the practical uniform exponential stability in the mean square of stochastic linear time–invariant
systems. In addition, we are developing the problem of stabilization of certain classes of perturbed stochastic systems. Our
crucial techniques include Lyapunov techniques and generalized Gronwall inequalities. Lastly, we provide a numerical example
to illustrate our theoretical findings.
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1. Introduction
Stochastic differential equations are beneficial for the

modelling of physical, technical, biological and economic
systems in which there is significant uncertainty.

In fact, noise can destabilize a given stable system.
Nevertheless, it can further stabilise a given unstable system
or render a given stable system even more stable, we mention
here ([4], [7], [11], [14], [15]) among others.

As it is for deterministic systems, Lyapunov function is a
powerful tool for qualitative analysis of stochastic differential
equations, without knowing the explicit solution form.

To investigate the stability of stochastic differential
equations, we generally look at solutions in the neighborhood
of the origin, which is regarded as an equilibrium point. Thus,
In this way, we can study the stability of the solutions in
relation to a small neighborhood of origin. when origin is

not always an equilibrium point, almost all state paths are
delineated and approaching the origin in a sufficiently small
neighborhood, that’s what we call it ”Practical Stability”.
The concept of practical stability was developed by different
authors in ([1], [3], [16], [17]) and references therein.

Actually, it is very important and very useful for stability
analysis or for the design of practical dynamical controllers
systems given that controlling the system to an idealized point
is costly or impossible in the presence of disturbances and
the best that we can hope for in these situations is practical
stability.

In practical terms, it may be sufficient to stabilize a
system in the phase space region where implementation is still
acceptable. It is common knowledge that asymptotic stability
is more important than stability. Even the selected system can
oscillate close to the source. For this reason, the concept of
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practical stability is more appropriate in various cases than
asymptotic stability.

In this case, all state trajectories are limited and close to
a sufficiently small neighborhood of origin. It is also hoped
that the State will approach the origin (or certain sufficiently
small neighborhoods) in a sufficiently rapid manner, especially
in the presence of disturbances. Generally, we know some
information about the upper limit of the disturbance term
whose size affects the size of the bullet.

Recently, the concept of practical stability of nonlinear
stochastic differential equations is examined through the
techniques of Lyapunov, see ([5], [6]) and references therein.

Motivated by the above discussion, in this document our
central objective is to define and develop the global uniform
exponential stability practical in the mean square for a
class of time-invariant linear systems under Brownian motion
disturbances in the Lyapunov approach.

The remainder of this paper has the following structure:
In Section 2, we set up sufficient conditions for the global
practical uniform exponential stability in mean square of
linear time–invariant stochastic perturbed systems by using
Lyapunov techniques and non–linear generalized integral
inequalities. In Section 3, we give sufficient conditions
ensuring the practical uniform exponential stabilization in
mean square of stochastic systems by using Lyapunov
techniques and Itô’s formula. In Section 4, we present an
example illustrating the efficiency of the results achieved.
Finally, we wrap up the document with a conclusion.

Notations:
Let Rd represent the real d-dimensional space; R+ stands

for all the non–negative numbers set; Rd×n denotes the
real d × n matrix space. For a vector χ, let ||χ|| denotes
its usual Euclidean norm, χT be the transpose; For the
matrix F , ||F|| =

√
λmax(MTF) refers to its Euclidean

matrix standard, where Tr(·) is the matrix trace, λmin(F) and
λmax(F) indicate the minimum and maximum eigenvalue of
F , respectively; I is Identity Matrix.

2. Practical Stability in Mean Square
In this section, we study the exponential stability in the

mean square of linear time–invariant stochastic perturbed
systems when the origin is not an equilibrium point. We
propose the concept of practical exponential stability in mean
square and we provide sufficient conditions for such stability.

Consider this linear time–invariant system:

ż(t) =Mz(t), z(t0) = z0, (1)

where z ∈ Rd is a system status vector, z(t0) = z0 ∈ Rd is
the initial condition,M is a constant matrix (d× d).

Let us assume that certain parameters of linear time–
invariant system (1) are excited or disturbed by certain
environmental sounds (for further details see Oksendal [12],
Mao [10]). Then, we get the next linear time–invariant
perturbed stochastic system.

dz(t) =Mz(t)dt + F(t, z(t))dBt, (2)

where z(t0) = z0 ∈ Rd is the initial system state, F :
R+ × Rd −→ Rd×n, Bt = (B1(t), · · · ,Bn(t))T is
an n–dimensional Brownian motion defined on a complete
probability space (Ω,F ,P).

We assume that the function F(t, z) satisfies the following
relations ∀t ≥ 0, ∀z ∈ Rd and ∀z̃ ∈ Rd,

||F(t, z)||2 ≤ τ1(1 + ||z||2), (3)

||F(t, z)− F(t, z̃)|| ≤ τ2||z − z̃||, (4)

where τ1 and τ2 are two given strictly positive constants.
Then, there is a unique global z(t, t0, z0) solution for the

initial condition corresponding to the initial condition z0 ∈ Rd
(see Mao [10], Oksendal [12] for additional details). In the
following we use z(t, t0, z0), or simply z(t) denote a solution
of our system over a short interval of the perturbed stochastic
system (2).

We assume that there exists t such that F(t, 0) 6= 0. As a
result, the origin is no longer an equilibrium point for linear
time–invariant stochastic perturbed system (2).

We will investigate the practical exponential stability in
mean square of the solutions of the linear time–invariant
stochastic perturbed system when 0 is not an equilibrium
point, but in a small neighborhood of the origin in terms of
convergence of solution in probability to a small ball:

Br :=
{
z ∈ Rd : ‖z‖ ≤ r

}
, r > 0.

Definition 2.1
1. The ball Br is globally uniformly exponentially stable

in mean square, if there exist two positive constants κ1
and κ2, such that for all t0 ∈ R+, and all z0 ∈ Rd, the
following inequality is

E(||z(t)||2) ≤ κ1||z0||2e−κ2(t−t0) + r, ∀t ≥ t0 ≥ 0.

2. The linear time–invariant stochastic perturbed system
(2) is said to be globally practically uniformly
exponentially stable in mean square, if there exists
r > 0, such that the ball Br is globally uniformly
exponentially stable in mean square.

Theorem 2.1 Let z(t) be an n–dimensional Itô process on
t ≥ 0 performs the following stochastic differential equation:

dz(t) = a(t, z(t))dt + b(t, z(t))dBt,

where a ∈ L1(R+,Rd) and b ∈ L2(R+,Rd×n).
Let’s define V ∈ C1.2(R+×Rd,R) : the family of all non–

negative functions V(t, z(t)) defined on R+ × Rd which are
once continuously differentiable with respect to t and twice
with respect to z. Hence, V(t, z(t)) is an ltô process and

dV(t, z(t)) = LV(t, z(t))dt + Vz(t, z(t))b(t, z(t))dBt,

where
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LV(t, z) := Vt(t, z) + Vz(t, z)a(t, z) +
1

2
trace

(
bT(t, z)Vzz(t, z)b(t, z)

)
,

Vt(t, z) =
∂V
∂t

(t, z) , Vz(t, z) =

(
∂V
∂z1

(t, z),
∂V
∂z2

(t, z), · · · , ∂V
∂zd

(t, z)

)
, Vzz(t, z) =

(
∂2V
∂zi∂zj

(t, z)

)
d×d

.

Remark 2.2 Different authors tackle the problem of stability
of linear time–invariant systems within Lyapunov techniques,
see [2, 9]. In fact, one seeks solutions P ∈ Rd×d as well as
Q ∈ Rd×d of the ensuing Lyapunov equation:

MTP + PM = −Q, (5)

and the related Lyapunov function candidate is as follows:

V : Rd → R+, y 7−→ zTPz. (6)

Remark 2.3 Our strategy consists of using the Lyapunov
function (6) for deterministic linear time–invariant system (1)
as Lyapunov function for perturbed stochastic system (2) under
certain constraints on the perturbation function.

Theorem 2.2 Consider linear time–invariant perturbed
stochastic system (2), if there is a positive defined symmetrical
matrix P , being the solution of the Lyapunov matrix equation
(6), with Q is a positive defined symmetric matrix. In
addition, we assume that the perturbation term F(t, z) satisfies
for all t ≥ 0, and all z ∈ Rd, the following assumption:

||F(t, z)||2 ≤ Γ||z||2 + Ψ(t), a.s. (7)

where Γ is a positive constant and Ψ is a non–negative
bounded continuous function. Then, the stochastic system (2)
is practically uniformly exponentially stable in mean square.

The next generalized Gronwall lemma is essential for
proving our theorem. Theorem 2.3 Let f : R+ −→ R+ be
a continuous function, ε is a positive real number and u is a
strict positive real constant. Suppose that for all t ∈ R+, and
0 ≤ u ≤ t, we have

f(t)− f(u) ≤
∫ t

u

(−λf(s) + ε)ds.

Then, we obtain

f(t) ≤ ε

λ
+ f(0) exp(−λt).

Remark 2.6 If we replace f(0) by f(t0) with 0 ≤ t0 ≤ u ≤
t, this last lemma is still true.

RProof of Theorem 2.4. Through the generalized Itô’s
formula 2.1 applied at V(z(·)) where z(·) the trajectory of the
stochastic system (2), one can derive that for t ≥ 0,

LV(z(t)) = zT(t)(MTP + PM)z(t) + FT(t, z(t))PF(t, z(t)),

= −zT(t)Qz(t) + FT(t, z(t))PF(t, z(t)),

≤ −zT(t)Qz(t) + ||P|| ||F(t, z(t))||2,
≤ −zT(t)Qz(t) + λmax(P)||F(t, z(t))||2.

By virtue (7), it follows

LV(z(t)) ≤ −λmin(Q)zT(t)z(t) + Γλmax(P)zT(t)z(t) + λmax(P)Ψ(t),

= − (λmin(Q)− Γλmax(P)) zT(t)z(t) + λmax(P)Ψ(t),

without losing generality, we may assume that
λmin(Q) > Γλmax(P).

Accordingly, we obtain

LV(z(t)) ≤ −λmin(Q)− Γλmax(P)

λmax(P)
zT(t)Pz(t) + λmax(P)Ψ(t),

= −
(
λmin(Q)

λmax(P)
− Γ

)
V(z(t)) + λmax(P)Ψ(t).

Noting that the function t 7→ Ψ(t) is a non–negative bounded on [0,∞), so there exist m > 0, such that Ψ(t) ≤ m. Then, we
arrive at

LV(z(t)) ≤
(
λmin(Q)

λmax(P)
− Γ

)
V(z(t)) +mλmax(P).

Applying Dynkin’s formula [8], we derive

E(V(z(t)))− V(z(0)) =

∫ t

t0

E(LV(z(s)))ds.
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Accordingly, for all u, t with 0 ≤ t0 ≤ u ≤ t ≤ ∞, we see

0 ≤ E(V(z(t)))− E(V(z(u))) ≤
∫ t

u

E(V(z(s)))ds,

≤
∫ t

u

−
(
λmin(Q)

λmax(P)
− Γ

)
E(V(z(s))) +mλmax(P)ds.

Applying the generalized Gronwall lemma (lemma 2.5), one deduce that

E(V(z(t))) ≤ E(V(z(t0))) exp

(
−
(
λmin(Q)

λmax(P)
− Γ

)
(t− t0)

)
+

mλmax(P)

λmin(Q)− Γλmax(P)
.

Next, we need to infer an estimation for the expectation of the norm of z(·).

E(||z(t)||2) ≤ 1

λmin(P)
E
(
zT(t)Pz(t)

)
,

≤ 1

λmin(P)
E(V(z(t0))) exp

(
−
(
λmin(Q)

λmax(P)
− Γ

)
(t− t0)

)
+

mλmax(P)

λmin(P) (λmin(Q)− Γλmax(P))
,

=
1

λmin(P)
zT(t0)Pz(t0) exp

(
−
(
λmin(Q)

λmax(P)
− Γ

)
(t− t0)

)
+

mλmax(P)

λmin(P) (λmin(Q)− Γλmax(P))
,

≤ λmax(P)

λmin(P)
||z0||2 exp

(
−
(
λmin(Q)

λmax(P)
− Γ

)
(t− t0)

)
+

mλmax(P)

λmin(P) (λmin(Q)− Γλmax(P))
.

Next, this follows for all t ≥ t0 ≥ 0, and all z0 ∈ Rd,

E(||z(t)||2) ≤ λmax(P)

λmin(P)
||z0||2 exp

(
−
(
λmin(Q)

λmax(P)
− Γ

)
(t− t0)

)
,+

mλmax(P)

λmin(P) (λmin(Q)− Γλmax(P))
.

For κ1 =
λmax(P)

λmin(P)
, κ2 =

λmin(Q)

λmax(P)
− Γ, and

r =
mλmax(P)

λmin(P) (λmin(Q)− Γλmax(P))
the linear time–

invariant stochastic perturbed system (2) is globally practically
uniformly exponentially stable in mean square. 2

3. Stabilization Problem

In this section, we develop the stabilization of certain classes
of stochastic perturbed systems via Lyapunov techniques.

Consider the next stochastic system: dz(t) =
(
M̃z(t) +NU

)
dt + H(t, z(t))dBt

z(t0) = z0,
(8)

where z(t) ∈ Rd is the system state vector, U ∈ Rd is the
control input, Bt = (B1(t), · · · ,Bn(t)) is an n–Brownian
motion defined on a complete probability space (Ω,F ,P).
M̃ ∈ Rd×d is a constant matrix, N ∈ Rn×d is a constant
matrix, and function H : R+ × Rd → Rd×n satisfies both
conditions (3) and (4).

Definition 3.1 The stochastic system (8) is said to be
practically uniformly exponentially stabilizable in mean
square, if there exists a state feedback control law:

U = U(z),

such that the following closed–loop stochastic system:(
M̃z(t) +NU(z)

)
dt + H(t, z(t))dBt, (9)

is practically uniformly exponentially stable in mean square.
We define feedback law in the following way:

U(z) = Dz,

that stabilizes the linear part, where D ∈ Rn×d is a constant
matrix.

We will set out a few assumptions that we will require later
on:

(H1) There exists a positive definite symmetric matrix P̃ ,
resolve the following Lyapunov matrix equation:

(M̃+ND)TP̃ + P̃(M̃+ND) = −Q̃,

where Q̃ is a positive definite symmetric matrix.
(H2) There exists a continuous non–negative bounded

function, such that

||H(t, z)|| ≤ ρ(t)||z||, ∀(t, z) ∈ R+ ×Rd.

Theorem 3.1 Under assumptions (H1) and (H2), the
closed–loop stochastic system (9) is practically uniformly
exponentially stable in mean square.

Proof. Consider Lyapunov’s next function:

V(z) = zTP̃z,
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By the generalized Itô formula 2.1 to V(z(·)) where z(·) is a trajectory of the closed–loop stochastic system (9), we obtain

LV(z(t)) = zT(t)
(

(M̃+ND)TP̃ + P̃(M̃+ND)
)
z(t) + HT(t, z(t))P̃H(t, z(t)).

Using Assumption (H1), it follows that

LV(z(t)) ≤ −zT(t)Q̃z(t) + ||P̃||||F(t, z(t))||2.

By (H2), we arrive at

LV(z(t)) ≤ −zT(t)Q̃z(t) + λmax(P̃)ρ2(t).

The function ρ(t) is continuous non–negative bounded, then there exists ρ̃ > 0, such that

||ρ(t)|| ≤ ρ̃, ∀t ≥ t0 ≥ 0.

Therefore, it derives that

LV(z(t)) ≤ −zT(t)Q̃z(t) + λmax(P̃)ρ̃2,

≤ −λmin(Q̃)zT(t)z(t) + λmax(P̃)ρ̃2.

Accordingly, we obtain

LV(z(t)) ≤ − λmin(Q̃)

λmax(P̃)
zT(t)P̃z(t) + ρ̃2.

By using Dynkin’s formula [8], we arrive at

E(V(z(t)))− V(z(0)) =

∫ t

0

E(LV((z(s)))ds,

which implies that ∀u, t, 0 ≤ t0 ≤ u ≤ t ≤ ∞,

0 ≤ E(V(z(t)))− E(V(z(u))) ≤
∫ t

u

E(V(z(s)))ds,≤
∫ t

u

− λmin(Q̃)

λmax(P̃)
E(V(z(s))) + ρ̃2ds.

By applying the Gronwall lemma (Lemma 2.5), we derive

E(V(z(t))) ≤ E(V(z(t0))) exp

(
− λmin(Q̃)

λmax(P̃)
(t− t0)

)
+
ρ̃2λmax(P̃)

λmin(Q̃)
.

Besides, we arrive at

E(||z(t)||2) ≤ 1

λmin(P̃)
E(zT(t)P̃z(t)),

≤ 1

λmin(P̃)
E(V(z(t0))) exp

(
− λmin(Q̃)

λmax(P̃)
(t− t0)

)
+

ρ̃2λmax(P̃)

λmin(Q̃)λmin(P̃)
,

=
1

λmin(P̃)
zT(t0)P̃z(t0) exp

(
− λmin(Q̃)

λmax(P̃)
(t− t0)

)
+

ρ̃2λmax(P̃)

λmin(Q̃)λmin(P̃)
,

≤ λmax(P̃)

λmin(P̃)
||z0||2 exp

(
− λmin(Q̃)

λmax(P̃)
(t− t0)

)
+

ρ̃2λmax(P̃)

λmin(Q̃)λmin(P̃)
.

Consequently, we see that for all t ≥ t0 ≥ 0, and all z0 ∈ Rd,

E(||z(t)||2) ≤ λmax(P̃)

λmin(P̃)
||z0||2 exp

(
− λmin(Q̃)

λmax(P̃)
(t− t0)

)
+

ρ̃2λmax(P̃)

λmin(Q̃)λmin(P̃)
.
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That is, the closed–loop stochastic system (9) is practically
uniformly exponentially stable in mean square. 2

4. Example

In this section, we provide an example to demonstrate the
validity of our findings. Let us look at the following stochastic
system:

dz(t) =Mz(t)dt + F(t, z(t))dBt, (10)

where z = (z1, z2) ∈ R2.

M =

(
0 1
−1 −1

)
, F(t, z) =

(
F1(t, z)
F2(t, z)

)
,

with 

F1(t, z) =
1

8

z21

1 +
√
z21 + z22

+
1

4
sin(2πt),

F2(t, z) =
1

8

z22

1 +
√
z21 + z22

+
1
√

2
3 e

−t,

with initial value z0 = (z10 , z20).
System (10) can be considered as a linear time–invariant

stochastic perturbed system of:

dz(t) =Mz(t)dt.

We take:

P =

(
3
2

1
2

1
2 1

)
, Q = I.

It is easily observed that P and Q are both definite positive
symmetric matrices hat resolve the Lyapunov equation Eq.(6).

By using Matlab we get:

λmin(P) = 0.691, λmax(P) = 1.808.

In addition, we have

||F(t, z)||2 = F2
1(t, z) + F2

2(t, z).

By using (e+h)c ≤ 2c−1(ec+hc), for all e, h ≥ 0, c ≥ 1,
we can compute

||F(t, z)||2 ≤ 1

64
(z21 + z22) +

1

2
(e−2t + sin2(2πt)),

=
1

64
||z||2 +

1

2
(e−2t + sin2(2πt)).

Hence, setting λmax(P) = 1.808, λmin(Q) = 1, Γ =
1
64 , and Ψ(t) = 1

2

(
e−2t + sin2(2πt)

)
. It is simple to

check whether the perturbed stochastic system (10) is globally
practically uniformly exponentially stable in mean square, as
shown in Figure 1 and Figure 2.

Figure 1. Time evolution of the state z1(t) of the stochastic perturbed system 10, with
five different Brownian motions.

Figure 2. Time evolution of the state z2(t) of the stochastic perturbed system 10, with
five different Brownian motions.

5. Conclusion
In this paper, we have studied the practical exponential

stability in mean square and stabilization problem for
linear time–invariant stochastic perturbed systems. We
give sufficient conditions ensuring the practical uniform
exponential stability of linear time–invariant stochastic
perturbed systems. At the same time, we also provide
general condition that guarantee the stabilization of certain
classes of stochastic perturbed systems. Furthermore, a
numerical example is provided to illustrate the effectiveness
and advantages of our results.
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