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Abstract: Lung cancer, malignant pleural mesothelioma, and esophageal cancer are the most common thoracic malignancies 

and are responsible for substantial cancer-related morbidity and mortality worldwide. Early cancer identification prompts earlier 

intervention and can therefore improve patient survival. Traditional diagnostics are costly and invasive, however, creating an 

urgent need for alternative methods. Over the past 30 years, breath analysis has emerged as a rapid, minimally invasive, and 

cost-effective approach. Metabolites in exhaled breath, known as volatile organic compounds (VOCs), reflect internal 

biomolecular processes and their composition has been shown to vary in association with numerous pathological states. This 

review provides an overview on the use of VOCs in exhaled breath for the early screening and diagnosis of thoracic malignancies. 

Study design, methodology, and significant results from over sixty studies published since 1990 are specified and summarized. A 

total of 439 significant VOCs are reported in the literature, mainly consisting of aromatic compounds, aldehydes, alkanes, lipids, 

ketones, and sulfur-containing compounds. Diagnostic sensitivities and specificities range from 51-100% and 68.8 – 100%, 

respectively. Cancer-specific VOC profiles and associations of clinical interest (e.g., comorbidities, histology, and staging) are 

emphasized and discussed. While there is considerable evidence to support the diagnostic utility of VOCs, the lack of 

standardization and external validation in large independent cohorts remain key barriers to clinical translation. However, efforts 

to address these limitations are currently underway. 

Keywords: Lung Cancer, Esophageal Cancer, Mesothelioma, Volatile Organic Compounds, VOCs, Breath Analysis, 

Biomarker 

 

1. Introduction 

Thoracic malignancies are aggressive neoplasms of 

uncontrolled cell growth that originate within the chest 

cavity. Lung cancer, malignant pleural mesothelioma, and 

esophageal cancer are the most common thoracic 

malignancies. Early screening and detection can reduce 

mortality in all three cancers [1-3]. Current methods of 

investigation rely on a combination of blood, imaging, and 

tissue sampling techniques that are invasive, inaccurate, 

and/or costly [3-8]. Over the past few decades, volatile 

organic compounds (VOCs) in exhaled breath have emerged 

as a potentially quick, safe, noninvasive biomarker for 

detecting lung cancer, esophageal cancer, and malignant 

pleural mesothelioma. Prior reviews have considered these 

three malignancies separately; overall VOC patterns 

between lung cancer, esophageal cancer, and malignant 

pleural mesothelioma have not been explored. 

The aim of this review is to consolidate the current 

knowledge on exhaled VOCs in the early screening and 

diagnosis of thoracic malignancies. Literature published 

between January 1990 and May 2020 is included. In the 

following sections, we will summarize breath composition 

and findings of available studies on lung cancer, esophageal 

cancer, and mesothelioma. Clinically relevant VOCs will be 

emphasized, along with sensitivities and specificities. 

Focused reviews on study design and methodology of the 

three respective cancers can be found elsewhere. We will 

conclude with a discussion on general VOC patterns between 

all three thoracic cancers along with potential biological 

mechanisms. 
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2. Background 

2.1. Thoracic Malignancies 

2.1.1. Lung Cancer 

Lung cancer (LC) is a tumor of lung tissue most commonly 

caused by smoking cigarettes [9]. Other risk factors include 

second-hand smoke, air pollution, and asbestos. Lung cancer 

is the leading cause of cancer mortality in the United States 

and worldwide, accounting for 2.1 million new cases and 1.8 

million deaths in 2018 [10]. Over 50% of patients with lung 

cancer die within one year following diagnosis and have a 

five-year survival rate of less than 20% [9]. 

2.1.2 Malignant Pleural Mesothelioma 

Malignant pleural mesothelioma (MPM) is an aggressive 

neoplasm originating from the mesothelial cells lining the 

pleura and is causally associated with previous asbestos 

exposure [11]. Malignant pleural mesothelioma has a median 

latency time of 40–50 years between first exposure to asbestos 

and its diagnosis. Once diagnosed, the majority of patients die 

within 2 years. Malignant pleural mesothelioma is rare in the 

United States, however, accounting for about 3,000 new cases 

diagnosed each year. Globally, malignant pleural 

mesothelioma accounts for an estimated 38,400 cancer related 

deaths per year, with mortality rates increasing [12]. 

 

2.1.3. Esophageal Cancer 

Esophageal (or esophagogastric) cancer (EC) is a malignant 

proliferation of mucosal cells lining the esophagus, 

gastroesophageal junction, and parts of the stomach. Smoking, 

drinking alcohol, and gastroesophageal reflux disease (GERD) 

are among the most common risk factors associated with 

developing esophageal cancer [13]. Esophageal cancer is the 

6th leading cause of cancer related mortality death worldwide, 

affecting approximately 1.5 million a year and 15% of cancer 

related deaths [14]. Esophageal cancer makes up about 1% of 

all cancers diagnosed in the United States, but it is much more 

common in some other parts of the world, such as Iran, 

northern China, India, and southern Africa [15]. 

2.2. Volatile Organic Compounds 

Volatile organic compounds (VOCs) are organic 

compounds with relatively high vapor pressure or volatility, 

that can be detected in the headspace of cancer cells, blood 

samples, and/or in various bodily excrements, e.g., sweat, 

urine, feces, and breath [16]. VOCs reflect cellular processes 

and metabolic activity at the tissue level, such as inflammation 

and oxidative stress, and can therefore function as a surrogate 

marker of various states of health and disease (Figure 1) [17]. 

VOCs enter the bloodstream and travel to the lungs, where 

they diffuse across the pulmonary alveolar membrane and are 

exhaled through the breath. 

 

Figure 1. Diagram of volatile organic compounds (VOCs) in the lung. VOCs in exhaled breath originate from three primary sources: (1) local cellular 

metabolism from airways and alveoli, (2) inhaled from the surrounding environment or produced by resident bacteria, or (3) elsewhere in the body, subsequently 

carried to the lungs via bloodstream. Reprinted from “Breathomics in Lung Disease “by van der Schee MP, et al., 2015, Chest, 147 (1): 224-231, Copyright 2015, 

with permission from Elsevier. 

The most abundant VOCs in human breath are acetone, 

methanol, ethanol, propanol and isoprene [18]. On average, a 

single breath sample contains around 200 different VOCs [19]. 

Changes in VOC composition and/or concentration can 

therefore signal underlying pathology and be used to guide 

clinical practice. To date, breath VOCs have shown clinical 

value in the diagnosis and management of numerous diseased 

states, including Inflammatory Bowel Disease (IBD) [20], 
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infectious diseases [21-23], Asthma [24-26], Cystic Fibrosis 

[25], Chronic Obstructive Pulmonary Disease (COPD) [25, 

26], Alzheimer’s [27], and various cancers [28-30]. 

The use of VOCs for lung cancer screening and detection 

has been investigated in dozens of studies over the past 30 

years. More recently, VOC biomarker studies on esophageal 

cancer and malignant pleural mesothelioma have begun to 

surface as well. However, despite the sizeable body of 

literature, a consensus list of validated VOCs does not exist. 

2.3. Methodologic Principles 

VOC studies primarily concern themselves with two 

distinct but related outcomes. Characterization studies seek to 

discover VOCs significantly associated with cancer, while 

diagnostic studies evaluate the ability of VOC profiles to 

determine the presence of cancer. While the latter approach is 

of greater clinical interest, the approaches are complimentary 

and a majority of studies employ both. 

Many techniques and technologies have been developed 

over the years to enhance VOC extraction and analysis [31]. 

2.3.1. Breath Sampling 

Exhaled breath is typically either collected and analyzed 

immediately or stored in containers for transport to a VOC 

detector. Given the presence of trace VOC concentrations, 

breath samples often undergo preconcentration with 

solid-phase microextraction (SPME) to improve VOC 

detection. The most common VOC containers are sampling 

bags (e.g., Tedlar, Mylar). Sampling bags are cheap, 

chemically inert, and readily interface with numerous other 

lab and clinical equipment for preconcentration and/or 

detection. However, sampling bags are susceptible to leakage, 

UV degradation, and water condensation. 

Once exhaled breath samples are collected and 

preconcentrated, they undergo VOC detection and profiling. 

2.3.2. VOC Detection 

VOC detection is primarily based on mass spectrometry and 

electronic nose (e-nose) technologies (Figure 2). 

 

Figure 2. Detection and analysis of exhaled VOCs. Left: Exhaled VOCs are a complex mixture of different compounds (depicted by triangle, circle, and square 

symbols). The chemical analysis approach is represented by GC-MS, which separates VOCs and allows identification based on mass/charge ratios. The pattern 

approach is represented by e-nose. Cross-reactive sensors bind to VOCs and generate a characteristic composite signal, which then undergoes classification by 

pattern-recognition algorithms. Reprinted from “Breathomics in Lung Disease “by van der Schee MP, et al., 2015, Chest, 147 (1): 224-231, Copyright 2015, 

with permission from Elsevier. 

Gas chromatography-mass spectrometry (GC-MS) is the 

current gold standard for VOC analysis. Compounds in 

exhaled breath are separated by gas chromatography and 

ionized in the mass spectrometer. VOCs can then be identified 

based on their mass/charge ratios. GC-MS allows for chemical 

identification and quantification of VOCs. 

However, GC-MS technology is slow, expensive, labor 

intensive, and requires skilled operation. E-nose is rapidly 

emerging as a more practical alternative for VOC detection 

and essentially rely on pattern recognition. Sensors react to 

VOCs in exhaled breath and produce electrical signals, which 

combine to generate a composite pattern of surrounding air 

components, or “breathprint,” that can be further analyzed. 

Unlike GC-MS, selective characterization and 

identification of VOCs is not possible. However, sensor arrays 

are cheaper, portable, and provide real-time results, making 

them more suitable for point-of-care use than GC-MS. 

2.3.3. VOC Analysis 

VOC analysis typically evaluates the breath composition of 

cancer and benign subjects to characterize malignancy using 
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two main approaches: (1) VOC identification, and (2) VOC 

patterning. VOC identification uses GC-MS to generate a 

differential panel of known and discrete VOCs, while VOC 

patterning uses e-nose to generate a discriminant breathprint 

from unknown and aggregate VOCs. In either case, rigorous 

statistical analyses can be used to develop a VOC biosignature 

of malignant disease and educate diagnostic models. 

3. Thoracic Malignancies & VOCs 

Our review included 66 publications since 1990 using 

exhaled breath VOCs to determine thoracic cancer. 

In general, studies sought to identify VOCs uniquely 

associated with thoracic cancer (n = 39), and/or test the ability 

of VOCs to determine malignancy (n =61). Within included 

studies, lung (n = 53, Table 1), mesothelioma (n = 7, Table 2), 

and esophagogastric (n = 6, Table 3) cancers were the primary 

cancers of interest. One study investigated VOCs as 

biomarkers for both lung cancer and mesothelioma. Studies 

typically compared patients with thoracic cancer against a 

healthy control population and/or patients with benign 

conditions. Cancer cohorts were often of mixed histological 

subtype and staging. MS-based techniques were the most 

common analytical platforms (n = 42 studies) followed by 

electronic sensor-based (n=28). 

A total of 439 significant VOCs were reported in 

association with diagnosis for thoracic cancers (Tables 4-6). 

For the most part, these VOCs were aromatic compounds, 

aldehydes, alkanes, lipids, ketones, and sulfur-containing 

compounds (Figure 3). The most common VOCs associated 

with thoracic cancer were benzene (n = 10 studies), 

ethylbenzene (n = 9), hexanal (n = 9), isoprene (n = 9), 

propanol (n=8), styrene (n=8), propylbenzene (n=7), and 

xylene (n=7). 

Sensitivities and specificities ranged from 51-100% and 11 

-100%, respectively. Diagnostic VOC panels, ranging from 1 

to 500 VOCs, were described and identified in 37 studies. 

Table 1. Summary of VOC studies on lung cancer. 

Author Cohorts Histology NSCLC (Adeno, SCC), SCLC, other Staging (I, II, III, IV) 

Bajtarevic et al. [32] 65 LC vs. 31 H 220 LC vs. 441 H 47 (25, 17), 15, 3 NR 

Buszewski et al. [33] 29 LC vs. 44 H 11(), 18 NR 

Broza et al. [34] 12 LC vs 5 PN NR 9, 3, 0, 0 

Cai et al. [35] 57 LC vs. 72 H 53 (), 4 NR 

Chang et al. [36] 37 LC vs. 48 H 36 (27, 9), 0, 1 25, 6, 5, 1 

Chen et al. [37] 29 LC vs. 20 B 25 (19,6), 4 NR 

Chen et al. [38] 5 LC vs. 5 H [50 training] NR NR 

Corradi et al. [39] 71 LC vs. 67 B 71 (48, 23) 45, 7, 12, 7 

D'Amico et al. [40] 28 LC vs. 36 H vs. 28 CM 24(18, 6), 4 NR 

Di Natale et al. [41] 35 LC vs. 27 B NR NR 

Dragonieri et al. [42] 10 LC vs. 10 CM 10 (4, 4) 5, 1, 4, 0 

Fu et al. [43] 97 LC vs. 32 PN 88 (33, 32), 9 34, 16, 24, 11 5LD, 4ED 

Fuchs et al. [44] 12 LC vs. 24 H 8(), 4 12L 

Gaspar et al. [45] 18 LC vs. 10 H 17 (), 1 0, 0, 0, 18 

Gasparri et al. [46] 21 LC vs. 20 B [105 training] 56 (42, 14), 0, 14 40, 18, 6 (III+IV) 

Handa et al. [47] 50 LC vs. 39 H 42 (32, 10), 8 13, 6, 8, 23 

Huang et al. [48] 12 LC vs. 29 H [203 training] 53 (52, 1), 1,2 37, 7, 11, 1 

Hubers et al. [49] 18 LC vs. 8 B [51 training] 28 (14, 10), 6, 4 5, 5, 14, 14 

Kischkel et al. [50] 31 LC vs. 62 H 19 (), 12 NR 

Kononov et al. [51] 65 LC vs. 53 H 59 (), 6 30E, 35L 

Kort et al. [52] 144 LC vs. 146 B 144 (93, 42), 18 22E, 122L 

Ligor et al. [53] 65 LC vs. 31 H 47(), 15, 3 NR 

Lu et al. [54] 98 LC vs. 116 B 86 (48, 38), 12 2, 6, 44, 46 

Machado et al. [55] 14 LC vs. 62 B [59 training] 21 (), 7 4, 1, 8, 9 4 LD, 2ED 

Mazzone et al. [56] 83 LC vs. 137 B 83 (50, 23), 9 32, 9, 19, 23 

Mazzone et al. [57] 49 LC vs. 94 B 49 (27, 13) 14, 4, 15, 16 

Molina et al. [58] 68 vs. 126 B 46 (13, 20), 9, 13 14E, 54L 

Oguma et al. [59] 116 LC vs. 37 H 91 (55, 18, 18), 25 9, 2, 47, 58 

Peled et al. [60] 53 LC vs 19 PN 45 (30, 13), 5 23, 4, 10, 10 3LD, 3ED 

Phillips et al. [61] 193 LC vs. 211 H 189 (), 4 96, 24, 31, 17 

Phillips et al. [62] 65 LC vs. 96 PN [301 training] NR NR 

Phillips et al. [63] 73 LC vs. 142 B [301 training] 161 (108, 29) 1, 6 NR 

Phillips et al. [64] 193 LC vs. 211 H 189 (), 4 96, 24, 31, 17 

Phillips et al. [65] 67 LC vs. 41 H 57(), 10 14, 2, 20, 23 

Phillips et al. [66] 68 LC vs. 48 B 50 (23, 24), 10, 2 9, 3, 18, 27, 3X 

Poli et al. [67] 36 LC vs. 110 B 36 () 36E 

Rocco et al. [68] 23 LC vs. 77 B 23 (18, 5) NR 

Rudnicka et al. [69] 108 LC vs. 121 H 74(), 15, 19 Other 5, 12, 22, 35 15 ED 

Rudnicka et al. [70] 23 LC vs. 30 H 18 (3, 15), 2, 3 NR 

Sakumura et al. [71] 107 LC vs. 29 H NR 55, 15,28, 9 

Schallschmidt, [72] 37 LC vs. 23 H 30 (16, 11), 7 9, 9, 10, 9 

Shehada et al. [73] 149 LC vs. 56 CM NR 34E, 110L 
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Author Cohorts Histology NSCLC (Adeno, SCC), SCLC, other Staging (I, II, III, IV) 

Shlomi et al. [74] 16 early LC vs. 30 PN [73 late LC] 82 (73, 9), 7 9, 7, 20, 53 

Song et al. [75] 43 LC vs. 41 H 43 (19, 24) 13, 7, 6, 17 

Tirzite et al. [76] 252 LC vs. 223 B 208 (85, 87), 35, 9 
42, 32, 85, 54 

1 LD, 34 ED 

Tirzite et al. [77] 45 LC vs. 39 B [251 training] NR NR 

Ulanowska et al. [78] 137 LC vs. 143 H 98 (35, 60), 33, 6 NR 

Van der Goor et al. [79] 8 LC vs. 14 H [58 training] 44 (), 7, 1 4, 2, 18, 28 

Wang et al. [80] 233 LC vs. 140 H vs. 111 CM NR NR 

Wang et al. [81] 85 LC vs. 158 B 79 (38, 29), 4, 2 16, 11, 25, 29 

Westhoff et al. [82] 32 LC vs. 54 H 24 (), 7, 6 0, 3, 9, 17 

Yu et al. [83] 15 LC vs. 15 H 13 (10, 3), 2 0, 4, 9, 2 

Zou et al. [84] 58 LC vs. 20 B [171 training] 111 (67, 44), 12, 14 27, 16, 36, 46 4LD, 8ED 

Table 1. Continued. 

Author Sampling Method Detectio Method Key Biomarkers Sensitivity/Specificity 

Bajtarevic et al. [32] Bag, SPME GC-MS, PTR-MS 21 VOCs 80.0/100.0% 

Buszewski et al. [33] Bag, SPME Canines, GC-TOF-MS Profile 82.20/82.40% 

Broza et al. [34] Bag, SPME e-nose, GC-MS Profile 100.0/80.0% 

Cai et al. [35] Bag e-nose 3 VOCs 76.0/94.0% 

Chang et al. [36] Bag, TD e-nose Profile 79.0/72.0% 

Chen et al. [37] Bag, SPME GC-FID/MS 11 VOCs 86.2/70.0% 

Chen et al. [38] Bag, SPME e-nose, GC 11 VOCs 80.0/80.0% 

Corradi et al. [39] BioVOC tube, SPME GC-MS 6 VOCs (+ EBC) 72.5/75.8% 

D'Amico et al. [40] Bag, SPME e-nose, GS-MS Profile 89.3/75.0% 

Di Natale et al. [41] Bag e-nose Profile 100.0/94.0% 

Dragonieri et al. [42] VOC filter, Bag e-nose Profile NR (85% accuracy) 

Fu et al. [43] Bag, Silicon Microreactor FT-ICR MS 2-4 VOCs 89.8/81.3% 

Fuchs et al. [44] GTS, HSV, SPME GC-MS 4 VOCs 75.0/95.8% 

Gaspar et al. [45] HSV, Bag, SPME GC-(TOF)-MS 17 VOCs NR 

Gasparri et al. [46] Mouthpiece, Bag e-nose Profile 81.0/100.0% 

Handa et al. [47] CO2-controlled inlet IMS-MCC 10 VOCs 76.0/100.0% 

Huang et al. [48] ETT, Capnometer, Bag e-nose Profile 83.3/86.2% 

Hubers et al. [49] VOC Filter, Bag e-nose Profile 94.0/13.0% 

Kischkel et al. [50] GTS, HSV, SPME GC-MS 12 VOCs NR 

Kononov et al. [51] Vapor dilution e-nose Profile 95.0/100.0% 

Kort et al. [52] VOC filter, TD e-nose Profile 94.4/32.9% 

Ligor et al. [53] GTS, Bag, SPME GC-MS 8 VOCs 51.0/100.0% 

Lu et al. [54] Bag e-nose Profile 94.2/92.8% 

Machado et al. [55] MB, Bag, TD e-nose, GC-MS Profile 71.4/91.9% 

Mazzone et al. [56] Corrugated tubing e-nose Profile 70.0/86.0% 

Mazzone et al. [57] NR e-nose Profile 73.3/72.4% 

Molina et al. [58] ECOScreen2 GC-TOF/MS 5 VOCs 86.8/67.5% 

Oguma et al. [59] Double cold trap GC-FID/MS 2 VOCs (either) 75.0/78.0% 

Peled et al. [60] Bag, Tenax Sorbent tube e-nose GC-MS Profile 86.0/96.0% 

Phillips et al. [61] BCA, ST, TD GC-MS 16 VOCs 84.6/80.0% 

Phillips et al. [62] BCA, ST, TD GC-MS 1 VOC 75.4/85.0% 

Phillips et al. [63] TD, ST GC-MS 500 VOCs 68.0/68.4% 

Phillips et al. [64] Bag, SPME GC-MS 30 VOCs 84.5/81.0% 

Phillips et al. [65] BCA, ST, TD GC-MS 9 VOCs 85.1/80.5% 

Phillips et al. [66] BCA, ST, TD GC-MS 22 VOCs 71.7/66.7% 

Poli et al. [67] Teflon bulb, SPME GC-MS 13 VOCs 72.2/93.6% 

Rocco et al. [68] Adsorbing Cartridge, TD e-nose Profile 86.0/95.0% 

Rudnicka et al. [69] Bag, SPME GC-MS 7 VOCs 86.4/86.4% 

Rudnicka et al. [70] Bag, SPME GC-TOF/MS 6 VOCs NR 

Sakumura et al. [71] Bag, cold trap GC-MS 5 VOCs 95.0/89.0% 

Schallschmidt, [72] Gas bulb, SPME GC-MS 19 VOCs 92.0/96.0% 

Shehada et al. [73] Bag e-nose Profile 92.0/80.0% 

Shlomi et al. [74] Bag, TD e-nose Profile 75.0/93.3% 

Song et al. [75] Bag, SPME GC-MS 1 VOC 93.0/92.7% 

Tirzite et al. [76] Bag e-nose Profile 96.2/90.6% 
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Author Sampling Method Detectio Method Key Biomarkers Sensitivity/Specificity 

Tirzite et al. [77] Bag e-nose Profile 88.9/68.8% 

Ulanowska et al. [78] Bag, SPME GC-MS 14 VOCs NR 

Van der Goor et al. [79] TD e-nose Profile 88.0/86.0% 

Wang et al. [80] Bag, SPME, TD GC-MS 10 VOCs 80.8/84.0% 

Wang et al. [81] Bag, SPME GC-MS 23 VOCs 96.5/97.5% 

Westhoff et al. [82] Teflon bulb, Sampling loop IMS-MCC 23 VOCs 100.0/100.0% 

Yu et al. [83] Bag, SPME GC-FID 5 VOCs NR 

Zou et al. [84] BCA, Bag, SPME, TD GC-MS 5 VOCs NR (0.672 - 1.00 AUC) 

Adeno – Adenocarcinoma; AUC – area under the ROC curve; B – Benign group of both healthy and comorbid subjects; BCA – Breath collection apparatus; CM 

– Group with pulmonary comorbidities; ED – Extensive disease; ETT – Endotracheal tube; FID – Flame ionizing detector; FT – Fourier transform; GC – Gas 

chromatography; GTS – Gastight syringe; H – Healthy group with no comorbidities; HSV – Headspace Vial; ICR – Ion cyclotron resonance; IMS – Ion mobility 

spectrometry; LC – Lung cancer group; LD – Limited disease; MCC – Multi-capillary column; MS - Mass spectrometry; NR – Not reported; NSCLC – 

Non-small cell lung cancer; PN – Group with benign pulmonary nodules; Profile – composite breathprint of VOCS; PTR – Proton transfer reaction; SCC – 

Squamous cell carcinoma; SCLC – Small cell lung cancer; SPME – Solid phase microextraction; ST – Sorbent trap; TD – Thermal desorption; TOF – Time of 

flight; VOCs – Volatile organic compounds 

Table 2. Summary of VOC studies on malignant pleural mesothelioma. 

Author Cohorts Histology Staging (I, II, III, IV) Sampling Method 

Chapman et al. [85] 20 MPM vs. 42 H vs. 18 ARD NR 1, 19, X, X one-way non-rebreathing valve, Bag 

de Gennaro et al. [86] 13 MPM vs. 13 H vs. 13 AEx NR NR Bag, Sorbent Cart, TD 

Dragonieri et al. [87] 13 MPM vs. 13 H vs. 13 ARD 
9 epithelial, 2 biphasic, 2 

desmoplastic 
8, 3, 2, X VOC filter, Bag 

Gilio et al. [88] 14 MPM vs. 20 H [5 AEx external] NR NR Bag, TD 

Lamote et al. [89] 
14 MPM vs. 16 H vs. 19 AEx vs. 15 

ARD 
NR NR VOC filter, Bag, TD 

Lamote et al. [90] 23 MPM vs. 21 H vs. 22 AEx NR NR Disposable mouthpiece, VOC filter 

Lamote et al. [91] 

52 MPM vs. 52 H vs. 59 AEx vs. 41 

ARD vs. 70 CM vs. 56 LC 
NR NR Disposable mouthpiece, Bag 

56 LC vs.52 H vs. 59 AEx vs. 41 

ARD vs. 70 CM 

Table 2. Continued. 

Author Detection Method Key Biomarkers Sensitivity/Specificity 

Chapman et al. [85] e-nose Profile (v. H) 90/91% 

  Profile (v. H v. ARD) 90/88% 

de Gennaro et al. [86] GC-MS 11 VOCs 84.6/11% 

Dragonieri et al. [87] e-nose Profile (v. H) 92/69% 

Gilio et al. [88] GC-MS 10 VOCs 100/50% 

Lamote et al. [89] e-nose Profile (v. ARD) 92/86% 

  Profile (v. H v. ARD) NR (80% accuracy) 

  Profile (v. AEx) 80/64% 

  Profile (v. ARD) 75/64% 

  Profile (v. Ex+ARD) 82/55% 

 GC-MS 8 VOCs (v. H) 64/79% 

  17 VOCs (v. AEx) 93/100% 

  7 VOCs (v. ARD) 79/80% 

  19 VOCs (v. Ex+ARD) 100/91% 

Lamote et al. [90] MCC-IMS 2 VOCs (v. H) 96/67% 

  6 VOCs (v. AEx) 87/86% 

  4 VOCs (v. H+AEx) 87/70% 

Lamote et al. [91] MCC-IMS 16 VOCs (v. H) 89/42% 

  13 VOCs (v. AEx) 87/90% 

  19 VOCs (v. ARD) 89/73% 

  19 VOCs (v. Ex+ARD) 94/80% 

  9 VOCs (v. CM) 71.2/87% 

  32 VOCs (v. LC) 73/71% 

  20 VOCs (v. H) 77/65% 

  22 VOCs (v. AEx) 89/90% 

  5 VOCs (v. CM) 64.3/77% 

AEx – Group with known asbestos exposure; ARD – Group with asbestos-related disease; AUC – area under the ROC curve; CM – Group with pulmonary 

comorbidities; GC – Gas chromatography; H – Healthy group with no comorbidities; IMS – Ion mobility spectrometry; LC – Lung cancer group; MCC – 

Multi-capillary column; MPM – Malignant pleural mesothelioma; MS - Mass spectrometry; NR – Not reported; Profile – composite breathprint of VOCS; TD – 

Thermal desorption; VOCs – Volatile organic compounds 
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Table 3. Summary of VOC studies on esophageal cancer. 

Author Cohorts Histology Staging (I, II, III, IV) Sampling Method 

Chan et al. [92] 66 BE vs. 56 B NR NR NR 

Kumar et al. [93] 18 EGC vs. 17 H vs. 18 CM NR NR Bag, GTS 

Kumar et al. [94] 81 EGC vs. 129 B 81 17, 20, 44, X Bag, GTS 

Markar et al. [95] 163 EGC vs. 172 H NR NR Bag, GTS 

Peters et al. [96] 129 BE vs. 132 H vs. 141 CM NR NR NR 

Zou et al. [97] 29 EC vs. 57 H NR 1, 7, 7, 14 NR 

Table 3. Continued. 

Author Detection Method Key Biomarkers Sensitivity/Specificity 

Chan et al. [92] e-nose Profile 82/80% 

Kumar et al. [93] SIFT-MS 4 VOCs NR (0.91 AUC) 

Kumar et al. [94] SIFT-MS 8 VOCs 86.7/81.2% 

Markar et al. [95] SIFT-MS 5 VOCs 80/81% 

Peters et al. [96] e-nose Profile (v. H), Profile (v. CM), Profile (v. B) 57/67%, 64/74%, 91/74% 

Zou et al. [97] PTR-MS 7 VOCs 86.2/89.5% 

AUC – area under the ROC curve; B – Benign group of both healthy and comorbid subjects; BE – Group with Barrett’s esophagus; CM – Group with esophageal 

comorbidities; EGC – esophagogastric cancer; GC – Gas chromatography; GTS – Gastight syringe; H – Healthy group with no comorbidities; IMS – Ion mobility 

spectrometry; LC – Lung cancer group; MCC – Multi-capillary column; MPM – Malignant pleural mesothelioma; MS - Mass spectrometry; NR – Not reported; 

Profile – composite breathprint of VOCS; PTR – Proton transfer reaction; SIFT – Selected-ion flow-tube mass spectrometry; TD – Thermal desorption; VOCs – 

Volatile organic compounds 

Table 4. VOCs identified in lung cancer. 

Author Significant VOCs 

Bajtarevic et al. 

[32] 

21 VOCs: 2-Butanone, Benzaldehyde, 2,3-Butanedione, 1-Propanol, 2-Butanone, 3-hydroxy-, 3-Butyn-2-ol, Butane, 2-methyl-, 2-Butene, 

2-methyl-, Acetophenone, 1-Cyclopentene, Methyl propyl sulfide, Urea, tetramethyl-, n-Pentanal, 1,3-Cyclopentadiene, 1-methyl-, 2-Butanol, 

2,3-dimethyl-, Isoquinoline, 1,2,3,4-tetrahydro-, Undecane, 3,7-dimethyl-, Benzene, cyclobutyl-, Butyl acetate, Ethylenimine, n-Undecane 

Buszewski et al. 

[33] 

12 VOCS: acetone, benzene, butanal, 2-butanone, ethyl acetate, ethyl benzene, furan, 2-pentanone, propanal, 1-propanol, 2-propanol, 2 

propenal 

Broza et al. [34] 5 VOCs: 2-methyl-1-pentene, 2-hexanone, 3-heptanone, styrene, 2,2,4-Trimethyl-hexane 

Cai et al. [35] 3 VOCs: hexane, 2,2,4,6,6-pentamethylheptane, 1,26-trimethylnaphthalene 

Chen et al. [37] 
11 VOCs: Styrene, Decane, Isoprene, Benzene, Undecane, 1-hexene, Hexanal, Propyl Benzene, 1,2,4-trimethyl benzene, Heptanal, Methyl 

cyclopentane 

Chen et al. [38] 
11 VOCs: Styrene, Decane, Isoprene, Benzene, Undecane, 1-hexene, Hexanal, Propyl benzene, 1,2,4-trimethyl benzene, Heptanal, Methyl 

Cyclopentane 

Corradi et al. 

[39] 
6 VOC: pentane, 2-methyl pentane, hexane, ethyl benzene, heptanal, trans-2-nonenal 

Fu et al. [43] 4 VOCs: 2-butanone, 2-hydroxyacetaldehyde, 3-hydroxy-2-butanone, 4-hydroxyhexenal 

Fuchs et al. [44] 4 VOCs: pentanal, hexanal, octanal, nonanal 

Gaspar et al. [45] 

17 VOCs: Nonadecane (n-C19H40), Eicosane (n-C20H42), Heneicosane (n-C21H44), Docosane (n-C22H46), 2-methyldodecane, 

2-methyltridecane, branched-pentadecane (C15H32), 2-methylpentadecane, 3-methyltridecane, Heptadecane (n-C17H36), 

2-methylundecane, 2-methyltetradecane, 3-methyltetradecane, Pentadecane (n-C15H32), 3-methylpentadecane, branched-hexadecane 

(C16H34), 2-methylhexadecane 

Handa et al. [47] 
11 VOCs: n-Dodecane, 3-methy1-1=Butanol, 2-Hexanol, 2-Metylbutylacetat, Cyclohexanone, Iso-propylamin, n-Nonanal, Ethylbenzol, 

Hexanal, Heptanal, 3-Methyl-1-butanol 

Kischkel et al. 

[50] 

12 VOCs: Acetonitrile, Benzene, 2,5-Dimethylfuran, Acetone, Butanal, Hexanal, Dimethyl sulfide, Dimethyl formamide, Toluene, Propanal, 

Isopropanol, 1-Propanol 

Ligor et al. [53] 8 VOCs: 1-propanol, 2-butanone, 3-butyn-2-ol, benzaldehyde, 2-methyl-pentane, 3-methyl-pentane, n-pentane, n-hexane 

Machado et al. 

[55] 
11 VOCs: Isobutane, Methanol, Ethanol, Acetone, Pentane, Isoprene, Isopropanol, Dimethylsulfide, Carbon disulfide, Benzene, Toluene 

Molina et al. [58] 

10 VOCs: p-cresol (4-methylphenol), eicosenamide, hexadecylindane, cumyl alcohol (2-Phenyl-2-propanol), 

2,4-bis-dimethylbenzyl-6-t-butylphenol, monostearin (Glycerol monostearate), spiro-2,4-heptane-1,5-dimethyl-6-methylene, 

13-heptadecyn-1-ol, methyl stearate, 2,6-bis-1,1-dimethylethyl-4-(1-methyl-1-phenylethyl)phenol 

Oguma et al. [59] 2 VOCs: Cyclohexane, Xylene 

Peled et al. [60] 1 VOC: 1-octene 

Phillips et al. 

[61] 

16 VOCs: 1,5,9-Cyclododecatriene, 1,5,9-trimethyl-, Pentan-1,3-dioldiisobutyrate, 2,2,4-trimethyl, Benzoic acid, 4-ethoxy-, ethyl ester, 

Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester, 10,11-dihydro-5H-dibenz-(B,F)-azepine, 

2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)-, Benzene, 1,1-oxybis-, Furan, 2,5-dimethyl-, 1,1-Biphenyl, 2,2-diethyl-,  

3-Pentanone, 2,4-dimethyl-, trans-Caryophyllene, 1H-Indene, 2,3-dihydro-1,1,3-trimethyl-3-phenyl-, 1-Propanol, Decane, 4-methyl-, 

1,2-Benzenedicarboxylic acid, diethyl ester, 2,4-Hexadiene, 2,5-dimethyl- 

Phillips et al. 30 VOCs: Isopropyl alcohol, 4-Penten-2-ol, Ethane, 1,1,2-trichloro-1,2,2-trifluouro-, Propane, 2-methoxy-2-methyl-, 1-Propene, 
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Author Significant VOCs 

[64] 1-(methylthio)-, (E)-, 2,3-Hexanedione, 5,5-Dimethyl-1,3-hexadiene, 3-Hexanone, 2-methyl-, 1H-Indene, 2,3-dihydro-4-methyl-,Camphor, 

Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-,(1S)-, 3-Cyclohexene-1-methanol, a,a4-trimethyl-, p-menth-1-en-8-ol, 

5-Isopropenyl-2-methyl-7-oxabicyclo[4.1.0]heptan-2-ol, a Isomethyl ionone, 2,2,7,7-Tetramethyltricyclo[6.2.1.0(1,6)]undec-4-en-3-one, 

2,2,4-Trimethyl-1,3-pentanediol diisobutyrate, Benzoic acid, 4-ethoxy-, ethyl ester, Bicyclo[3.2.2]nonane-1,5-dicarboxylic acid, 5-ethyl 

ester, Pentanoic acid, 2,2,4-trimethyl-3-carboxyisopropyl, isobutyl ester, Propanoic acid, 2-methyl-, 

1-(1,1-dimethyl)-2-methyl-1,3-propanediyl ester, 1,2,4,5-Tetroxane, 3,3,6,6-tetraphenyl-, Benzophenone, 2,5-Cyclohexadien-1-one, 

2,6-bis(1,1-dimethylethyl)-4-ethylidene-, Furan, 2-[(2-ethoxy-3,4-dimethyl-2-cyclohexen-1-ylidene)methyl]-, Benzene, 

1,1-(1,2-cyclobutanediyl)bis-, cis-, Benzene, 1,1-[1-(ethylthio)propylidene]bis-, Anthracene, 1,2,3,4-tetrahydro-9-propyl-, 

9,10-Anthracenediol, 2-ethyl-, Benzene, 1,1-ethylidenebis[4-ethyl- 

Phillips et al. 

[65] 

9 VOCs: Butane, Tridecane 3-methyl, Tridecane 7-methyl, Octane 4-methyl, Hexane 3-methyl, Heptane, Hexane 2-methyl, Pentane, 

5-methyl Decane 

Phillips et al. 

[66] 

22 VOCs: Styrene, 2,2,4,6,6-pentaheptane, 2-methylheptane, decane, propylbenzene, undecane, methylcyclopentane, 1-methyl-2-pentyl 

cyclopropane, trichlorofluoro methane, benzene, 1,2,4-trimethylbenzene, 2-methyl-(isoprene)1,3-butadiene, octane, 1-hexene, 

3-methylnonane, 1-heptene, 1,4-dimethylbenzene, 2,4-dimethylheptane, hexanal, cyclohexane, 1-methylethenylbenzene, heptanal 

Poli et al. [67] 
13 VOCs: Isoprene, 2-methylpentane, pentane, ethylbenzene, xylenes total, Trimethylbenzene, Toluene, Benzene, Heptane, Decane, 

Styrene, Octane, Pentamethylheptane 

Rudnicka et al. 

[69] 
7 VOCs: Acetone, isoprene, methyl acetate, methyl vinyl ketone, cyclohexane, 2-methylheptane, cyclohexanone 

Rudnicka et al. 

[70] 
6 VOCs: isopropyl alcohol, styrene, carbon disulfide, ethylbenzene, 2-propenal, propane. 

Sakumura et al. 

[71] 
5 VOCs: Hydrogen cyanide, Methanol, Acetonitrile, Isoprene, 1-propanol 

Schallschmidt, et 

al. [72] 

19 VOCs: n-pentane, n-hexane, n-heptane, n-octane, n-dodecane, 3-methylpentane, cyclohexane, benzene, ethylbenzene, n-propylbenzene, 

propanal, n-butanal, n-hexanal, n-octanal, n-nonanal, n-decanal, 1-butanol, 2-butanone, 2-pentanone 

Song et al. [75] 2 VOCs: 1-butanol, 3-hydroxy-2-butanone 

Ulanowska et al. 

[78] 

14 VOCs: Pentanal, Hexanal, Nonane, Ethanol, Acetone, Butane, Dimethyl sulfide, Isoprene, Propanal, 1-propanol, 2-pentanone, furan, 

o-xylene, Ethylbenzene 

Wang et al. [80] 
11 VOCs: heneicosane, 3-ethyltoluene, 1,2,3-trimethylbenzene, N-propylbenzene, propylcyclohexane, indane, 1-methyl-3-propylbenzene, 

o-xylene, 4-methyl-2-pentanone, 5-methylindan and methylcyclohexane 

Wang et al. [81] 

23 VOCs: hexadecanal, eicosane, 5-(2-methyl-)propylnonane, 7-methylhexadecane, 8-methylheptadecane, 2,6- di-tert-butyl-, 

4-methylphenol, 2,6,11-trimethyldodecane, 3,7-dimethylpentadecane, nonadecane, 8-hexylpentadecane, 4-methyltetradecane, 

2,6,10-trimethyltetradecane, 5-(1-methyl-)propylnonane, 2-methylnaphthalene, 2-methylhendecanal, nonadecanol, 2-pentadecanone, 

tridecanone, 5-propyltridecane, 2,6-dimethylnaphthalene, tridecane, 3,8-dimethylhendecane, 5-butylnonane 

Yu et al. [83] 5 VOCs: Benzene, Styrene, Propyl benzene, Decane, n-Undecane 

Zou et al. [84] 5 VOCs: nonane,5-(2-methyl-)propyl-; phenol,2,6-di-tert-butyl-,4-methyl-; dodecane,2,6,11- trimethyl-; hexadecanal; pentadecane,8-hexyl- 

Table 5. Significant VOCs identified in malignant pleural mesothelioma. 

Author Significant VOCs 

de Gennaro 

et al. [86] 

17 VOCs: Cyclopentane, cyclohexane, dodecane, xylene, toluene, decane, methylcyclohexane, dimethylnonane, benzaldehyde, limonene, 

α-Pinene, β-Pinene, 1,2-pentadiene, methyl-octane, styrene, trimethylbenzene, acetophenone 

Gilio et al. 

[88] 

10 VOCs: acetophenone, α-pinene, 1-hexonol-2-ethyl, p-benzoquinone, 2,2,4,6,6-pentamethyl-heptane, 1-propanol, benzonitrile, benzene, 

ethylbezene, toluene 

Lamote et 

al. [89] 

41 VOCs: Nonane, Propylbenzene, Benzonitrile, Isoprene, Limonene, 3-methylpentane, 1,3-dichlorobenzene, Ethanol, 2-ethyl-1-hexanol, 

Nonanal, 2-methyl-1-propanol, Methylcyclopentane, Cyclohexane, 1,2,4-trichlorobenzene, Naphtalene, Phenol, Chloroform, Linalool, 

Furfural, Bromobenzene, Beta-pinene, Diethyl ether, Hexane, Isothiocyanatocyclohexane, 1,2-dichlorobenzene, n-Butylbenzene, 

Methylbenzoate, 1,2,3-trichlorobenzene, Tert-butylbenzene, m/p-xylene, 2,2,4-trimethylpentane, Hexamethyldisiloxane, VOC IK 679, VOC 

IK 720, VOC IK 931, VOC IK 1100, VOC IK 1287, VOC IK 1233, VOC IK 1309, VOC IK 1349, VOC IK 1493 

Table 6. Significant VOCs identified in esophageal cancer. 

Author Significant VOCs 

Kumar et al. [93] 5 VOCs: Hexanoic acid, Phenol, Methyl phenol, Ethyl Phenol, Methanol 

Kumar et al. [94] 
13 VOCs: Nonanal, Decanal, Butyric Acid, Hexanoic acid, Phenol, Methyl Phenol, Heptanal, Ethyl Phenol, Butanal, Pentanal, Hexanal, 

Pentanoic acid, Octanal 

Markar et al. [95] 5 VOCs: Butyric Acid, Pentanoic Acid, Hexanoic Acid, Butanal, Decanal 

Zou et al. [97] 
12 VOCs: Dimethyl sulfide, Thioethanol, Phenol, 1,3-cycloheptadiene, Dimethylsulfone, 2-methyl-1,3-diazine, 

1-methylene-2-cyclohexene, Ethylbenzene, Xylene, Benzaldehyde, Acetaldehyde, Ethylene Oxide 
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Figure 3. Summary of chemical classes of VOCs found in different thoracic cancers. 

3.1. Lung Cancer 

A total of 53 studies on LC and VOCs were reviewed. 

VOCs uniquely associated with LC were reported in 32 

studies. A total of 336 VOCs were reported as significant 

biomarkers for LC—mainly consisting of alkanes (~30%), 

aromatic compounds (~22%), and aldehydes (~11%) (Figure 

3). The most common VOCs were Benzene, Styrene, 

Ethylbenzene, Propylbenzene, Propanol, 2-propanol, Pentane, 

Decane, Undecane, Hexanal, Heptanal, and Isoprene, which 

were used in at least 5 studies. 

The ability of VOCs to determine malignancy was tested in 

48 studies. Sensitivity and specificity ranged from 51-100% 

and 13.0 - 100%, respectively. Diagnostic VOC models, 

ranging from 1 to 500 discrete VOCs, were described and 

evaluated in 26 studies. Five studies tested the ability to 

diagnose LC patients using a single VOC. Song et al. [75] 

showed lung cancer could be diagnosed using two univariate 

models: 1-butanol with 95.3% sensitivity and 85.4% 

specificity, and 3-hydroxy-2-butanone with 93% sensitivity 

and 92.7% specificity. In a study with 233 LC cases and 140 

controls by Wang et al. [80], heneicosane was able to establish 

a diagnostic model with a sensitivity of 75.6%, specificity of 

78.9%, and overall accuracy of 76.7%. Oguma et al. [59] 

collected breath samples from 116 LC cases and 37 controls 

and analyzed 14 VOCs with gas chromatography. Using 

cyclohexane alone, they achieved a sensitivity of 53% and a 

specificity of 78% for the diagnosis of lung cancer. Using 

xylene alone, they achieved a sensitivity of 49% and a 

specificity of 86%. Using either cyclohexane or xylene, they 

achieved a sensitivity of 75% and a specificity of 78%. 

Corradi et al. [39] examined breath samples from 71 LC cases 

and 67 controls, which included patients with comorbidities 

and pulmonary nodules. Trans-2-nonenol was able to establish 

a diagnosis of lung cancer with a sensitivity of 60.6% and a 

specificity of 62.7%. In subgroup analyses of smoking 

exposure, sensitivity and specificity increased to 84.6% and 

83.3% in patients with less than 10 pack-years exposure, and 

75% and 73.3% in patients with less than 30 pack-years 

exposure. In a study by Molina et al. [58], p-cresol was able to 

discriminate between LC cases and H controls with 77.9% 

sensitivity and 74.2% specificity. 

3.1.1. Comorbid Cohorts 

Different disease states have been shown to alter the 

composition and concentration of VOCs in exhaled breath. 

Therefore, the presence of chronic conditions may complicate 

VOC detection and diagnosis of lung cancer. In addition to 

lung cancer, patients may also have hypertension, heart 

disease, and diabetes mellitus. Lung disease is particularly 

common and typically includes COPD, pulmonary nodules, 

and asthma. Pulmonary nodules may be benign or malignant, 

and early detection has been associated with improved 

survival [98]. 

i. Pulmonary Nodules 

Four studies examined the ability to determine malignancy 

in the presence of PNs. Peled et al. [60] collected breath 

samples from 53 patients with malignant PNs and 19 patients 

with benign PNs with similar smoking histories and 

comorbidities. GC-MS analysis identified a significantly 

higher concentration of 1-octene in the breath of LC patients, 

and the nanoarray distinguished between malignant and 

benign PNs with 86% sensitivity and 96% specificity. 

Similarly, Fu et al. [43] correctly identified malignant PNs 

from benign PNs with 89.8% sensitivity and 81.3% specificity. 

Broza et al. [34] evaluated over two dozen breath samples 

from 17 patients undergoing resection for suspicious PNs and 

was able to detect LC with 100% sensitivity and 80% 
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specificity. Likewise, Shlomi et al. [74] was able to detect LC 

from a cohort of suspicious PNs with 75% sensitivity and 93% 

specificity. 

One study examined the ability to predict the presence of 

suspicious pulmonary nodules on low-dose CT. Using a single 

unidentified VOC, Phillips et al. [62] predicted biopsy-proven 

lung cancer with 75.4% sensitivity and 85% specificity, and 

presence of suspicious pulmonary nodules with 80.1% 

sensitivity and 75.0% specificity. 

ii. Comorbidities 

Three studies aimed to characterize LC in the presence of 

comorbidities. In 2005, Poli et al. [67] found significantly 

higher levels of 2-methylpentane and isoprene and 

significantly lower levels of ethylbenzene and styrene in 

NSCLC patients vs COPD patients. Molina et al. [58] 

screened LC vs CM with 70% sensitivity and 61.1% 

specificity using 2,6-bis-1,1-dimethylethyl-4-(1-methyl-1- 

phenylethyl)phenol. Wang et al. [80] examined breath samples 

from 484 subjects and was able to distinguish between LC and 

CM groups with a 0.701 AUC using 1,2,4-trimethylbenzene. 

The authors concluded comorbidities may have significant 

interference in the selection of VOC markers for LC 

diagnosis. 

Ten studies examined the ability to diagnose LC in the 

presence of comorbidities. In the presence of comorbidities, 

seven studies reported an overall decrease in diagnostic 

accuracy and two studies reported an overall increase. All 

studies reported a decrease in specificity in the presence of 

comorbidities. Five studies reported an increase in sensitivity 

in the presence of comorbidities. Dragonieri et al. [42] 

correctly recognized LC with an overall accuracy of 90% 

amongst H subjects, which decreased to 85% amongst CM 

subjects. D’Amico et al. [40] recorded 85% sensitivity and 

100% specificity against H controls, which decreased overall 

to 92.8% sensitivity and 78.6% specificity against CM groups. 

Similarly, 3-way model of LC vs. H vs. CM recorded 89% 

sensitivity for LC and 75% specificity when compared with 

non-cancers. Shehada et al. [73] achieved 87% sensitivity and 

82% specificity versus H groups, which increased overall to 

92% sensitivity and 80% specificity versus CM groups. 

Molina et al. [58] correctly discriminated between LC and H 

subjects with 82.4% sensitivity and 88.7% specificity, which 

decreased overall to 86.8% sensitivity and 67.5% specificity 

against B subjects. Kort et al. [52] screened LC with 92.2% 

sensitivity and 51.2% specificity amongst H subjects, which 

decreased overall to 94.4% sensitivity and 32.9% specificity 

amongst B subjects. Gasparri et al. [46] considered whether 

the presence of comorbidities in LC patients could potentially 

affect VOC screening of H controls. With comorbidities, LC 

patients were diagnosed with 85% sensitivity and 88% 

specificity. Without comorbidities, LC patients were 

diagnosed with 76% sensitivity and 94% specificity. Two 

studies reported a decrease in sensitivity in the presence of 

comorbidities. Tirzite et al. [76] correctly diagnosed LC from 

H controls with 97.8% sensitivity and 68.8% specificity. 

Against B controls, sensitivity and specificity decreased to 

88.9% and 66.7%, respectively. Lu et al. [54] demonstrated a 

94.2% sensitivity and a 92.8% specificity for LC versus B 

controls. In a 3-way classification model between LC, H, and 

CM, performance decreased to 87.2% sensitivity and 80.6% 

specificity. One study reported no change in sensitivity in the 

presence of comorbidities. Wang et al. [81] demonstrated a 

96.5% sensitivity and a 97.5% specificity between LC and B 

controls. In a 3-way classification model of LC vs. H vs. CM, 

sensitivity remained unchanged while specificity decreased to 

87.5%. 

In summary, the presence of comorbidities on lung cancer 

diagnosis appears to increase sensitivity, decrease specificity, 

and decrease overall accuracy. Consequently, VOCs may hold 

greater potential for screening than diagnosis in patients with 

comorbidities. 

3.1.2. Classification 

Lung cancer is classified by histological and molecular 

subtype. The type of lung cancer can have significant 

implications for patient prognosis and therapeutic 

management [99]. The two major histological classifications 

are small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC). NSCLC accounts for roughly 85% of LC 

cases and mainly consists of adenocarcinoma (ADC), 

squamous cell carcinoma (SQC), and large cell carcinoma 

(LCC) [100]. NSCLC can be further subdivided into 

molecular subtypes based on the presence of genetic 

mutations, e.g. KRAS, TP53, Epidermal Growth Factor 

Receptor (EGFR), Anaplastic Lymphoma Kinase (ALK). 

i. Histology 

Two studies distinguished histological subtypes from 

controls. Oguma et al. [59] found that concentrations 

cyclohexane and xylene were significantly higher in patients 

with ADC or SCLC in controls, though the difference between 

controls and patients with SQC was less marked. Handa et al. 

[47] analyzed 115 VOC peaks from exhaled breath samples of 

50 LC patients (including 32 ADC) and 39 healthy subjects. 

n-Dodecane was able to separate adenocarcinoma and healthy 

subjects with a sensitivity of 81.3% and a specificity of 89.7%. 

Three studies distinguished histological subtypes from each 

other. Song et al. [75] examined breath samples from 43 

subjects with LC (including 19 ADC and 24 SQC) and 41 

healthy controls via GC-MS. Patients with adenocarcinoma 

were found to have significantly elevated concentrations in 

1-butanol and 3-hydroxy-2-butanone relative to SQC. Corradi 

et al. [39] studied breath samples from 71 patients with 

NSCLC (consisting of 48 ADC and 23 SQC) and 67 controls. 

Breath analysis revealed elevated concentrations of hexane in 

patients with ADC vs SQC. Fu et al. [43] examined breath 

samples from 97 cases and 88 healthy controls. Case 

participants consisted of 9 with SCLC and 88 NCLC, 

including 33 ADC and 32 SQC. Patients with SQC were found 

to have significant elevations in 4-hydroxyhexenal compared 

to adenocarcinoma. In addition, patients with SCLC were 

found to have significant elevations in the concentrations of 

4‐hydroxynonenal, pentanone, and n-pentanal compared to 

patients with NSCLC. 

ii. Mutations 
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Two studies sought to distinguish molecular subtypes from 

controls. In a study by Handa et al. [47], LC patients with EGFR 

mutations had significantly higher levels of n-Dodecane 

compared to LC patients without EGFR mutations, with a 

sensitivity of 85.7% and a specificity of 78.6%. In a study by 

Shlomi et al. [74], LC patients with EGFR mutations were 

discriminated from LC patients without EGFR mutations with a 

sensitivity of 79% and specificity of 85%. 

3.1.3. Stage 

The extent of lung cancer is most commonly described 

using the international TNM-based staging system. Stages 

range from one to four (I through IV) and take into account the 

size of the primary tumor, the involvement of regional lymph 

nodes, and the presence or absence of distant metastatic spread. 

The lower the stage, the less the cancer has spread. 

Three studies distinguished the stages of lung cancer from 

healthy controls. One approach distinguished between various 

stages and controls. Fu et al. [43] found the exhaled breath 

concentration of 2-butanone significantly higher in patients 

with stage I LC. A related study by Oguma et al. [59] found 

concentrations of cyclohexane and xylene increased 

significantly as the clinical stage of lung cancer advanced. In 

stage III patients, concentrations of xylene were significantly 

elevated. In stage IV patients, concentrations of cyclohexane 

and xylene were significantly elevated. 

Three studies distinguished the stages of lung cancer from 

each other. Fu et al. [43] found the exhaled breath 

concentration of 2-butanone significantly lower in patients 

with stage I LC compared to patients with stages II-IV LC. 

Corradi et al. [39] detected significantly elevated 

concentrations of ethyl benzene in stages III+IV compared to 

stages I+II. Oguma et al. [59] found concentrations of 

cyclohexane and xylene increased significantly as the clinical 

stage of lung cancer advanced. 

Two studies evaluated the ability to diagnose lung cancer by 

stages. A diagnostic model by Oguma et al. [59] was able to 

determine lung cancer with 75% sensitivity and 78% 

specificity, which decreased slightly to 73% sensitivity and 

78% specificity for early lung cancer. Lu et al. [54] analyzed 

214 breath samples by e-nose and was able to correctly 

identify LC with 94.2% sensitivity and 92.8% specificity. The 

authors detected stage II with 97.9% sensitivity and 70% 

specificity, stage III with 82.8% sensitivity and 81.8% 

specificity, and stage IV with 83.2% sensitivity and 81.6% 

specificity. 

Three studies evaluated the ability to diagnose early stage 

lung cancer versus late stage. Shehada et al. [73] was able to 

correctly distinguish early stage LC from late stage LC with 

34.5% sensitivity and 95% specificity. Mazzone et al. [56] was 

able to correctly distinguish early stage LC from late stage LC 

with 81% sensitivity and 73% specificity. Peled et al. [60] 

achieved excellent distinction between early and advanced 

stages of NSCLC with 86% sensitivity and 88% specificity. 

3.2. Malignant Pleural Mesothelioma 

A total of 7 studies on MPM and VOCs were reviewed. 

VOCs uniquely associated with MPM were identified in 3 

studies. A total of 68 VOCs were reported as significant 

biomarkers for MPM—mainly consisting of aromatic 

compounds (~30.9%), alkanes (~22.1%), and alkenes 

(~11.8%) (Figure 3). The most common VOCs were Toluene, 

Xylene, Acetophenone, 2-ethylhexanol, Hexane, 

Cyclohexane, Limonene, alpha-Pinene, and beta-Pinene, 

reported in at least 2 studies. 

The ability of VOCs to determine malignancy was tested in 

7 studies. Sensitivity and specificity ranged from 80 - 91% and 

80 – 89.5%, respectively. Diagnostic VOC models, ranging 

from 2 to 32 VOCs, were described and evaluated in 5 studies. 

Two studies characterized MPM with respect to healthy 

controls. de Gannero et al. [86] found cyclohexane alone to be 

highly discriminant for MPM against H controls. 

3.2.1. Asbestos Exposure 

Asbestos refers to a group of naturally occurring mineral 

fibers historically used in building materials and fabrics. 

Asbestos exposure (AEx) is a known cause of lung and pleural 

disease: inhaled asbestos fibers lead to oxidative stress and 

stimulate a protracted immune reaction that damages the 

pleura [101-103]. 

Two studies characterized MPM in the presence of asbestos 

exposure. In 2010, de Gennaro et al. [86] found cyclohexane 

to be highly discriminant for MPM against AEx controls. 

Lamote et al. [89] found cyclohexane and limonene highly 

discriminant for MPM against AEx controls. 

Five studies assessed the ability to diagnose MPM in the 

presence of asbestos exposure. All three studies reported an 

increase in diagnostic accuracy and specificity. Two studies 

reported a decrease in sensitivity. A 3-way classification 

model of MPM vs. H vs. AEx by de Gennaro et al. [86] was 

able to discriminate for MPM with 84.6% sensitivity and 

100% specificity. Giglio et al. [88] correctly predicted cancer 

with 100% specificity and 50% specificity on a prospective 

independent cohort of 5 AEx subjects. Lamote first 

distinguished MPM from H with 96% sensitivity and 67% 

specificity, which increased overall to 87% sensitivity and 

86% specificity against the AEx group, and decreased overall 

to 87% sensitivity and 70% specificity against the pooled B 

group [90]. In a subsequent study, Lamote distinguished MPM 

from H controls with 89% sensitivity and 42% specificity, 

which increased to 87% sensitivity and 90% specificity 

against the AEx cohort [91]. One study reported an increase in 

sensitivity. Lamote et al. [89] obtained 67% sensitivity and 

64% specificity against H subjects using electronic sensor 

array, which increased overall to 80% sensitivity and 64% 

specificity against AEx subjects. Using GC-MS, the authors 

obtained 64% sensitivity and 79% specificity against H 

subjects, which increased to 93% sensitivity and 100% 

specificity against AEx subjects. 

In summary, diagnostic accuracy and specificity for MPM 

appears to increase given a history of asbestos exposure. 

These results suggest that VOCs screening may yield lower 

false positive rates in patients with a history of asbestos 

exposure. 
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3.2.2. Asbestos-related Disease 

Asbestos-related disease (ARD) can be classified as benign 

(asbestosis, benign pleural effusions, benign pleural plaques 

and diffuse pleural thickening) and malignant (lung cancer, 

mesothelioma of the pleura and/or peritoneum) [101-103]. 

Four studies tested the ability to diagnose MPM in the 

presence of asbestos-related disease, including fibrosis and/or 

asbestos plaques. Three studies report an increase in 

diagnostic accuracy in the presence of ARD, while two studies 

report a decrease in diagnostic accuracy. Three studies report 

an increase in specificity while one study reports a decrease in 

specificity. Three studies report no changes in sensitivity, 

while one study reports an increase in sensitivity. Chapman et 

al. [85] correctly classified MPM from H groups with 90% 

sensitivity and 91% specificity; in a three-way classification 

of MPM, ARD, and H, the authors achieved 90% sensitivity 

and 88% specificity. Dragonieri et al. [87] correctly classified 

MPM with 85% accuracy against H subjects, which decreased 

to 81% accuracy against ARD subjects and 80% accuracy in a 

3-way classification model between MPM, ARD, and H 

groups. Lamote et al. [91] was able detect MPM from H 

controls with a 89% sensitivity and 42% specificity, which 

increased overall to 89% sensitivity and 73% specificity 

against the ARD cohort. Lamote et al. [89] obtained 67% 

sensitivity and 64% specificity against H subjects using 

electronic sensor array, which increased overall to 75% 

sensitivity and 64% specificity against ARD subjects. Using 

GC-MS, the authors obtained 64% sensitivity and 79% 

specificity against H subjects, which increased overall to 79% 

sensitivity and 80% specificity against ARD subjects. In a 

blinded validation cohort of 5 AEx individuals, a model by 

Gilio et al. [88] misclassified two patients found to have 

pleural plaques, suggesting a potential diagnostic challenge. 

Two studies examined the ability to diagnose MPM in the 

presence of asbestos-related disease and asbestos exposure 

(ARD + AEx). Given the combination of ARD+AEx, one 

study reports a decrease in accuracy compared to AEx alone. 

Another study reports mixed results: a decrease in accuracy 

using GC-MS, and an increase in accuracy using e-nose. Both 

studies report an increase in diagnostic accuracy compared to 

ARD alone. Lamote et al. [91] was able to distinguish MPM 

from ARD with 89% sensitivity and 73% specificity, which 

increased overall to 94% sensitivity and 80% specificity 

against a pooled cohort of AEx+ARD subjects. In a follow up 

study, Lamote et al. [89] used GC-MS to discriminate MPM 

from ARD with 79% sensitivity and 80% specificity, which 

increased overall to 100% sensitivity and 91% specificity 

when both AEx and ARD groups were pooled. Using 

electronic sensor technology, the authors discriminated MPM 

patients from ARD with 75% sensitivity and 64% specificity. 

When AEx and ARD patients were pooled, diagnostic 

performance increased overall to 82% sensitivity and 55% 

specificity. The authors found diethyl ether and nonanal to be 

highly discriminant for MPM vs. AEx+ARD. 

One study examined the determination of MPM in the 

setting of pulmonary disease. Lamote et al. [91] sampled 

breath from 330 participants with a history of asbestos 

exposure, asbestos-related disease, and/or pulmonary disease 

(e.g., COPD, cystic fibrosis, and lung cancer). The authors 

were detected MPM versus a pooled AEx + ARD cohort with 

94% sensitivity and 80% specificity, which decreased overall 

to 71.2% and 87% versus a CM cohort and 73% and 71% 

versus a LC cohort, respectively. 

In summary, diagnostic accuracy and specificity for MPM 

appears to increase in the presence of asbestos-related disease 

and may be further increased by history of asbestos exposure. 

3.3. Esophageal Cancer 

A total of 6 studies on EC and VOCs were reviewed. 

VOCs uniquely associated with EC were identified in 4 

studies. A total of 35 VOCs were reported as significant 

biomarkers for EC—mainly consisting of aldehydes (~28.6%), 

aromatic compounds (~28.6%), and fatty acids (~20.0%) 

(Figure 3). Notably, alkanes and ketones were not detected by 

any study. The most common VOCs were Phenol, Hexanoic 

Acid, Methyl Phenol, Ethyl Phenol, Decanal, Butanal, 

Pentanoic Acid, and Butyric Acid, reported in at least 2 studies. 

Of note, cancer groups typically included both esophageal and 

gastric adenocarcinoma; these cancers are considered 

comparable subtypes that have frequently been grouped 

together in neoadjuvant chemotherapy trials. Markar et al. [95] 

analyzed concentrations of 5 highly predictive VOCs and 

found no significant differences between esophageal and 

gastric cancer patients. 

The ability of VOCs to determine malignancy was tested in 

6 studies. Sensitivity and specificity ranged from 80 - 91% and 

80 – 89.5%, respectively. Diagnostic VOC models, ranging 

from 4 to 8 discrete VOCs, were described and evaluated in 6 

studies. Kumar et al. [93] noted exhaled breath concentrations 

of methanol, hexanoic acid, phenol, methyl phenol were 

clearly elevated in subjects with EC compared to H controls. A 

multicenter study by Markar et al. [95] was able diagnose 

esophagogastric cancer with 80% sensitivity and 81% 

specificity. 

3.3.1. Comorbidities 

One study sought to characterize EC in the presence of 

comorbidities. Kumar et al. [93] noted elevated breath 

concentrations of hexanoic acid, phenol, methyl phenol, and 

ethyl phenol in the EC group vs CM group. 

Two studies tested the ability to diagnose EC in the 

presence of comorbidities. In the aforementioned study by 

Kumar et al., subsequent ROC analysis found the same 4 

VOCs were able to discriminate EGC from CM with an AUC 

of 0.91. A subsequent study from the same team was able to 

discriminate between EC vs. H cohorts with 98% sensitivity 

and 91.7% specificity [94]. Between EC vs. B cohorts, 

sensitivity and specificity decreased to 87.5% and 82.9%, 

respectively. 

3.3.2. Barrett’s Esophagus 

Barrett’s esophagus is a precursor to esophageal cancer and 

its early identification has been associated with improved 

survival [104]. 
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Two studies examined the ability to diagnose Barrett’s 

Esophagus. Chan et al. [92] 2016 analyzed 66 BE patients and 

56 B with electronic sensor and achieved 82% sensitivity and 

81% specificity. More recently, a prediction model by Peters et 

al. [96] correctly differentiated between EC and H controls 

with 57% sensitivity and 67% specificity. 

One study examined the ability to diagnose Barrett’s 

Esophagus in the presence of comorbidities. In the same 

Peters et al. [96] study mentioned above, sensitivity and 

specificity increased to 64% and 74% versus CM groups and 

91% and 74% versus B groups, respectively. 

3.3.3. Stage 

The extent of esophageal cancer is described using an 

international TNM-based staging system similar to lung 

cancer. 

One study evaluated the ability to diagnose esophageal 

cancer by stages. Zou et al. [97] analyzed breath samples from 

29 EC cases and achieved a discriminant accuracy of 100%, 

71%, 86%, and 93% for stage I, II, III, and IV, respectively. 

However, the study population is relatively small (There were 

1, 7, 7, and 14 patients in stage I, II, III, and IV respectively) 

so the value of discriminant accuracy at different tumor stages 

may be not quite accurate. 

4. Discussion 

Interest in the use of exhaled breath VOCs to determine 

thoracic malignancies is growing. Almost half of all studies 

included in our review were published within the past 5 years 

alone. In addition, electronic sensor accounts for the majority 

of lung cancer studies published within the same time period 

and are gaining popularity over GC-MS as the VOC detection 

method of choice. The reliable performance of electronic 

sensor array combined with its many practical strengths make 

it an appealing technology for point-of-care screening and 

diagnosis. Concurrently, recent studies are less likely to 

identify specific VOCs. This trend reflects a broader and more 

holistic shift in our approach to exhaled breath VOCs as 

complex, dynamic, and multidimensional biomarkers for 

malignant disease unlikely to be adequately characterized by 

discrete singular compounds. Still, identification of VOCs 

remains useful for elucidating metabolic pathways of disease, 

enriching our understanding of underlying cellular processes, 

and generating hypothesis for novel therapeutic interventions. 

Exhaled breath VOCs in thoracic malignancies typically 

consisted of aromatics, aldehydes, alkanes, lipids, ketones, 

and sulfur-containing compounds. Aromatic compounds are 

usually considered to be pollutants from exogenous sources, 

including cigarette smoke, alcohol, and pollution. Most lung 

cancer patients have a long smoking history, and some studies 

found that certain aromatic compounds increased in the breath 

of smoking patients versus nonsmokers [50, 105]. These 

pollutants may result in peroxidative damage to PUFA, 

proteins, and DNA, leading to age-dependent diseases [106]. 

Aldehydes in the body come from 4 major sources [16]: (1) 

oxidation of fatty acids, where concentrations have been 

found to increase in concentration during inflammation and 

oxidative stress; (2) ethanol metabolism, where ethanol is 

degraded by alcohol dehydrogenase to produce acetaldehyde 

and subsequently oxidized by aldehyde dehydrogenase to 

acetate; (3) tobacco metabolism, where it’s formation is 

catalyzed by cytochrome P450 as part of the detoxification 

process; and (4) cigarette smoke (e.g., formaldehyde, 

acetaldehyde, ethanal, propanal, butanal). In patients with 

esophageal cancer, genetic dysregulation of aldehyde 

metabolism has been observed [95]. Alkanes are largely 

produced by oxidation of fatty acids, particularly during the 

peroxidation of polyunsaturated fatty acids (e.g., ethane, 

pentane) [16]. Protein oxidation and fecal flora may also yield 

alkanes (e.g., propane, butane) [107]. Lipids are required for 

the membrane synthesis, potentially due to accelerated cell 

proliferation. The upregulation of fatty acids has been 

reported in esophageal cancer tissue [108, 109]. Ketones, like 

other hydrocarbons, are mainly generated via fatty acid 

oxidation. During times of fasting or starvation, hepatocytes 

produce acetone via decarboxylation of excess Acetyl–CoA 

secondary to lipid peroxidation by cytochrome p450. In the 

state of cachexia, typically under illness conditions such as 

cancer, protein metabolism would increase and result in higher 

levels of ketone bodies. In addition to endogenous ketones, 

some occur naturally in the environment and are absorbed by 

the body (e.g., 2-butanone) [16]. The presence of volatile 

sulfur compounds (e.g. dimethyl sulfide, dimethyl disulfide, 

methanethiol) is largely the result of incomplete metabolism 

of methionine [107]. 

5. Conclusion 

There is considerable evidence to support the notion of 

exhaled breath VOCs to determine thoracic malignancies. A 

variety of breath sampling and analytical techniques have 

been able to determine the presence of lung cancer in 

particular. Similar studies on malignant pleural mesothelioma 

and esophageal cancer have begun to emerge within the past 

10 years with comparable and equally encouraging results. 

Despite their promise, the use of exhaled VOCs has not 

translated to routine clinical practice. Results between studies 

are widely inconsistent. Studies tend to manage covariates 

poorly and vary widely in methodology, making it difficult to 

generate consensus. Further, the lack of externally validated 

multicenter studies on independent cohorts remains a critical 

issue. In order to enhance reproducibility and facilitate the 

transition of exhaled VOCs into a clinical setting, the 

European Respiratory Society has published 

recommendations for standardization of sampling, analyzing 

and reporting of data [110]. Commercially available breath 

sampling devices offer several advantages over traditional 

sampling methods and may also further improve experimental 

validity [111]. The recently developed ReCIVA breath 

sampler is a quick and convenient device that is repeatable and 

provides the researcher with added control and functionality 

[112]. The use of standardized instrumentation to diagnose 

thoracic cancers via exhaled VOCs is an active area of 
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research—two major ongoing studies funded by the United 

Kingdom National Health Service are of particular interest 

[113, 114]. The Lung Cancer Indicator Detection (LuCID) 

study is an international multicenter prospective case-control 

cohort study which aims to identify an exhaled VOC 

biosignature that can accurately diagnose lung cancer. 

Exhaled breath will be sampled from up to 4000 patients with 

clinical suspicion of lung cancer. The PAN-cancer Early 

Detection (PAN) study is a prospective cross-sectional 

observational case-control study of up to 1500 participants 

evaluating whether breath VOCs can accurately distinguish 

between individuals with and without different cancer types, 

including esophagogastric cancer. The LuCID and PAN 

studies are the largest of their kind and may finally provide the 

insights necessary to move forward with a reliable and 

non-invasive biomarker for thoracic cancers. 
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