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Abstract: The increment of accuracy and speed on Named Entity Recognition (NER), a key task in natural language 

processing, can further enhance downstream tasks. The method of residual gated convolution and attention mechanism is 

proposed to address the problem of insufficient recognition of nested entities and ambiguous entities by convolutional layers in 

the absence of context. It emphasizes local continuous features fusion to global ones to better obtain contextual semantic 

information in the stacked convolutional layer. Moreover, the optimized embedding layer with fusing character and lexical 

information by introducing a dictionary combines with a pre-trained BERT model containing a priori semantic effects, and the 

decoding layer in an entity-level method to alleviate the problem of nested entities and ambiguous entities in long-sequence text. 

In order to reduce abundant parameters of Bert model, during the training process, only the residual gated convolutional layer is 

iterated after fixing Bert layer parameters. After experiments on MSRA corpus, the result of entity recognition task in 

BERT-softlexion-RGCNN-GP model outperforms other models, with an F1 value of 94.96%, and the training speed is also better 

than that of the bidirectional LSTM model. Our model not only maintains a more efficient training speed but also recognizes 

Chinese entities more precisely, which is of practical value for fields required accuracy and speed. 
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1. Introduction 

Named Entity Recognition are the recognition of relevant 

entity types from natural text and the determination of entity 

labels. There is identifiable information in the financial 

domain such as companies, brands, and legal entities, and as 

in the medical field are diseases, symptoms, and patient ages 

entities. As a fundamental task of natural language 

processing, accurate NER tasks can effectively improve the 

completion of downstream tasks, for instance, knowledge 

graphs, automatic question and answer, and machine 

translation. 

The mainstream recognition approach is to utilize the 

bi-directional capturing capability of BiLSTM for long text 

sequences, build a suitable model structure, and improve the 

probability calculation and the representation of embedding 

layers to improve the accuracy of named entity recognition. 

With the growth of text sequence length as well as the 

number of model parameters, some researchers have also 

adopted convolutional layers as the backbone structure of 

recognition models. The method of reducing model training 

time by parallel CNN models and stacked convolutional 

layers capturing contextual semantics are used to improve 

entity recognition accuracy in long utterances, however, pure 

deep CNNs cannot solve the problem of long-distance 

dependency. 

Therefore, we propose an incorporated residual gated 

convolution entity recognition model, which combines local 

continuous features and high-dimensional spatial semantics 

to selectively keep association information, and adds an 

attention mechanism to capture the important semantics 

associated with labels in the sequence: 

(1) To address the inadequate grasping of contextual 

information by stacked CNNs, the component of residual 

gated convolution and attention mechanism, which fuse local 

features to the global and reduce invalid information input, 

eventually alleviate the problems of gradient disappearance 

in convolutional layers and semantic dependence caused by 

cross-layers. 

(2) To address the problems of nested entities and 

unregistered words, a pre-trained language model combined 

with lexical enhancement is proposed as an embedding layer, 

which introduces lexical information and a priori semantics 
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of the large language model, to mine latent semantic 

information and alleviate the conflict between unregistered 

words and nested entities. 

(3) To address the threshold problem of sequence label 

prediction in multiclassification datasets, Global Pointer (GP) 

[1] is invoked to perform label prediction of sequences with 

entity-level granularity to reduce the extraction error problem 

caused by correct sequence labeling but overly strict or lax 

determination conditions. 

2. Related Research 

NER tasks include rule-based [2, 3], machine 

learning-based [4-8], and deep learning-based approaches. In 

recent years, neural network-based deep learning models 

have become a hot research topic due to the limitations of 

manual features. 

Since neural networks automatically learn and capture 

semantic features from the corpus, the effectiveness of entity 

recognition relies heavily on the representation of word 

embeddings. There’re three types of word embedding 

representations in the current NER task: word-level, 

character-level, and hybrid representations. 

Word level is an intuitive way of clause splitting and is 

inherited from traditional recognition tasks [8]. Nowadays, 

word separation is usually performed with the help of 

external tools such as Jieba and Hanlp to improve efficiency. 

Huang [10] proposed a word-level model based on 

LSTM-CRF [9] that effectively improves the performance of 

entity recognition. However, the coarse granularity at the 

word level leads to a significant increase in the parameters of 

the embedding layer but also introduces Out-of-vocabulary 

(OOV) problem. 

The character-level representation can solve the problem 

of OOV and also avoid the propagation of subword errors. In 

the English corpus, the minimum division is character-level, 

and prefixes and suffixes composed of characters in words 

play a landmark help in the annotation. Lample [11] input the 

prefix and suffix extracted morphological features with word 

vector splicing into LSTM by modifying word embedding 

layer. 

Hybrid representation is the fusion of multiple features as 

the input of a neural network. Ma [12] and Chiu [13] further 

optimized the input part by adding CNN (convolutional 

neural networks) to encode character information to capture 

long-range semantics, mixing character embedding and word 

embedding as the input of LSTM to construct contextual 

information. Dong [14] was inspired to bring in an assembly 

of Chinese character paraphernalia and combine sentiment 

features. Peng [15] chose a lexicon to enhance the embedding 

layer information and took spliced word vectors as input to a 

bidirectional LSTM. Lattice LSTM [16], based on the 

character-based model, integrated hidden lexical-level 

semantic information and achieved 93.18% on the MSRA 

corpus F1 value. 

The named entity recognition task can be regarded as a 

sequence annotation task, in which RNNs (recurrent neural 

networks) are widely used. Because the BiLSTM model has a 

strong ability to capture contextual semantics and sequence 

modeling, which has achieved remarkable results in sequence 

labeling tasks, a series of subsequent studies [10-13] have 

used it as the structural basis. Nevertheless, with the growth 

of sequences, the long sequence modeling ability diminishes, 

so some studies [17, 18] used CNN as the backbone structure 

with higher parallelism than LSTM and addressed the 

problem of contextual semantic capture by deep CNN 

stacking. Strubell [18] proposed the use of IDCNN for named 

entity recognition to improve the training speed while 

maintaining recognition accuracy. 

Overall, the convolutional layer fused with residual gated 

as the encoder combine with used GP as the decoding layer 

to better identify nested entities, by introducing annotations 

in the semantic part of the extracted vocabulary. In more 

detail, the encoder stage uses stacked dilated convolution 

kernels to perform parallel calculations on the entire text 

sequence, expand the scope of feature capture, and extract 

contextual high-level semantic features of sentences. Then, a 

residual gated unit is introduced to fuse the local context 

features into the global, acquire contextual semantics, and 

alleviate the problem of gradient disappearance caused by 

cross-layer propagation. In addition, to solve the problem of 

labeling the same entity in different contexts, a multi-head 

attention mechanism is introduced to extract the global 

features of sentences and solve the long-distance dependency 

problem. 

3. Model 

The overall structure of the entity recognition model is 

shown in Figure 1, and the whole model is divided into three 

parts: the embedding layer, the encoding layer, and the 

decoding layer. Among them, the embedding layer contains 

the pre-training model obtained a dynamic vector 

representation, which effectively alleviates the problem of 

multiple meanings at a time. Then, the vectors of the 

embedding layer are input to the coding layer for feature 

extraction, which extracts word features in convolution layer 

and further acquires high-dimensional lexical semantics in 

combination with the residual gated convolution layer. 

Furthermore, parameters are set to N=5, convolution kernel 

3x3, and dilation set at 1,2,4,1,1 in residual gated convolution 

module. Finally, the decoding layer uses GP to complete the 

label prediction of the sequence and achieve the global 

optimal sequence through global normalization in 

combination with relative position coding. 
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Figure 1. Model Framework. 

3.1. Embedding Layer 

The embedding layer consists of the BERT [20] model 

embedding layer and the vector representation of softlexion 

[15]. The structure of the BERT model is shown in Figure 2. 

which uses Transformer encoder as the basic architecture, 

and the input layer is the sum of word embedding, location 

embedding and segmentation embedding, and position 

embedding with temporal information, and then, label 

embedding that also integrated extra dictionary for softlexion 

part. 

 

Figure 2. Embedding Layer. 

With the avoidance of word separation, a character-level 

embedding-based representation is proposed to reduce the 

number of unregistered words. The character-level 

embedding layer is output to the BERT pre-training model. 

Word enhancement effectively alleviates the boundary 

recognition error problem by assigning each character to the 

set {B, M, E, S} and then stitching it to BERT's word vector 

after the whole as an embedding layer. 

B�c�� � �w�,
, ∀w�,
 ∈ L, i � k � n�       (1) 

M�c�� � ���,�, ∀��,� ∈ L, 1 � j � i � k � n�    (2) 

E�c�� � ���,�, ∀��,� ∈ L, 1 � j � i�        (3) 

S�c�� � ���, ∃�� ∈ L�              (4) 

Since the frequency of word is static value obtained 

offline, the method of counting word’s frequency as a 

weight greatly speeds up the calculation of the weight of 

each word. Specifically, let z(w) represent the frequency of 

the word w in the dictionary appearing in the statistical data, 

e
w
(w) corresponds to the embedding of the contributing 

word, and the weighted representation of the word set S is 

as follows: 

� �S� � !
"
∑ $���%&���&∈'          (5) 

The embedding of the four sets is combined into one fixed 

dimensional feature and added to each character 

representation. 

e �	B,M, E, S� � *� �	B�; � �M�; � �E�; � �S�,   (6) 

-. ← *-.; e �B,M, E, S�,           (7) 
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3.2. RGCNN Layer 

3.2.1. Residual Gated Convolution 

The model is fed into a gated convolutional unit with 

residuals after the sequence is encoded in a pre-training layer. 

By adding a gated mechanism to the one-dimensional 

inflated convolution, the necessary high-dimensional 

semantic information is selectively extracted while 

expanding the context selection range. 

 

Figure 3. Residual Gated Linear Unit. 

The residual gated linear unit is improved from GLU 

(gated linear unit), based on which the residual mechanism is 

introduced, as in Eq.8. 

012�3� � 4&5�3� 	⊗ 784&9�3�:        (8) 

4&;  denotes the same convolution operation, but the 

weights will not be shared, where 4&9  uses the sigmoid 

activation function and 4&5  does the linear operation, so Eq. 

9 and 10 are equivalent. 

< � 3 =	4&5�3� ⊗ 784&9�3�:       (9) 

< � 3 ⊗ >1 ? 784&9�3�:@ = 	4&5�3� ⊗ 784&9�3�:  (10) 

The information passing probability of input x is controlled 

by two parts: the first part has the probability to pass directly, 

and the second part controls the passing probability through 

the gating of convolution operation, which alleviates the 

gradient disappearance problem by expanding the number of 

information transmission channels. 

3.2.2. Expansion Convolution 

The first application was in image domain, to expand the 

receptive field of the convolution kernel while keeping the 

size of the feature map constant, as in Figure 4. The model is a 

stack of four identically sized inflated convolution blocks, 

each containing three layers of inflated convolution with 

expansion widths of 1, 1, and 2. [18] covers the entire 

sequence more rapidly by allowing the perceptual field to 

grow exponentially and remaining the number of parameters. 

 

Figure 4. Dilated Convolution. 

3.3. Attention Mechanism 

The encoder of Transformer consists of a combination of 

attention mechanism and feedforward neural network, as in 

Figure 5. 

 

Figure 5. Multi-head Attention diagram. 

The attention mechanism is the core part of the encoder. 

After the input of the BERT model, the attention operation is 

performed to calculate the information related to the other 

vectors in each word vector.	

Attention�D, E, F) = softmax(
GHT

IJK
)F      (11) 

After projecting Q, K, and V in different linear spaces, splices 

of all the attention results are calculated as in Eq. 12. 

head� � Attention�DL�
G , EL�

H , FL�
M�     (12) 

Multi-head�D, E, F� � Concat�headN, ⋯ ,head
�L
P  (13) 

Then the splicing result is connected with the input 

residual of the BERT layer in the normalized calculation to 

obtain a normal distribution result, which continues to input 

into the feedforward neural network, and the dimensionality 

reduction operation is completed through two linear 

transformations. 

3.4. Decoding Layer 

The sequence of encoded vectors obtained after encoding 

the input sentence t of length n is *QN, QR, ⋯ , QS, . The 

encoding vector of each token is put into two linear layers to 

record the query and key belonging to each entity class, 

respectively: 

T�,U � LV,UQ� = WV,U             (14) 

X�,U � L
,UQ� = W
,U             (15) 

The α denotes a class of entities, and here it is equivalent to 

trying different q and k for various entity classes identified by 

Y*�,Z, of consecutive substrings, scoring the entity α: 
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[U�\, ]� = T�,U
^ XZ,U               (16) 

Within entities scores, conversions in consecutive 

substrings add the rotation position code RoPE, which is a 

transformation matrix _� that satisfies _�
`_Z =	_ZaN: 

[U�\, ]� = 8_�T�,U:
`
8_ZXZ,U: = T�,U

^ _Za�XZ,U   (17) 

Since the final scoring function corresponds to α n(n+1)/2 

class binary classification problems, in case of severe class 

imbalance for each type of entity candidate, the loss function 

uses a single-objective cross-entropy generalization of the 

multiclassification: 

1�\, ]� =
	bcd81 + ∑ %a e��,Z���,Z�fge : + bcd�1 + ∑ %a e��,Z���,Z�fGe � (18) 

Among samples, hU is the sum of the closing sets of all 

entities of type α for that sample, and DU  is the sum of the 

closing sets of entities of type not α for that sample or all 

non-entities, considering only the combinations i ≤ j: 

Ω = {�\, ]�|1 ≤ \ ≤ ] ≤ k}            (19) 

hU = l�\, ]�mY*�,Z,	is	an	entity	of	type	st      (20) 

DU = Ω − hU                  (21) 

All segments that satisfy [U�\, ]� > 0 fragments of Y*�,Z, 
are considered as entity outputs of type α. 

4. Experiments 

4.1. Details 

The evaluation indicators of the experiment are precision 

rate P, recall rate R, and F1 value. Dimension label of BIO 

from MSRA converted to BMES. The experimental 

environment is 1080ti, 64G memory. The parameters of the 

model are set as follows: Bert model adopted 

bert-base-chinese version, 12 heads mode. The hidden layer 

dimension is set to 768, batch size to 128, learning rate to 1e-3, 

and maximum input text length to 512. Using Adam optimizer 

to prevent overfitting, Dropout is set to 0.2. 

4.2. Model Computing Efficiency 

The calculation efficiency of the RGCNN model is in 

comparison with basic models on MSRA, comprising 

BiLSTM model commonly used in NER task, IDCNN based 

on expansive convolution, and GRN [19] model based on 

residual gated, to compare the single step time of the model 

processing the same batch of samples and updating the weight 

once. 

Table 1. Model single-step efficiency. 

Models P R F1 Single step/ms 

BiLSTM [10] 85.60 84.55 85.12 416 

GRN [19] 91.16 88.68 89.89 189 

IDCNN [18] 87.11 86.42 87.97 124 

RGCNN 91.88 90.55 91.21 158 

CNN-based models are generally faster to train than RNN 

models, and achieve higher F1 values. Among them, the speed 

of IDCNN is nearly 3 times faster than that of BILSTM, the 

single-step time of RGCNN based on expansion convolution 

is 2.5 times faster than that of BiLSTM, and the F1 value is 

6.11% higher than which. The accuracy of the GRN model 

resembles that of RGCNN, but the single-step time and recall 

rate are not as good as that of RGCNN. 

It can be seen that the CNN-based model has a significant 

speed advantage. The main reason is that the RNN model has 

to recursively obtain the global information, while CNN 

obtains the information by increasing the perceptual field 

through layer stacking, and the operations of each layer are 

parallel, so the speed of the model is greatly improved. 

4.3. Impact of Embedding Layer on Entity Extraction 

Based on the RGCNN model, a pre-training model is added 

to verify the influence of prior semantics on entity extraction. 

Character embedding, word embedding, and context 

embedding are respectively introduced to perform 

comparative experiments with the BERT model, which are 

128,128 and 256, respectively. Then compare the accuracy of 

other vocabulary enhancement methods in the NER task. 

Table 2. Embedding layer comparison. 

Models P R F1 

RGCNN 88.31 86.92 87.61 

RGCNN+character embedding 90.79 85.26 87.93 

RGCNN+position embedding 90.21 87.45 88.80 

RGCNN+context embedding 92.88 90.42 91.63 

RGCNN+Bert 92.94 91.53 92.22 

RGCNN+softlexion 91.36 90.48 90.92 

RGCNN+Bert+softlexion 94.45 93.82 94.13 

Algorithm improvement from vectors obtained from the 

embedding layer indicates F1 value of the embedding layer 

with the fused context in Table 2 is improved by 3.5% 

compared to using only RGCNN, verifying the improvement 

of contextual information for entity recognition. The overall 

evaluation criteria are all improved after embedding 

enhancement. Due to the sufficient word frequency statistics 

in the MRSA training set, the effect of RGCNN+softlexion 

differs only 1.3% from BERT. The fusion of BERT and 

softlexion has more improvement for entity recognition, 

mainly attributed to the a priori semantics of the BERT 

model. 

4.4. Model Validation 

The following comparative experiments are conducted to 

verify effectiveness of proposed model as shown in Table 3: 1) 

To verify the effect of the depth of the BERT model on the 

entity recognition effect, the model depths of 6, 8, and 10 

layers were selected for the experiments. 2) Based on the 

optimal model depth, two decoding methods, CRF and GP, 

were used to compare the entity recognition. 3) The 

RGCNN+GP model and the mainstream BiLSTM+CRF 

model are compared. 
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Table 3. Comparison of model groups. 

Group Model Embedding Depth F1 

1 RGCNN+GP BERT 6 91.73 

2  BERT 8 93.42 

3  BERT 10 92.57 

4 RGCNN+CRF BERT 8 92.22 

5 BiLSTM+CRF Word2vec 1 89.13 

Several sets of different BERT layers demonstrate that the 

F1 value using the BERT pre-training model reaches the 

highest value of 93.42% at depth 8, the lowest value at depth 6, 

and the average value between depth 6 and 8 at depth 10. It 

indicates that appropriately deepening the number of network 

layers is beneficial to improve the accuracy of entity 

recognition, but as the model continues to deepen, the learning 

ability of the model decreases and causes degradation of the 

recognition effect. 

 

Figure 6. Model training process. 

As shown in Figure 6, the training process illustrates the F1 

values of the RGCNN at different depths with the number of 

rounds, where the first three groups are the training results of 

the Bert+RGCNN+GP model with depths of 6, 8, and 10 

layers. The F1 value of the 10 layers model reached a 

maximum of 92.57% at 30 epochs. 

It’s found that in comparison between groups 2 and 4, the 

decoding layer using GP gives better results than CRF because 

the loss function and evaluation metrics of GP are entity-based, 

which works well on the entity-level dataset of MSRA, but the 

improvement is not obvious on tag-level data. The F1 value of 

BERT+RGCNN+GP is 4.3% higher than that of the 

BiLSTM+CRF model which is the baseline. 

4.5. Comparison with Existing Work 

Table 4. Mainstream Model Comparison. 

Models P R F1 Single step/s 

Bert-finetuning 94.09 94.54 94.31 1363 

BERT-BiLSTM-CRF 93.18 93.96 93.11 536 

BERT-IDCNN-CRF 94.86 93.97 94.42 216 

BERT-softlexion-RGCNN

-GP 
95.59 94.35 94.96 348 

Latice-LSTM-CRF 93.57 92.79 93.18 7506 

Radical-BiLSTM-CRF 91.28 90.62 90.96 >410 

Models in Table 1 make comparisons with ones after 

adding the Bert layer in Table 4, which shows that a priori 

semantics of the pre-trained models significantly improves the 

evaluation metrics of all the base models. Moreover, among 

all the models using BERT in Table 4, BERT-IDCNN-CRF 

has the least single-step elapsed time and 

BERT-RGCNN-CRF is closest to its time. Our model's rapid 

single-step time is attributed to lessening training parameters. 

The number of parameters of BERT pre-trained language 

model is more than 100 million, and BERT-finetuning updates 

all parameters, while the RGCNN model combined with 

BERT fixing parameters of the BERT layer, only updates the 

upper layer parameters. Therefore, the number of parameters 

of RGCNN is 59,000 is significantly reduced to 59,000. 

5. Conclusion 

To address the problem of easy disappearance of gradients 

between layers of extracted entities and insufficient access to 

contextual information by CNN models, residual gated 

connections and attention mechanisms are appended on the 

basis of one-dimensional expanded convolution in order to 

obtain contextual semantic information while maintaining the 

training speed of CNN architecture. The BERT-RGCNN-GP 

model achieves an F1 value of 94.96% for entity extraction on 

MSRA. The feasibility of the experiment and the method is 

verified, hence next step is to consider adding the 

identification between semantic relations to further enhance 

the entity extraction effect. 
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