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Abstract: The algorithm of effective geometric hashing of the facial feature hyperspace for the accelerated search of the 

most similar face descriptors by their cosine similarity is described in the present study. The algorithm includes 6 required 

stages of processing descriptors extracted by a neural network from face images. The first stage is filtration of the descriptor 

database by selecting the most representative descriptor for each person from the set of descriptors corresponding to his/her 

different face images. The second stage is evaluation of a number of statistical values for all the components of the selected 

descriptors. The third stage is intermediate hashing through quantization of every descriptor component value so that almost 

the same quantity of descriptors corresponds to any quantum number. The fourth stage is statistical processing of the descriptor 

database to determine the most discriminative descriptor key components and their hierarchy. The fifth stage is calculation of 

the descriptor hash code for every most representative descriptor from the considered database. The sixth final stage is a 

special cataloging of data in the form of a multi-tiered directory ordered by the hash codes. The search acceleration is achieved 

through sparse processing of the whole directory when the hash code obtained for the requested person descriptor acts as a 

very selective search filter. The developed algorithm always provides the same absolute accuracy as the brute-force search. 

Through the example of the LFW dataset consideration, the average search acceleration by about 100 times is achieved under 

conditions that the descriptors have been extracted by a neural network trained on the WiderFace dataset with application of 

the additive angular margin loss function. 
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1. Introduction 

To find out the presence of the requested person image in 

the database, the automated methods of face images 

comparison have become especially popular in recent years. 

And when there is a large number of face images in the 

database, the time spent on searching for the most similar 

face image from the database to the requested person face 

image is extremely critical. The problem of quick processing 

of the face images database even transformed into a separate 

domain of scientific research [1]. At present, the most 

popular method for encoding the distinctive facial features is 

neural network extraction of the corresponding descriptor (a 

face feature vector usually normalized to the unity) from the 

multidimensional face features hyperspace [2–5]. This 

approach provides the possibility to reduce the face images 

comparison to the formal comparison of their descriptors 

applying one metric or another. In particular, the typical 

Euclidean distance can be applied as the first approximation 

or, as the opposite, some exotic metrics can be used (see, for 

example, [6, 7]). Whereas, the most applied measure of 

similarity is the cosine distance [7, 8]. In any case, despite 

the metric type, the problem of searching for a face image 

from a dataset, that is most similar to the face image of the 

requested person, is reduced to the search of the nearest 

neighbor point in an appropriate metric sense to the 

determined point of the multidimensional face features 

hyperspace [9, 10]. And such a problem can be accurately 
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solved by means of exhaustive (brute-force) search through 

comparison of the descriptors by their cosine similarity. 

When the number of face images in the database is equal to 

M, then the calculation complexity of the search algorithm is 

obviously proportional to M. If M is a very large value, then 

it takes too much time to brute force, which is often 

unacceptable. Moreover, starting from some values of M, the 

search algorithm parallelization as well as its transfer to GPU 

[10–12] are not already effective ways of its acceleration 

because of hardware limitations. The natural method of 

solution to such a problem is a special organization of data in 

the database [13, 14] (indexing, hashing, etc. [15, 16]) that 

allows the search process to be drastically accelerated. There 

are very many concrete implementations of the approach like 

that (see, for example, [10, 18–31]). But all of them allow the 

nearest neighbor to be found either approximately or with the 

allocation of large memory volume for index information and 

the necessity of the database re-indexing with a very high 

computational complexity. 

Taking into account the aforesaid, a logical question arises: 

is it possible, in principle, by means of quite a simple 

calculation without the need of allocation of large memory 

volume to index the database elements in such a way that the 

application of some search algorithm guarantees the nearest 

neighbor could be found accurately with such an average 

search time value which at least several times lower than the 

time of exhaustive search over all the database elements [32]? 

The present study is just devoted to this question on an 

example of the solution to the problem of descriptor-assisted 

search for a face image from the database that is most similar 

to the face image of the requested person. 

2. Theory and Results 

2.1. General Issues 

As a methodological basis for indexing the descriptors from 

a face image database, a well-known algorithm of geometric 

hashing [16] will be applied after a number of its 

modifications. 

So, let the descriptors dij=(d1, d2, …, dn, …, dN)ij
T
 be the 

vectors with unity length from the face features space with 

dimension N=512 (it can be higher or lower), which are 

extracted from the face images by a neural network, as an 

example, ArcFace with the ResNet backbone [5] that itself has 

been trained on a large face image dataset, for example, 

WiderFace [33]. 

The geometric hashing algorithm does not allow the nearest 

neighbor vector to be found accurately in the case when a 

requested vector belongs to the vicinity of multidimensional 

bound between feature vector clusters. Thus, it is necessary to 

apply some modifications to the classical geometric hashing 

algorithm. Further, such a well-known face image dataset as 

LFW [34] will be considered to concretize all the examples. 

All the stages, which are necessary for the preparation of the 

face image database, descriptors hashing, and accelerated 

index search, will be described below. 

2.2. Descriptors Filtration 

The search of the most representative descriptor Di ∈ {dij} 

for each i-th person is realized over all the descriptors in the 

database according to [35]. Namely, the most representative 

descriptor is matched to every person as the only personal 

feature vector identifier. As a result, the number of descriptors 

in the database will coincide with the number of persons in the 

database. In general, the database can contain many times 

more images than the number of persons (several face images 

can correspond to one person). 

2.3. Statistical Evaluations 

Some additional values should be calculated 
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In (1), to evaluate the mode of the Gaussian distribution, its 

median estimation is applied instead of the average estimation 

to reduce the influence of statistical outliers on calculation 

results (if there are very many descriptors in the database, the 

average evaluation could be applied to reduce the median 

calculation complexity). 

2.4. Intermediate Hashing 

Taking into account the Gaussian distribution of face 

features for each component of the feature vector, the 

quantization of the vector components values is realized for 

every component of every descriptor by means of erf-function 

in such a way so that the statistically equivalent number of 

face images from the database corresponds to every integer 

quantum number. In particular, each descriptor (hash key) Di 

is associated with the corresponding vector (intermediate hash 

code) Pi (see (4) and (5) below). 

To determine the optimal bit depth for the components of the 

intermediate hash code (number of partitions/cells/bins) Q 

(q=0, …, Q), let us proceed from the following assumptions. If 

it is necessary to find accurately the nearest neighbor for the 

requested vector at least locally for some concrete vector 

component in the framework of the projective approximation 

[35], not only the descriptors with the same hash code 

component q0 must be compared with the requested descriptor 

but also the descriptors from the neighbor cells (q0 ± 1) should 

be compared to exclude the problem of boundaries vicinity. For 

example, when some component is divided into 3 cells, it is 

necessary to check all the descriptors in 1 out of 3 outcomes. In 

this case, the gain in the index search will be insignificant in 

comparison with brute force. To obtain considerable 

acceleration by the index search, the component domain should 

be divided into many cells. And the more cells the domain is 

divided into, the less part of the descriptors belongs to cells q0 – 

1, q0, and q0 + 1 relative to all descriptors from other cells. Due 
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to that, the average index search speed for one vector 

component is 2( 1) (3 1)Q Q+ +  times higher in comparison 

with brute force. When R representative descriptor components 

are considered, the search based on the hash codes are 
2( 1) (3 1)R RQ Q+ +  times faster than the exhaustive search, on 

average. But because of the application of the projective 

approximation, the decrease of the cell size leads to the 

reduction of the general accuracy in correspondence with the 

increase of a number of descriptor components used for hashing 

(the increase of R-value sharply leads to the increase of the 

probability of finding the most similar descriptor to the 

requested one outside the set of search). Thus, the optimal 

partitions are those for which Q takes values from 4 to 7. 

Further, the balanced partition at Q=4 will be considered (in 

most cases the number of not checked cells is equal to the 

number of checked cells when the same cell is neglected). This 

provides the highest general accuracy for the search algorithm. 

So, Pn,i for Dn,i are defined by 
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As mentioned earlier, the numerical values of intervals in (5) 

are obtained by inversion of the erf-function so that every 

interval contains, on average, almost the same quantity of 

descriptors in accordance with the values of their vector 

components. To increase the algorithm robustness to statistical 

outliers, the partition into intervals is done through the average 

deviation of every descriptor component from the mode of its 

normal distribution instead of the root-mean-square deviation 

of the descriptor component from the mode (see (4)). 

As an example, for one of the descriptors (– 0.002924, 

0.017627, 0.007543, 0.036980, …)
T
 corresponding to one of 

the face images from LFW, the intermediate hash code (1, 2, 2, 

4, …)
T
 which is N-dimensional vector with the integer values 

for its components can be obtained. 

2.5. Descriptor Key Components and Their Hierarchy 

Further, to determine the descriptor hash code, which is an 

ordered selection of the key components from the descriptor 

intermediate hash code, a pairwise comparison of the whole 

set of the descriptors is realized by their cosine similarity Cs 

(this corresponds to the dot product for the descriptors 

normalized to the unity length). To do that, some cosine 

similarity threshold level Cth is selected, for example, equal to 

0.5. Then, over all the descriptors in the database the number 

of descriptor pairs Di and Di' is calculated for which the cosine 

similarity is equal or higher than the considered level (Di Di' ≥ 

Cth). During that, for each descriptor component the part from 

the selected descriptors pairs εn is calculated under the 

condition that the difference between the corresponding hash 

code component values is equal to one or less (|Pn,i – Pn,i'| ≤ 1), 

i.e. it is ascertained if the descriptors belong to the same local 

hash neighborhoods. Further, for all descriptor components 

the condition of equality of εn to 1 is checked (∃ n: εn=1?). If 

the condition is not fulfilled for any descriptor component, the 

value of Cth is incremented, for example, by 0.05 and the 

check is performed again. And so on until some descriptor 

component is found for which εn=1. In the case when the 

condition of εn=1 is fulfilled for several values of n, at the next 

increment step the previous increment is reduced, as an 

example, by half, and by analogy with the bisection method 

[36] such a level Cth
 (1)

 is found for which the only descriptor 

component is equal to one, but it is not necessary to find 

exactly the level of jump of εn from some value to 1. When, in 

some cases, due to insufficient diversity of face images in the 

database leading to a significant discreetness of the number of 

calculated parameters, it is impossible to divide the current 

interval during the reasonable number of iterations so that 

between Cth
 (1)

 and Cth
 (2)

 the condition of εn=1 fulfills for the 

only descriptor component, for such a case of multiple jumps 

of ε to 1 at the same level Cth it is supposed that Cth
 (2)

=Cth
 

(3)
=… with any hierarchy by corresponding values of n. Then, 

taking into account all preliminary iterations by Cth that could 

enforce a condition of εn=1 for several values of n, such all the 

levels Cth
 (r)

 (r=1, 2, …, R) should be found that meet the 

condition: all faces images from the database with cosine 

similarity between their descriptors greater than or equal to 

Cth
 (r)

 have r descriptor components for which the 

corresponding components of their hash codes belong to the 

same local hash neighborhoods and vice versa. Thus, the 

corresponding subset of the intermediate hash code key 

components ordered by Cth
 (r)

 is nothing else than the 

descriptor hash code. 

Let us consider the essence of the algorithm on a particular 

example of the LFW dataset processing. The results of the 

calculation of εn for all values of n are presented for different 

values of Cth in the figures below. It follows quite an 

obvious fact from the figures: the higher the cosine similarity 

for a descriptor pair, the greater number of descriptor 

components belong to the same local hash neighborhoods 

with a higher probability. Now, it is easy to understand the 

essence of the contradiction between the acceleration and 

general accuracy for the search algorithm. The more 

descriptor key components are considered (the higher search 

speed because of the search subset reduction), the higher 

probability of absence of a descriptor with quite a high 

cosine similarity to the requested descriptor in the considered 

subset because the increase of R-value leads to the increase 

of the threshold-barrier level Cth for descriptors to get into 

the search subset [5]. 

In practice, due to a very large spatial variance even 

between descriptors for different face images of the same 

person (R → N ⇔ Cth → 1), there are always descriptor 

components for which the corresponding hash codes do not 

belong to the same hash neighborhoods (∃ n: |Pn,i – Pn,i'| > 

1). 
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Figure 1. εn at Cth=0.4. 

 
Figure 2. εn at Cth=0.5. 

 
Figure 3. εn at Cth=0.61. 

 
Figure 4. εn at Cth=0.7. 
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Figure 5. εn at Cth=0.8. 

So, for the LFW dataset, the following subset ordered by 

descriptors components has been obtained: 

Table 1. Descriptor key components for the LFW dataset. 

r n Cth (r) 

1 423 0.57 

2 388 0.58 

3 213 0.59 

4 39 0.60 

5 256 0.60 

6 69 0.61 

7 374 0.61 

2.6. Descriptor Hash Codes 

In accordance with the considered example, the rules of 

calculation of parameters for each descriptor D by (4) and (5) 

along with the application of the obtained table-filter for the 

descriptor components define nothing else than the hash 

function to calculate the seven-digit quinary hash code H by 

the descriptor – hash key (in the general case, both the hash 

code bit width and its number system may be different). As an 

example of the descriptor considered earlier, there is its hash 

code in the table below. 

Table 2. Tabulated hash function for the LFW dataset. 

r n Dn ⇒ (4), (5) ⇒ Hr →  H 

1 423 – 0.027835 →  0   

2 388 0.066036 →  4   

3 213 0.043252 →  4   

4 39 – 0.010060 →  2 } 0442103 

5 256 – 0.034873 →  1   

6 69 – 0.072940 →  0   

7 374 0.044692 →  3   

2.7. Database Cataloging 

To accelerate access to the search objects in the database by 

their hash codes it is necessary to catalog the objects properly. 

In particular, for the considered example of the database (root 

directory), the subdirectories tree looks as shown in Figure 6. 

According to the figure, the root directory contains 5
7
=78125 

nested directories of the seventh deepest level. For the 

cataloged database of face images to be representative, it is 

necessary that every such subdirectory contains a sufficient 

number of files for different persons. Statistically, this 

condition can be more or less ensured when the database 

contains face images of at least 10
6
 persons. However, the 

volume of the database should contain information about 10
7
 

or more different persons in order to exclude the 

high-reliability presence of empty directories at the deepest 

level. A value of a similar order can be reached from another 

point of view. The considered problem can be solved by 

modern PCs in the framework of the exhausting search within 

reasonable time intervals even for about 10
5
 1-2 kilobytes 

descriptors. Additional opportunities arise when applying 

multiprocessor workstations with installed graphics 

accelerators. Hardware like that allows the database with the 

order of 10
6
 descriptors to be processed during the same time 

intervals. 

 
Figure 6. Seven-tiered directory tree containing at the deepest seventh level 

both the images files and corresponding to them descriptors files comprising 

their hash codes as a part of their names. 

The transition to the databases with the order of 10
7
 persons 

will require rather expensive solutions based on workstations 

united in a computing cluster. Whereas the proposed hashing 

algorithm can be applied to accelerate the search time by about 

(25/13)
7
 ≈ 100 times (Q=4) on average so that to process the 

face databases with volumes of more than 10
7
 descriptors 

during reasonable time intervals even on PCs. At that, there is 

no need to re-index databases with such volumes after adding 

new elements to them because single elements have a 

negligible statistical weight within the framework of the 

proposed approach. Re-indexing of the databases is 

reasonable to carry out by the counter of new elements after 

their total number achieves a commensurate value with the 

number of the database primary elements. 
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2.8. Some Remarks 

Now, let us consider the algorithm of the hash code-assisted 

search for the most similar face image from the database to the 

requested person face image on a particular example. So, let 

the LFW database with corresponding calculated descriptors 

be prepared in accordance with the algorithm described above. 

Suppose, that a search request for a face image has been 

generated by its descriptor. And let, for definiteness, it be the 

descriptor considered earlier. In this case, its hash code 

(0442103) can be obtained by means of the procedure (hash 

function) described above. Further, for all collisions of the 

descriptors by their hash code and the local neighborhoods of 

its components (see Table 3) the exhaustive search over such 

filtered descriptors (≈ 0.006 of their total number for the 

considered case) from the database is carried out to find a 

descriptor with the maximum cosine similarity to the 

requested one. 

Table 3. Initial neighborhoods for the hash code components. 

r Hr
(1) 

1 0..1 

2 3..4 

3 3..4 

4 1..3 

5 0..2 

6 0..1 

7 2..4 

If the search result is a descriptor with the cosine similarity 

not less than Cth
 (7)

, then the search is considered successful 

and completed (in the general case, there may be a request to 

search for several most similar descriptors to the requested 

one). Otherwise, the search continues with the extension of the 

local hash neighborhoods on the left and right up to the 

exhaustive search at the current level r with the subsequent 

transition to the next level r (from large r-values to smaller 

ones) until either the found maximum cosine similarity value 

becomes equal to or greater than Cth
 (r)

, or all the descriptors in 

the database are processed. For example, let the maximum 

cosine similarity Cmax be equal to 0.52 for the considered 

collisions. Then, the search should be performed over 

additional collisions for H7 (see Table 4). 

Table 4. Additional neighborhoods for the hash code components. 

r Hr
(2) 

1 0..1 

2 3..4 

3 3..4 

4 1..3 

5 0..2 

6 0..1 

7 1 

Let the same result of comparison for the cosine similarity 

be achieved (Cmax=0.52). And so several times in a row, that is 

such a result has been obtained for the corresponding 

collisions listed below in Table 5 from left to right. 

Table 5. Further sequence of neighborhoods for the hash code components. 

r Hr
(3) Hr

(4) Hr
(5) Hr

(6) Hr
(7) Hr

(8) Hr
(9) 

1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 

2 3..4 3..4 3..4 3..4 3..4 3..4 3..4 

3 3..4 3..4 3..4 3..4 3..4 3..4 3..4 

4 1..3 1..3 1..3 1..3 1..3 1..3 0, 4 

5 0..2 0..2 0..2 0..2 3 4 0..4 

6 0..1 2 3 4 0..4 0..4 0..4 

7 0 0..4 0..4 0..4 0..4 0..4 0..4 

As for the next collisions sequence (see Table 6) let the 

descriptor for which Cmax=0.586 > Cth
 (2)

 be found. This 

obtained result is saved and the search is stopped. 

Table 6. Final sequence of neighborhoods for the hash code components. 

r Hr
(10) Hr

(11) Hr
(12) 

1 0..1 0..1 0..1 

2 3..4 3..4 3..4 

3 2 1 0 

4 0..4 0..4 0..4 

5 0..4 0..4 0..4 

6 0..4 0..4 0..4 

7 0..4 0..4 0..4 

Now, a reasonable question arises: how often the cases, when 

Cmax < Cth
 (7)

, take place during the initial search? Indeed, in this 

case, the search speed can reduce significantly up to the brute 

force. If such cases are common, the search by hash codes will 

not give considerable acceleration compared with brute force. 

However, the observations based on the practical application of 

neural network technologies like ArcFace [5] are as follows. In 

rather rare cases for a specific implementation of ArcFace, 

descriptors corresponding to high-quality face images of certain 

persons may have the cosine similarity less than 0.57 to the most 

representative descriptors for these persons. Whereas in some 

extremely rare cases, descriptors corresponding to the face 

images of some persons may have the cosine similarity of more 

than 0.61 to the most representative descriptors for some other 

persons. All these observations allow us to formulate the 

following hypothesis: 

if the inequality Cmax < Cth
 (7)

 is true during the initial search, 

then with a high probability there are no face images of the 

requested person in the database. 

The overlapping effect for descriptor clusters of different 

persons [5] does not have such a statistical significance to lead to a 

crucial acceleration reduction for the hash code assisted search. In 

particular, for the LFW dataset, the average statistical acceleration 

of the search by more than 90 times has been achieved. 

3. Conclusion 

The modified geometric hashing algorithm has been 

proposed in the present study to conduct the search for a face 

image from the database that is most similar to the face 

image of the requested person. The proposed algorithm is as 

accurate as the brute-force search but at times faster. Its 

undeniable advantage is absolute accuracy in comparison 

with other approximate methods of quick search. In addition, 

it is easy to implement it and perform simple data processing, 
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simple hashing, and special database organization. Beginning 

from a certain required threshold database volume, the 

addition of new elements to it does not require immediate 

re-indexing of the database in contrast to other approaches of 

accelerated search with absolute accuracy. In particular, the 

new database elements do not influence the output hash code. 

That is, the database expansion does not break the robustness 

of the quick search algorithm. An additional advantage of the 

proposed algorithm is the absence of the necessity to apply 

expensive hardware solutions to process large volume 

datasets. 

4. Recommendations 

It is obvious that the search algorithm considered in the present 

study is very efficient and quite general, and it can be applied for 

wider purposes. However, the measure of its efficiency in the case 

when other type loss functions will be used is unclear [2]. 

Moreover, its efficiency is much more unclear when not intraclass 

(face-vs-face, dog-vs-dog, cat-vs-cat, bird-vs-bird etc.) but 

interclass comparison (person-vs-dog-vs-cat-vs-bird-vs-etc.) by 

descriptors will be made. To resolve these issues their additional 

research is required. 
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