

American Journal of Computer Science and Technology
2021; 4(2): 38-45

http://www.sciencepublishinggroup.com/j/ajcst

doi: 10.11648/j.ajcst.20210402.12

ISSN: 2640-0111 (Print); ISSN: 2640-012X (Online)

Effective Geometric Hashing of the Feature Hyperspace for
a Quick Accurate Search of the Most Similar Descriptors in
Large Datasets

Dmitry Pozdnyakov

Deep Learning Department, Closed Joint Stock Company "Oxagile", Minsk, Belarus

Email address:

To cite this article:
Dmitry Pozdnyakov. Effective Geometric Hashing of the Feature Hyperspace for a Quick Accurate Search of the Most Similar Descriptors in

Large Datasets. American Journal of Computer Science and Technology. Vol. 4, No. 2, 2021, pp. 38-45. doi: 10.11648/j.ajcst.20210402.12

Received: June 25, 2021; Accepted: July 16, 2021; Published: July 24, 2021

Abstract: The algorithm of effective geometric hashing of the facial feature hyperspace for the accelerated search of the

most similar face descriptors by their cosine similarity is described in the present study. The algorithm includes 6 required

stages of processing descriptors extracted by a neural network from face images. The first stage is filtration of the descriptor

database by selecting the most representative descriptor for each person from the set of descriptors corresponding to his/her

different face images. The second stage is evaluation of a number of statistical values for all the components of the selected

descriptors. The third stage is intermediate hashing through quantization of every descriptor component value so that almost

the same quantity of descriptors corresponds to any quantum number. The fourth stage is statistical processing of the descriptor

database to determine the most discriminative descriptor key components and their hierarchy. The fifth stage is calculation of

the descriptor hash code for every most representative descriptor from the considered database. The sixth final stage is a

special cataloging of data in the form of a multi-tiered directory ordered by the hash codes. The search acceleration is achieved

through sparse processing of the whole directory when the hash code obtained for the requested person descriptor acts as a

very selective search filter. The developed algorithm always provides the same absolute accuracy as the brute-force search.

Through the example of the LFW dataset consideration, the average search acceleration by about 100 times is achieved under

conditions that the descriptors have been extracted by a neural network trained on the WiderFace dataset with application of

the additive angular margin loss function.

Keywords: Geometric Hashing, Brute Force, Search, Feature Hyperspace, Descriptor, Cosine Similarity

1. Introduction

To find out the presence of the requested person image in

the database, the automated methods of face images

comparison have become especially popular in recent years.

And when there is a large number of face images in the

database, the time spent on searching for the most similar

face image from the database to the requested person face

image is extremely critical. The problem of quick processing

of the face images database even transformed into a separate

domain of scientific research [1]. At present, the most

popular method for encoding the distinctive facial features is

neural network extraction of the corresponding descriptor (a

face feature vector usually normalized to the unity) from the

multidimensional face features hyperspace [2–5]. This

approach provides the possibility to reduce the face images

comparison to the formal comparison of their descriptors

applying one metric or another. In particular, the typical

Euclidean distance can be applied as the first approximation

or, as the opposite, some exotic metrics can be used (see, for

example, [6, 7]). Whereas, the most applied measure of

similarity is the cosine distance [7, 8]. In any case, despite

the metric type, the problem of searching for a face image

from a dataset, that is most similar to the face image of the

requested person, is reduced to the search of the nearest

neighbor point in an appropriate metric sense to the

determined point of the multidimensional face features

hyperspace [9, 10]. And such a problem can be accurately

39 Dmitry Pozdnyakov: Effective Geometric Hashing of the Feature Hyperspace for a Quick Accurate

Search of the Most Similar Descriptors in Large Datasets

solved by means of exhaustive (brute-force) search through

comparison of the descriptors by their cosine similarity.

When the number of face images in the database is equal to

M, then the calculation complexity of the search algorithm is

obviously proportional to M. If M is a very large value, then

it takes too much time to brute force, which is often

unacceptable. Moreover, starting from some values of M, the

search algorithm parallelization as well as its transfer to GPU

[10–12] are not already effective ways of its acceleration

because of hardware limitations. The natural method of

solution to such a problem is a special organization of data in

the database [13, 14] (indexing, hashing, etc. [15, 16]) that

allows the search process to be drastically accelerated. There

are very many concrete implementations of the approach like

that (see, for example, [10, 18–31]). But all of them allow the

nearest neighbor to be found either approximately or with the

allocation of large memory volume for index information and

the necessity of the database re-indexing with a very high

computational complexity.

Taking into account the aforesaid, a logical question arises:

is it possible, in principle, by means of quite a simple

calculation without the need of allocation of large memory

volume to index the database elements in such a way that the

application of some search algorithm guarantees the nearest

neighbor could be found accurately with such an average

search time value which at least several times lower than the

time of exhaustive search over all the database elements [32]?

The present study is just devoted to this question on an

example of the solution to the problem of descriptor-assisted

search for a face image from the database that is most similar

to the face image of the requested person.

2. Theory and Results

2.1. General Issues

As a methodological basis for indexing the descriptors from

a face image database, a well-known algorithm of geometric

hashing [16] will be applied after a number of its

modifications.

So, let the descriptors dij=(d1, d2, …, dn, …, dN)ij
T
 be the

vectors with unity length from the face features space with

dimension N=512 (it can be higher or lower), which are

extracted from the face images by a neural network, as an

example, ArcFace with the ResNet backbone [5] that itself has

been trained on a large face image dataset, for example,

WiderFace [33].

The geometric hashing algorithm does not allow the nearest

neighbor vector to be found accurately in the case when a

requested vector belongs to the vicinity of multidimensional

bound between feature vector clusters. Thus, it is necessary to

apply some modifications to the classical geometric hashing

algorithm. Further, such a well-known face image dataset as

LFW [34] will be considered to concretize all the examples.

All the stages, which are necessary for the preparation of the

face image database, descriptors hashing, and accelerated

index search, will be described below.

2.2. Descriptors Filtration

The search of the most representative descriptor Di ∈ {dij}

for each i-th person is realized over all the descriptors in the

database according to [35]. Namely, the most representative

descriptor is matched to every person as the only personal

feature vector identifier. As a result, the number of descriptors

in the database will coincide with the number of persons in the

database. In general, the database can contain many times

more images than the number of persons (several face images

can correspond to one person).

2.3. Statistical Evaluations

Some additional values should be calculated

()T

1, , ,MD med{ }, ..., med{ }, ..., med{ }i n i N i
i i i

D D D= , (1)

()T

1∆D , ..., , ...,n ND D D= ∆ ∆ ∆ , (2)

1

,

1

I

n n i n

i

D I D MD
−

=
∆ = −∑ . (3)

In (1), to evaluate the mode of the Gaussian distribution, its

median estimation is applied instead of the average estimation

to reduce the influence of statistical outliers on calculation

results (if there are very many descriptors in the database, the

average evaluation could be applied to reduce the median

calculation complexity).

2.4. Intermediate Hashing

Taking into account the Gaussian distribution of face

features for each component of the feature vector, the

quantization of the vector components values is realized for

every component of every descriptor by means of erf-function

in such a way so that the statistically equivalent number of

face images from the database corresponds to every integer

quantum number. In particular, each descriptor (hash key) Di

is associated with the corresponding vector (intermediate hash

code) Pi (see (4) and (5) below).

To determine the optimal bit depth for the components of the

intermediate hash code (number of partitions/cells/bins) Q

(q=0, …, Q), let us proceed from the following assumptions. If

it is necessary to find accurately the nearest neighbor for the

requested vector at least locally for some concrete vector

component in the framework of the projective approximation

[35], not only the descriptors with the same hash code

component q0 must be compared with the requested descriptor

but also the descriptors from the neighbor cells (q0 ± 1) should

be compared to exclude the problem of boundaries vicinity. For

example, when some component is divided into 3 cells, it is

necessary to check all the descriptors in 1 out of 3 outcomes. In

this case, the gain in the index search will be insignificant in

comparison with brute force. To obtain considerable

acceleration by the index search, the component domain should

be divided into many cells. And the more cells the domain is

divided into, the less part of the descriptors belongs to cells q0 –

1, q0, and q0 + 1 relative to all descriptors from other cells. Due

 American Journal of Computer Science and Technology 2021; 4(2): 38-45 40

to that, the average index search speed for one vector

component is 2(1) (3 1)Q Q+ + times higher in comparison

with brute force. When R representative descriptor components

are considered, the search based on the hash codes are
2(1) (3 1)R RQ Q+ + times faster than the exhaustive search, on

average. But because of the application of the projective

approximation, the decrease of the cell size leads to the

reduction of the general accuracy in correspondence with the

increase of a number of descriptor components used for hashing

(the increase of R-value sharply leads to the increase of the

probability of finding the most similar descriptor to the

requested one outside the set of search). Thus, the optimal

partitions are those for which Q takes values from 4 to 7.

Further, the balanced partition at Q=4 will be considered (in

most cases the number of not checked cells is equal to the

number of checked cells when the same cell is neglected). This

provides the highest general accuracy for the search algorithm.

So, Pn,i for Dn,i are defined by

,

,

n i n

n i

n

D MD

D

−
Θ =

∆
 (4)

and

, ,

, ,

, ,

, ,

, ,

0 1.055;

1 (1.055, 0.318);

2 [0.318, 0.318];

3 (0.318, 1.055);

4 1.055.

n i n i

n i n i

n i n i

n i n i

n i n i

P

P

P

P

P

 = ∀ Θ ≤ −


= ∀ Θ ∈ − −
 = ∀ Θ ∈ −
 = ∀ Θ ∈
 = ∀ Θ ≥

 (5)

As mentioned earlier, the numerical values of intervals in (5)

are obtained by inversion of the erf-function so that every

interval contains, on average, almost the same quantity of

descriptors in accordance with the values of their vector

components. To increase the algorithm robustness to statistical

outliers, the partition into intervals is done through the average

deviation of every descriptor component from the mode of its

normal distribution instead of the root-mean-square deviation

of the descriptor component from the mode (see (4)).

As an example, for one of the descriptors (– 0.002924,

0.017627, 0.007543, 0.036980, …)
T
 corresponding to one of

the face images from LFW, the intermediate hash code (1, 2, 2,

4, …)
T
 which is N-dimensional vector with the integer values

for its components can be obtained.

2.5. Descriptor Key Components and Their Hierarchy

Further, to determine the descriptor hash code, which is an

ordered selection of the key components from the descriptor

intermediate hash code, a pairwise comparison of the whole

set of the descriptors is realized by their cosine similarity Cs

(this corresponds to the dot product for the descriptors

normalized to the unity length). To do that, some cosine

similarity threshold level Cth is selected, for example, equal to

0.5. Then, over all the descriptors in the database the number

of descriptor pairs Di and Di' is calculated for which the cosine

similarity is equal or higher than the considered level (Di Di' ≥

Cth). During that, for each descriptor component the part from

the selected descriptors pairs εn is calculated under the

condition that the difference between the corresponding hash

code component values is equal to one or less (|Pn,i – Pn,i'| ≤ 1),

i.e. it is ascertained if the descriptors belong to the same local

hash neighborhoods. Further, for all descriptor components

the condition of equality of εn to 1 is checked (∃ n: εn=1?). If

the condition is not fulfilled for any descriptor component, the

value of Cth is incremented, for example, by 0.05 and the

check is performed again. And so on until some descriptor

component is found for which εn=1. In the case when the

condition of εn=1 is fulfilled for several values of n, at the next

increment step the previous increment is reduced, as an

example, by half, and by analogy with the bisection method

[36] such a level Cth
 (1)

 is found for which the only descriptor

component is equal to one, but it is not necessary to find

exactly the level of jump of εn from some value to 1. When, in

some cases, due to insufficient diversity of face images in the

database leading to a significant discreetness of the number of

calculated parameters, it is impossible to divide the current

interval during the reasonable number of iterations so that

between Cth
 (1)

 and Cth
 (2)

 the condition of εn=1 fulfills for the

only descriptor component, for such a case of multiple jumps

of ε to 1 at the same level Cth it is supposed that Cth
 (2)

=Cth

(3)
=… with any hierarchy by corresponding values of n. Then,

taking into account all preliminary iterations by Cth that could

enforce a condition of εn=1 for several values of n, such all the

levels Cth
 (r)

 (r=1, 2, …, R) should be found that meet the

condition: all faces images from the database with cosine

similarity between their descriptors greater than or equal to

Cth
 (r)

 have r descriptor components for which the

corresponding components of their hash codes belong to the

same local hash neighborhoods and vice versa. Thus, the

corresponding subset of the intermediate hash code key

components ordered by Cth
 (r)

 is nothing else than the

descriptor hash code.

Let us consider the essence of the algorithm on a particular

example of the LFW dataset processing. The results of the

calculation of εn for all values of n are presented for different

values of Cth in the figures below. It follows quite an

obvious fact from the figures: the higher the cosine similarity

for a descriptor pair, the greater number of descriptor

components belong to the same local hash neighborhoods

with a higher probability. Now, it is easy to understand the

essence of the contradiction between the acceleration and

general accuracy for the search algorithm. The more

descriptor key components are considered (the higher search

speed because of the search subset reduction), the higher

probability of absence of a descriptor with quite a high

cosine similarity to the requested descriptor in the considered

subset because the increase of R-value leads to the increase

of the threshold-barrier level Cth for descriptors to get into

the search subset [5].

In practice, due to a very large spatial variance even

between descriptors for different face images of the same

person (R → N ⇔ Cth → 1), there are always descriptor

components for which the corresponding hash codes do not

belong to the same hash neighborhoods (∃ n: |Pn,i – Pn,i'| >

1).

41 Dmitry Pozdnyakov: Effective Geometric Hashing of the Feature Hyperspace for a Quick Accurate

Search of the Most Similar Descriptors in Large Datasets

Figure 1. εn at Cth=0.4.

Figure 2. εn at Cth=0.5.

Figure 3. εn at Cth=0.61.

Figure 4. εn at Cth=0.7.

 American Journal of Computer Science and Technology 2021; 4(2): 38-45 42

Figure 5. εn at Cth=0.8.

So, for the LFW dataset, the following subset ordered by

descriptors components has been obtained:

Table 1. Descriptor key components for the LFW dataset.

r n Cth (r)

1 423 0.57

2 388 0.58

3 213 0.59

4 39 0.60

5 256 0.60

6 69 0.61

7 374 0.61

2.6. Descriptor Hash Codes

In accordance with the considered example, the rules of

calculation of parameters for each descriptor D by (4) and (5)

along with the application of the obtained table-filter for the

descriptor components define nothing else than the hash

function to calculate the seven-digit quinary hash code H by

the descriptor – hash key (in the general case, both the hash

code bit width and its number system may be different). As an

example of the descriptor considered earlier, there is its hash

code in the table below.

Table 2. Tabulated hash function for the LFW dataset.

r n Dn ⇒ (4), (5) ⇒ Hr → H

1 423 – 0.027835 → 0 

2 388 0.066036 → 4 

3 213 0.043252 → 4 

4 39 – 0.010060 → 2 } 0442103

5 256 – 0.034873 → 1 

6 69 – 0.072940 → 0 

7 374 0.044692 → 3 

2.7. Database Cataloging

To accelerate access to the search objects in the database by

their hash codes it is necessary to catalog the objects properly.

In particular, for the considered example of the database (root

directory), the subdirectories tree looks as shown in Figure 6.

According to the figure, the root directory contains 5
7
=78125

nested directories of the seventh deepest level. For the

cataloged database of face images to be representative, it is

necessary that every such subdirectory contains a sufficient

number of files for different persons. Statistically, this

condition can be more or less ensured when the database

contains face images of at least 10
6
 persons. However, the

volume of the database should contain information about 10
7

or more different persons in order to exclude the

high-reliability presence of empty directories at the deepest

level. A value of a similar order can be reached from another

point of view. The considered problem can be solved by

modern PCs in the framework of the exhausting search within

reasonable time intervals even for about 10
5
 1-2 kilobytes

descriptors. Additional opportunities arise when applying

multiprocessor workstations with installed graphics

accelerators. Hardware like that allows the database with the

order of 10
6
 descriptors to be processed during the same time

intervals.

Figure 6. Seven-tiered directory tree containing at the deepest seventh level

both the images files and corresponding to them descriptors files comprising

their hash codes as a part of their names.

The transition to the databases with the order of 10
7
 persons

will require rather expensive solutions based on workstations

united in a computing cluster. Whereas the proposed hashing

algorithm can be applied to accelerate the search time by about

(25/13)
7
 ≈ 100 times (Q=4) on average so that to process the

face databases with volumes of more than 10
7
 descriptors

during reasonable time intervals even on PCs. At that, there is

no need to re-index databases with such volumes after adding

new elements to them because single elements have a

negligible statistical weight within the framework of the

proposed approach. Re-indexing of the databases is

reasonable to carry out by the counter of new elements after

their total number achieves a commensurate value with the

number of the database primary elements.

43 Dmitry Pozdnyakov: Effective Geometric Hashing of the Feature Hyperspace for a Quick Accurate

Search of the Most Similar Descriptors in Large Datasets

2.8. Some Remarks

Now, let us consider the algorithm of the hash code-assisted

search for the most similar face image from the database to the

requested person face image on a particular example. So, let

the LFW database with corresponding calculated descriptors

be prepared in accordance with the algorithm described above.

Suppose, that a search request for a face image has been

generated by its descriptor. And let, for definiteness, it be the

descriptor considered earlier. In this case, its hash code

(0442103) can be obtained by means of the procedure (hash

function) described above. Further, for all collisions of the

descriptors by their hash code and the local neighborhoods of

its components (see Table 3) the exhaustive search over such

filtered descriptors (≈ 0.006 of their total number for the

considered case) from the database is carried out to find a

descriptor with the maximum cosine similarity to the

requested one.

Table 3. Initial neighborhoods for the hash code components.

r Hr
(1)

1 0..1

2 3..4

3 3..4

4 1..3

5 0..2

6 0..1

7 2..4

If the search result is a descriptor with the cosine similarity

not less than Cth
 (7)

, then the search is considered successful

and completed (in the general case, there may be a request to

search for several most similar descriptors to the requested

one). Otherwise, the search continues with the extension of the

local hash neighborhoods on the left and right up to the

exhaustive search at the current level r with the subsequent

transition to the next level r (from large r-values to smaller

ones) until either the found maximum cosine similarity value

becomes equal to or greater than Cth
 (r)

, or all the descriptors in

the database are processed. For example, let the maximum

cosine similarity Cmax be equal to 0.52 for the considered

collisions. Then, the search should be performed over

additional collisions for H7 (see Table 4).

Table 4. Additional neighborhoods for the hash code components.

r Hr
(2)

1 0..1

2 3..4

3 3..4

4 1..3

5 0..2

6 0..1

7 1

Let the same result of comparison for the cosine similarity

be achieved (Cmax=0.52). And so several times in a row, that is

such a result has been obtained for the corresponding

collisions listed below in Table 5 from left to right.

Table 5. Further sequence of neighborhoods for the hash code components.

r Hr
(3) Hr

(4) Hr
(5) Hr

(6) Hr
(7) Hr

(8) Hr
(9)

1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

2 3..4 3..4 3..4 3..4 3..4 3..4 3..4

3 3..4 3..4 3..4 3..4 3..4 3..4 3..4

4 1..3 1..3 1..3 1..3 1..3 1..3 0, 4

5 0..2 0..2 0..2 0..2 3 4 0..4

6 0..1 2 3 4 0..4 0..4 0..4

7 0 0..4 0..4 0..4 0..4 0..4 0..4

As for the next collisions sequence (see Table 6) let the

descriptor for which Cmax=0.586 > Cth
 (2)

 be found. This

obtained result is saved and the search is stopped.

Table 6. Final sequence of neighborhoods for the hash code components.

r Hr
(10) Hr

(11) Hr
(12)

1 0..1 0..1 0..1

2 3..4 3..4 3..4

3 2 1 0

4 0..4 0..4 0..4

5 0..4 0..4 0..4

6 0..4 0..4 0..4

7 0..4 0..4 0..4

Now, a reasonable question arises: how often the cases, when

Cmax < Cth
 (7)

, take place during the initial search? Indeed, in this

case, the search speed can reduce significantly up to the brute

force. If such cases are common, the search by hash codes will

not give considerable acceleration compared with brute force.

However, the observations based on the practical application of

neural network technologies like ArcFace [5] are as follows. In

rather rare cases for a specific implementation of ArcFace,

descriptors corresponding to high-quality face images of certain

persons may have the cosine similarity less than 0.57 to the most

representative descriptors for these persons. Whereas in some

extremely rare cases, descriptors corresponding to the face

images of some persons may have the cosine similarity of more

than 0.61 to the most representative descriptors for some other

persons. All these observations allow us to formulate the

following hypothesis:

if the inequality Cmax < Cth
 (7)

 is true during the initial search,

then with a high probability there are no face images of the

requested person in the database.

The overlapping effect for descriptor clusters of different

persons [5] does not have such a statistical significance to lead to a

crucial acceleration reduction for the hash code assisted search. In

particular, for the LFW dataset, the average statistical acceleration

of the search by more than 90 times has been achieved.

3. Conclusion

The modified geometric hashing algorithm has been

proposed in the present study to conduct the search for a face

image from the database that is most similar to the face

image of the requested person. The proposed algorithm is as

accurate as the brute-force search but at times faster. Its

undeniable advantage is absolute accuracy in comparison

with other approximate methods of quick search. In addition,

it is easy to implement it and perform simple data processing,

 American Journal of Computer Science and Technology 2021; 4(2): 38-45 44

simple hashing, and special database organization. Beginning

from a certain required threshold database volume, the

addition of new elements to it does not require immediate

re-indexing of the database in contrast to other approaches of

accelerated search with absolute accuracy. In particular, the

new database elements do not influence the output hash code.

That is, the database expansion does not break the robustness

of the quick search algorithm. An additional advantage of the

proposed algorithm is the absence of the necessity to apply

expensive hardware solutions to process large volume

datasets.

4. Recommendations

It is obvious that the search algorithm considered in the present

study is very efficient and quite general, and it can be applied for

wider purposes. However, the measure of its efficiency in the case

when other type loss functions will be used is unclear [2].

Moreover, its efficiency is much more unclear when not intraclass

(face-vs-face, dog-vs-dog, cat-vs-cat, bird-vs-bird etc.) but

interclass comparison (person-vs-dog-vs-cat-vs-bird-vs-etc.) by

descriptors will be made. To resolve these issues their additional

research is required.

References

[1] Hou B.-W., Zheng R., Yang G.-Sh. (2014) Quick search
algorithms based on ethnic facial image database. 2014 IEEE
5th International Conference on Software Engineering and
Service Science, 573-576.

[2] Wang M., Deng W. (2018) Deep face recognition: a survey.
https://arxiv.org/pdf/1804.06655.pdf, 1-24.

[3] Liu W., Wen Y., Yu Zh., Li M., Raj B., Song L. (2017)
SphereFace: deep hypersphere embedding for face recognition.
2017 IEEE Conference on Computer Vision and Pattern
Recognition, 6738-6746.

[4] Wang H., Wang Y., Zhou Zh., Ji X., Gong D., Zhou J., Li Zh.,
Liu W. (2018) CosFace: large margin cosine loss for deep face
recognition. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 5265-5274.

[5] Deng J., Guo J., Xue N., Zafeiriou S. (2020) ArcFace: additive
angular margin loss for deep face recognition. 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 4685-4694.

[6] Cao Q., Ying Y., Li P. (2013) Similarity metric learning for
face recognition. 2013 IEEE International Conference on
Computer Vision, 2408-2415.

[7] Vezzetti E., Marcolin F. (2015, Bentham Books) Similarity
measures for face recognition.

[8] Nguyen H. V., Bai L. (2011) Cosine similarity metric learning
for face verification. 2010 Asian Conference on Computer
Vision, 709-720.

[9] https://en.wikipedia.org/wiki/Nearest_neighbor_search.

[10] Aumüller M. (2020) Algorithm engineering for high-
dimensional similarity search problems. 18th International

Symposium on Experimental Algorithms, 160, 1: 1-3.

[11] Johnson J., Douze M., J´egou H. (in press) Billionscale
similarity search with GPUs. IEEE Transactions on Big Data.
Also in (2017) https://arxiv.org/pdf/1702.08734.pdf, 1-12.

[12] FAISS (Facebook AI Similarity Search).
https://github.com/facebookresearch/faiss/wiki.

[13] https://en.wikipedia.org/wiki/Voronoi_diagram.

[14] https://en.wikipedia.org/wiki/K-d_tree.

[15] https://en.wikipedia.org/wiki/Search_engine_indexing.

[16] https://en.wikipedia.org/wiki/Geometric_hashing.

[17] Benchmarking nearest neighbors.
https://github.com/erikbern/ann-benchmarks.

[18] Li W., Zhang Y., Sun Y., Wang W., Li M., Zhang W., Lin X.
(2019) Approximate nearest neighbor search on high
dimensional data – experiments, analyses, and improvement.
IEEE Transactions on Knowledge and Data Engineering, 32
(8), 1475-1488.

[19] Hyvonen V., Pitkanen T., Tasoulis S., Jaasaari E., Tuomainen
R., Wang L., Corander J., Roos T. (2016) Fast k-NN search.
https://arxiv.org/pdf/1509.06957.pdf, 1-10.

[20] Aumüller M., Bernhardsson E., Faithfull A. (2020) ANN-
benchmarks: a benchmarking tool for approximate nearest
neighbor algorithms. Information Systems, 87, 1-13.

[21] Abu-Aisheh Z., Raveaux R., Ramel J.-Y. (2020) Efficient
k-nearest neighbors search in graph space. Pattern
Recognition Letters, 134, 77-86.

[22] Hwang Y., Baek M., Kim S., Han B., Ahn H.-K. (2018)
Product quantized translation for fast nearest neighbor search.
The Thirty-Second AAAI Conference on Artificial
Intelligence, 3295-3301.

[23] Abdelhadi A. M. S., Bouganis Ch.-S., Constantinides G. A.
(2019) Accelerated approximate nearest neighbors search
through hierarchical product quantization. 2019 International
Conference on Field-Programmable Technology, 90-98.

[24] Subramanya S. J., Devvrit F., Simhadri H. V., Krishaswamy R.,
Simhadri H. V. (2019) DiskANN: fast accurate billion-point
nearest neighbor search on a single node. 33rd Conference on
Neural Information Processing Systems, 13748-13758.

[25] Guo R., Sun Ph., Lindgren E., Geng Q., Simcha D., Chern F.,
Kumar S. (2020) Accelerating large-scale inference with
anisotropic vector quantization. 37th International Conference
on Machine Learning, 119, 3887-3896.

[26] Ren J., Zhang M., Li D. (2020) HM-ANN: efficient
billion-point nearest neighbor search on heterogeneous
memory. 34th Conference on Neural Information Processing
Systems, 1-13.

[27] Cariou C., Moan S. L., Chehdi K. (2020) Improving k-nearest
neighbor approaches for density-based pixel clustering in
hyperspectral remote sensing images. Remote Sensing, 12
(22), 3745-3771.

[28] Li M., Zhang Y., Sun Y., Wang W., Tsang I. W., Lin X. (2020)
I/O efficient approximate nearest neighbor search based on
learned functions. 2020 IEEE 36th International Conference
on Data Engineering, 289-300.

45 Dmitry Pozdnyakov: Effective Geometric Hashing of the Feature Hyperspace for a Quick Accurate

Search of the Most Similar Descriptors in Large Datasets

[29] Dong Y., Indyk P., Razenshteyn I., Wagner T. (2020) Learning
space partitions for nearest neighbor search. Eighth
International Conference on Learning Representations, 1-16.

[30] Aghbari Z. A., Ismail T., Kamel I. (2020) SparkNN: a
distributed in-memory data partitioning for KNN queries on
big spatial data. Data Science Journal, 19 (1), 35-48.

[31] Chen H., Chillotti I., Dong Y., Poburinnaya O., Razenshteyn I.,
Riazi M. S. (2020) SANNS: scaling up secure approximate
k-nearest neighbors search. Proceedings of the 29th USENIX
Security Symposium, 2111-2128.

[32] Pan Y., Pan Z., Wang Y., Wang W. (2020) A new fast search

algorithm for exact k-nearest neighbors based on optimal
triangle-inequality-based check strategy. Knowledge-Based
Systems, 189, 105088.

[33] WIDERFACE: a face detection benchmark.
http://shuoyang1213.me/WIDERFACE.

[34] Labeled faces in the wild. http://vis-www.cs.umass.edu/lfw.

[35] Pozdnyakov D. (2020) Determination of the most
representative descriptor among a set of feature vectors for the
same object.
https://arxiv.org/ftp/arxiv/papers/2007/2007.03021.pdf, 1-8.

[36] https://en.wikipedia.org/wiki/Bisection_method.

