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Abstract: In this work, the infinitesimal criterion of invariance for determining symmetries of partial differential equations 

is applied to the Fokker Planck equation. The maximum rang condition being satisfied, we determine the Lie point symmetries 

of this equation. Due to the nature of infinitesimal generators of these symmetries and the stability of Lie brackets, we obtain 

an infinite number of solutions from which we find examples of solutions for the Fokker Planck equation: other solutions are 

generated given a particular solution of the equation. Then, the Fokker Planck equation admits a conserved form, hence there is 

an auxiliary system associated to this equation. We show that this system admits six and an infinite number of infinitesimal 

generators of point symmetries giving rise to two potential symmetries of the Fokker Planck equation. We then use those 

potential symmetries to determine solutions of the associated system and therefore provide other solutions of the Fokker 

Planck equation. Note that these are essentially obtained on the basis of the invariant surface conditions. With respect to these 

conditions and from the potential symmetries that we have found, we finally show that in particular, some solutions of the 

considered Fokker Planck equation reduced to the trivial solution (solutions that are zero). 

Keywords: Fokker-Planck Equation, Symmetry Analysis, Lie Point Aymmetry, Potential Symmetry 

 

1. Introduction 

The Fokker-Planck equation (FPE, for short) is a linear 

PDE that describes the transition probability density of a 

Markov process. It is also known as the Kolmogorov 

diffusion equation and is used to model many situations such 

as evolution of the distribution function of a particle, finance, 

turbulence, population dynamics, protein kinetics (see [3, 4, 6, 

10, 12, 21]). 

The FPE interests many researchers as shown by the 

number of publications on the subject; see e.g. [2-5, 7, 8, 15, 

16, 19, 20, 21] and references therein. 

We state the Fokker-Planck equation (FPE) in the 

following form: 

����, �� � 	
����, �� 	 �
�� � 

�����, �� �



�
�����, ��, (1) 

where a1 and a2 are real numbers; u (x, t) is a function that 

depends on the variables x and t, to be determined; and uα 

denotes differentiation of u with respect to the variable α. 

Like most PDEs, it gives explicit solutions only in very 

specific cases related both to the form of the equation and the 

shape of the area where it is studied. Many techniques are 

used to solve particular cases of the FPE: quantum mechanics 

technique ([2]), Fourier transform method ([19]), differential 

transform method ([7]), numerical method (e.g. [3, 4, 8, 22]). 

Powerful means used in the study of DEs and PDEs are the 

Lie symmetries. Since their introduction by Sophus Lie 

([11]), Lie symmetries are experiencing a rapid development 

as a wonderful tool for the classification of invariant 

solutions of DEs and PDEs. Point symmetries are local 

symmetries as their infinitesimals depend on independent 

variables x’s, dependent variables u (x)’s, and derivatives of 

dependent variables; and are determined if u (x) is 

sufficiently smooth in some neighbourhood of x. Potential 

symmetries when with them are nonlocal symmetries whose 

infinitesimals, at any point x, depend on the global behavior 

of u (x). Potential symmetries are very useful as they lead to 

the construction of solutions of a given system of PDEs 

which cannot be obtained as invariant solutions of its local 

symmetries. See Section 3 for wider discussion on potential 
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symmetries. See also Chap 7 of [1] for more about potential 

symmetries. 

The FPE is considered in his standard expression [15, 18] 

in the form �� � � � ��� � ��� which is different from (1). 

The authors of the papers quoted above have determined the 

Lie point symmetries of the FPE, as well as the potential 

symmetries. They also have provided families of solutions of 

the FPE. 

In this paper we consider the FPE (1) with the 

condition 
� ≠ 0. We adopt the same approach as in [15] and 

determine the Lie point symmetries of the FPE in Section 2. 

Some of its solutions are also determined. In Section 3, we 

show that the FPE can be written in a conserved form. A 

conserved form leads to auxiliary dependent variables (which 

are potentials) and then to an auxiliary system of PDEs 

whose local symmetries are the potential symmetries of the 

FPE. We determine such symmetries in Section 3 and use 

them to construct other solutions of the Fokker-Planck 

equation. 

2. Point Symmetries of the  

Fokker-Planck Equation 

2.1. Some basics about Lie point symmetries 

Consider a general system of n
th

 order DEs admitting p 

independent variables � � ��
, … , ��)  in � ≃ ℝ�  and q 

dependent variables � = (�
, … , ��) in � ≃ ℝ� , 

 Δ�(�, �(�)) = 0, � = 1, … , �,                  (2) 

with u 
(n)

 denoting the derivatives of the u’s with respect to 

the x’s up to order n. The system (2) is thus defined by the 

vanishing of a collection of differentiable functions 

Δ�(��  ⟶  ℝ) defined on the n
th

 jet space �� = ��! = � ×

�(�), where E is the total space ! = � × � (see [14]). The 

points in the vertical space U 
(n)

 are denoted by u 
(n)

 and 

consist of all the dependent variables and their derivatives up 

to order n. The system (2) can therefore be viewed as 

defining (or defined by) a variety S$ = {(�, �(�))/

Δ�(�, �(�)) = 0, � = 1, … , �} contained in the n
th

 order jet 

space, and consisting of all points (�, �(�)) ∈  ��  satisfying 

the system. The defining functions Δ�  are assumed to be 

regular in a neighbourhood of )$ ; in particular, this is the 

case if the Jacobian matrix of the functions Δ�  with respect to 

the jet variables (�, �(�)) has maximal rank m everywhere on 

)$ . In the case of point transformations, the infinitesimal 

generators form a Lie algebra *  consisting of vector fields 

1 1

( , ) ( , )
p q

i

i
i

V x u x u
x u

α
α

α
ξ η

= =

∂ ∂= +
∂ ∂∑ ∑  on the space of 

independent and dependent variables. 

Let +(�) denote the n
th

 prolongation of + to the jet space �� 

([13, p. 117]): 

( ) ( )

1 1 # 0

( , ) ( , ) ,
p q n

n i j

Ji
i J j J

V x u x u
x u

α
α

α
ξ η

= = = =

∂ ∂= +
∂ ∂∑ ∑ ∑                                                              (3) 

For any unordered multi-index 1
( ,..., ),1

k k
J j j j p= ≤ ≤  of order 1

#J j ...
k

k j n= = + + ≤ ; where, for any 1,..., ,qα =  

,

1

p
i

J J J i

i

D Q u
α α αη ξ

=

= +∑  and 
1

( , ) ( , )
p

i

i
i

u
Q x u x u

x

α
α αη ξ

=

∂= −
∂∑ .                                             (4) 

The fundamental infinitesimal symmetry criterion for the 

system (2) is stated in the following: 

Theorem 2.1 ([14]). A connected group of transformations 

G is a symmetry group of the fully regular system of DEs (2) 

if and only if the infinitesimal symmetry conditions 

( ) ( ) 0, 1,..., ,n

vV v m∆ = =  whenever 0,∆ =             (5) 

hold for every infinitesimal generator V  of the Lie algebra 

g  of G . 

Let 
1( ) ( ,..., )pu f x f x x= =  be a function of ℝ� with 

values in  ℝ .. It is known that there exists 1( )p r

r pp + −=  

derivatives of f of order r . The equation 
( )( , 0nx u∆ =  is 

defined on the space ℝ� × ��  of dimension
( )np qp+ , with 

( )

1 21 ... ( )
n p n

n np p p p
+= + + + + = . 

A system ( ) ( ) ( )

1( , ) ( ( , ),..., ( , ))
n n n

mx u x u x u∆ = ∆ ∆
 
will have 

as Jacobian matrix, a matrix of rank 
( )( )nm p qp× + . See 

more details in [13, p. 95]. 

Definition 2.2 ([12]). The system (2) is said to be of 

maximum rank if the 
( )( )nm p qp× + Jacobian matrix 

( )
( , ) : ( , )

n v v

i

J

J x u
x u

α∆
∂ ∆ ∂ ∆

=
∂ ∂

 of ∆  with respect to all 

the variables 
( )( , )nx u  is of rank m  whenever 

( )( , ) 0nx u∆ = . 

2.2. Lie Point Symmetries of the FPE 

To investigate the Lie point symmetries of the FPE, we 

have to check the maximal rank condition for the map 

(2)

2 2 1

1
: ( , ; ) ( , ) ( , ) ( ) ( , ) ( ; )

2
t x xxx t u u x t a u x t a x a u x t u x t∆ + + + −֏  

whose kernel equation is (1) on a subset 
(2)M  of the 2

nd
 jet-

space 
(2)

X U×  of the manifold X U× . The independent 

variables ( , )x t  and the dependent variable leave on the 

spaces � ≃ ℝ�  and � ≃ ℝ , respectively. The expression 
(2)

( , , , , , )x t xx xt ttu u u u u u u=  represents the various partial 

derivatives up to the second order of u , and leaves on the 

second prolongation 
(2)

U  of the set U . The set 
(2)M  is the 

corresponding 2
nd

 prolongation of the subspace M X U⊂ × . 
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The Jacobian matrix of ∆ , 

(2)

2 2 1 2

1
( , ; ) ( ,0, , ,1, ,0,0)

2
xJ x t u a u a a a x∆ = + − does not vanish 

anywhere on 
(2)M . Then, ∆  is of maximal rank. Let 

( , , ) ( , , ) ( , , )V x t u x t u x t u
x t u

ξ τ η∂ ∂ ∂= + +
∂ ∂ ∂

 be a vector field 

on X M× , where ,ξ τ  and η  are smooth functions. The 

second prolongation of V  reads 

η η η η η∂ ∂ ∂ ∂ ∂= + + + + +
∂ ∂ ∂ ∂ ∂

(2) (2) (2) (2) (2) (2)( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ,x t xx xt tt

x t xx xt tt

V V x t u x t u x t u x t u x t u
u u u u u

           (6) 

Where , , ,x t xx xtη η η η and 
ttη  are given by the formulae 

(see [14]): 

( )x

x x t xx xtD u u u uη η ξ τ ξ τ= − − + + ,          (7) 

( )t

t x t tx ttD u u u uη η ξ τ ξ τ= − − + + ,            (8) 

( )xx

xx x t xxx xxtD u u u uη η ξ τ ξ τ= − − + + ,        (9) 

( )xt

xt x t xxt ttxD u u u uη η ξ τ ξ τ= − − + + ,          (10) 

( )tt

tt x t ttx tttD u u u uη η ξ τ ξ τ= − − + + .         (11) 

Proposition 2.3.: Point symmetries of the FPE are 

generated by the operators 

2

1

a t
V e

x

∂=
∂

, 2V u
u

∂=
∂

, 4V
t

∂=
∂

,             (12) 

2 2

3 2 1

2 2

1
( )

2

a t a tu
V e a x a e

a x a u

− −∂ ∂= + +
∂ ∂ ,     (13) 

2 2 22 2 22

5 2 1 2 1( ) 2( )
a t a t a t

V e a x a e a x a e u
t x u

− − −∂ ∂ ∂= − + − +
∂ ∂ ∂

, (14) 

2 2 22 2 2

6 2 1 2
( )

a t a t a t
V e a x a e a ue

t x u

∂ ∂ ∂= + + −
∂ ∂ ∂

, (15) 

and an infinite number of generators ( , )V x t
u

α α ∂=
∂

; where α 

is any solution of the FPE. 

Proof. We make the assumption 
(2) (2)( , ; ) 0V x t u∆ =  

whenever, and check the corresponding conditions on ,ξ τ
andη . Those conditions lead to 

2 1 2 2

0

1

2

t x x xx

xa a a u a xη η η ξ η η
∆=

 = − − − − + 
 

     (16) 

Now replace ,x tη η  and 
xxη  in (16) by their expressions 

given in (7), (8) and (9) respectively, and eliminate tu  by 

substituting it by the right hand side of (1) any time when it 

occurs. Then the derivatives of u  with right to t  disappear. 

So, the resolution of the corresponding system of PDEs is 

equivalent to solving the following system: 

0
uu

η = ,                               (17) 

2 0
x t

ξ τ− = , 0
x

τ = , 0
u

τ = , 0
u

ξ = ,           (18) 

2 1 2
2( ) 2 2 2 0

x t xu
a x a aξ ξ ξ η+ − + − = ,     (19) 

02222)(2 22212 =−−+−+− tutxxx uaauaaxa τηηηηη , (20) 

Equation (17) implies that η  is linear in u . So, it writes 

( , , ) ( , ) ( , )x t u A x t u B x tη = + ,             (21) 

A and B being smooth functions depending only on x  and

t . From (18), we get 

1
( )

2
t x k tξ τ= + ,                      (22) 

where k  is a smooth function of t . Substituting ξ and η  by 

their expressions in (19) and differentiating the resulting 

expression with respect to x , we get 2
2 2 0

xx t tt
A a τ τ− + = . 

Thus, 

2

2 1 2

1 1
( , ) ( ) ( )

2 4
t ttA x t a x A t x A tτ τ = − + + 

 
,    (23) 

2 1 1

1
'( ) ( ) ( ) 0

2
tk t a k t A t a τ− + − = ,          (24) 

where 
1

A  and 
2

A  are smooth functions of the variable t . 

Using Equation (20), we find that 

2 1 2
2 2 2 2 0

xx x x t t
A a xA a A A a τ− − − − = ,       (25) 

2 1 2

1
0

2
xx x x t

B a xB a B a B B− + + + + = .             (26) 

Note that (22) is nothing but the FPE (1). Now (19), (20) 

and (21) entail 

2 22 2

1 2 3( ) a t a tt C e C e Cτ −= + +                  (27) 

2 2

1 1 2 2 4( ) 4
a t a t

A t a a C e C e
− − = − + 

,           (28) 

2 2 22 22

2 1 2 4 1 1 2 5

2

1
( ) 2

a t a t a t
A t a C e C a e C a e C

a

− −= − + − + , (29) 

2 2 2 22 4
1 1 1 2 6

2

( )
2

a t a t a t a tC
k t a C e a C e e C e

a

− −= − + + , (30) 

where 1 2 6
, ,...,C C C  are real numbers. Hence, the solution of 

the system (17)-(20) is 
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2 2 2 2 2 22 2 2 2 4
1 2 2 2 1 1 1 2 6

2

( , , )
2

a t a t a t a t a t a tC
x t u C a e C a e x a C e a C e e C e

a
ξ − − − = − + − + +  ,                     (31) 

2 22 2

1 2 3( , , ) a t a tx t u C e C e Cτ −= + + ,                                                         (32) 

2 2 22 22 4
2 2 1 2 1 1 2 5

2

( , , ) 2 ( ) ( ) ( , )
a t a t a tC

x t u C a x a e a x a e u C a e u C u x t
a

η α− − 
= − + + + − + + 
 

  (33) 

where ( , ) ( , )x t B x tα =  is any solution of the FPE. The rest 

of the proof is straightforward. 

2.3. Examples of solutions of the FPE 

In the sequel, we provide a family of solutions of the 

Fokker-Planck equation (1). 

Theorem 2.4. Let ( , )x tα be any solution of the FPE. Then 

the functions 

22 2

1 2 1 2 1
( , ) ( ) 2( )

a t

t x
f x t e a x a a x aα α α−  = − + + +  ,       (34) 

2

2 2 1

2

1
( , ) ( )

2

a t

x

e
f x t a x a

a
α α

−
 = − + 
 

,           (35) 

[ ]22

3 2 1 2( , ) ( )a t

t xf x t e a x a aα α α= + + + ,        (36) 

2

4 ( , )
a t

xf x t eα= , 5( , ) tf x t α=                  (37) 

are also solutions of the FPE. 

Proof. Since { }, , 1,...,6iV V iα =  generates a Lie algebra, the 

stability of the brackets in the table below completes the 

proof. 

 

Table 1. Commutations table of the Lie algebra of symmetries of the FPE. 

[ ]1 2, 0V V =  [ ]2 4, 0V V =  [ ] 2

2 1
2

3 1
( )

2

, a t

x

e
a x a

a

V V Vα
α α

−
 − + 
 

=
 

[ ]1 3 2
,V V V=  [ ]2 5

, 0V V =  [ ]4 5 2 5
, 2V V a V= −

[ ]1 4 2 1,V V a V= −
 

[ ]2 6
, 0V V =

 
[ ]4 6 2 6

, 2V V a V=
 

[ ] 2

1 5 2 3, 4V V a V= −  

[ ]1 6
, 0V V =  

[ ]2
,V V Vα α= −  

[ ]3 4 2 3
,V V a V=

 

[ ]4 ,
t

V V Vα α=  

[ ] 2

5 6 2 4 2 2, 4 2V V a V a V= −
 

[ ] 21, a t
xe

V V Vα α=
 [ ]3 5, 0V V =

 
[ ] 2 22

2 1 2 1
5 ( ) 2( )
, a t

t xe a x a a x a
V V Vα α α α−  − + + +

 
=  

[ ]2 3
, 0V V =

 
[ ]3 6 1

,V V V=
 

[ ] [ ]2 2
2 1 2

6 ( )
, a t

t xe a x a a
V V Vα α α α+ + +

=
 

As mentioned in [15], using the Lie brackets in Table 1, 

one can construct a family of solutions from a trivial solution. 

Consider e.g. 2( , )
a t

u x t e
−=  then the functions 

232

1 2 2 1( , ) 2( )
a t

g x t a a x a e
− = − + +  ,       (38) 

221
2

2

( , )
a ta

g x t x e
a

− 
= − + 

 
,                 (39) 

2

3 2( , ) a tg x t a e−= −                          (40) 

are also solutions of (1). From these solutions we can 

again construct other solutions. For instance, applying the 

symmetry generators (35) to 1g  yields to the solution 

2 2 4

4 2 2 2 1 2 1 2( , ) 3 12 ( ) 4( ) exp( 5 )g x t a a a x a a x a a t = − + + + −                                                           (41) 

3. Potential Symmetries of the FPE 

3.1. Preliminaries on Potential Symmetries 

A partial differential equation of order n in the unknown 

function ( , )u x t  

( )( , , ) 0nx t u∆ = ,                         (42) 

is written in a conserved form if it has the following form: 

( 1) ( 1)( , , ) ( , , ) 0n n

t xD T x t u D X x t u− −+ = .       (43) 

Since the PDE (43) is in a conserved form, a potential v  

considered as a new variable is in-traduced. A system of 

PDEs denoted by ( 1)( , , , , )n

x tS x t u v v−  is then obtained. If 

( ( , ), ( , ))u x t v x t  is a solution of the system ( 1)( , , , , )n

x tS x t u v v− , 

then ( , )u x t  solves the PDE given by (42). 

Definition 3.1. Assume that the auxiliary system 
( 1)( , , , , )n

x tS x t u v v−  admits a generator W of point 

symmetries given by  

( , , , ) ( , , , ) ( , , , ) ( , , , )W x t u v x t u v x t u v x t u v
x t u v

ξ τ η ϕ∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

. 

One says that ( 1)( , , , )n

x tS x t u v v−  defines a potential 

symmetry admitted by (42) if and only if one, at least, of the 

infinitesimals ,ξ τ  and η depends explicitly on the potential

v ; that is if and only if the condition 

2 2 2

0
v v v

ξ τ η∂ ∂ ∂     + + ≠     ∂ ∂ ∂     
                     (44) 

holds. In this case, the symmetry 
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( , , , ) ( , , , ) ( , , ; )Y x t u v x t u v x t u v
x t u

ξ τ η∂ ∂ ∂= + +
∂ ∂ ∂

 will be 

called a potential symmetry of Equation (42). 

Potential symmetries can also be used in the study of a 

boundary value problem posed for a given system of PDEs 

and for the study of ODEs. For a scalar ODE, a potential 

symmetry reduces the order (see [1]). 

We are now going to explain how, from potential 

symmetries, one obtains solutions of the PDE (42) which 

admits a conserved form (43). See [18] for wider discussion. 

Given point symmetry 
x t u v

ξ τ η ϕ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 of (43), the 

invariant surface conditions are 

( , , , ) ( , , , ) ( , , , ) 0
x t

x t u v u x t u v u x t u vξ τ η+ − =             (45) 

( , , , ) ( , , , ) ( , , , ) 0
x t

x t u v v x t u v v x t u vξ τ ϕ+ − =            (46) 

The associated characteristic system yields to the 

following independent integrals 

1 1
( , , , )S x t u v C= , 2 2

( , , , )S x t u v C= , 
3 3
( , , , )S x t u v C= ,   (47) 

with 1 2 3
( , , )

( , )

S S S

u v

∂
∂

 of rank 2. If we set 
1

z c= , 
2 1

( )c h z=  and 

3 2
( )c h z= , we obtain from (47): 

1 2
( , , , ( ), ( ))u U x t z h z h z= ,                        (48) 

1 2
( , , , ( ), ( ))v V x t z h z h z= ,                     (49) 

1 2
( , , , ( ), ( )) 0G x t z h z h z = .                     (50) 

The invariant solutions of (43) are given by (48) and (49), 

where ( )
i

h z  are the solutions of the ordinary system 

obtained by substitution in (43). Since (42) is a differential 

consequence of (43), the solution of (43) give those solutions 

of (42), which verify the differential relation obtained by 

eliminating v  between (45) and 0T Xξ τ ϕ+ − = . 

3.2. Potential symmetries of the FPE 

The conserved form of the FPE can be written as 

2 1

1
( ) 0

2
t x xD u D a x a u u

 + − + + = 
 

.            (51) 

Then, the corresponding system writes as follows: 

2 1

1
( ) ,

2

,

t x

x

v a x a u u

v u

 = − + +

 =

                  (52) 

where the potential variable v has been introduced as a new 

dependent variable. 

Proposition 3.2. The system (52), with 

 ∈ ℝ and, 
� ≠ 0 

admits a non trivial symmetry group with the following 

infinitesimal generators: 

2

1

a tW e
x

∂=
∂

, 2
W u v

u v

∂ ∂= +
∂ ∂

, 
3 t

W
∂=
∂

,                                               (53) 

− − −    ∂ ∂ ∂= + + + + +    ∂ ∂ ∂     

2 2 21 1
4

2 2 2

1

2

a t a t a ta a
W e x u v e v xv e

a x a u a v
,                    (54) 

( )− − −

−

∂ ∂ ∂ = − + + − + − + +
 ∂ ∂ ∂

∂
 − + −  ∂

2 2 2

2

2 2 22

5 2 1 2 1 2 2 2 1

22

2 1 2

( ) 2 ( ) 2 ( )

2 ( )

a t a t a t

a t

W a x a e e a x a a u a a x a v e
x t u

a x a a ve
v

 (55) 

2 2 22 2 2

6 2 1 2
( )a t a t a tW e a x a e a ue

t x u

∂ ∂ ∂= + + −
∂ ∂ ∂

,                                                   (56) 

and an infinite number of generators of the form ( , ) ( , )
x

W x t x t
u v

β β β∂ ∂= +
∂ ∂

, where ( , )x tβ  satisfies the equation 

2 1

1
( )

2
t x xx

a x aβ β β= − + +  

Proof. Let 1 2 1

1
( )

2
t x

v a x a u u∆ = + + −  and 2 x
v u∆ = −  be the associated system to the system (52) and let 

( , , , ) ( , , , ) ( , , , ) ( , , , )W x t u v x t u v x t u v x t u v
x t u v

ξ τ η ϕ∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

 be a symmetry vector field of this system. The criterion 

(5) writes (2)

0, 1,2( ) 0i i iW ∆ = =∆ = , where 
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(2)

.

x t x t xx xt

x t x t xx xt

tt xx xt tt

tt xx xt tt

W W
u u v v u u

u v v v

η η ϕ ϕ η η

η ϕ ϕ ϕ

∂ ∂ ∂ ∂ ∂ ∂= + + + + + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂

                                       (57) 

The coefficient functions ( , , , , , , , , , )x t x t xx xt tt xx xt ttη η ϕ ϕ η η η ϕ ϕ ϕ  in 
(2)

W  are given as follows: 

x

x x x t xD u D u Dη η ξ τ= − − , 
t

t x t t tD u D u Dη η ξ τ= − − ,                                                 (58) 

x

x x x t xD v D v Dϕ ϕ ξ τ= − − , 
t

t x t t tD v D v Dϕ ϕ ξ τ= − − ,                                                  (59) 

2 2 2 2 2xx

x x x t x xx x xt xD u D u D u D u Dη η ξ τ ξ τ= − − − − ,                                                     (60) 

2 2 2 2 2xx

x x x t x xx x xt xD v D v D v D v Dϕ ϕ ξ τ ξ τ= − − − − ,                                                        (61) 

2 2 2xt

xt x xt t xt xx t tx t xt x tt xD u D u D u D u D u D u Dη η ξ τ ξ τ ξ τ= − − − − − − ,                                      (62) 

2 2 2xt

xt x xt t xt xx t tx t xt x tt xD v D v D v D v D v D v Dϕ ϕ ξ τ ξ τ ξ τ= − − − − − − ,                                       (63) 

2 2 2 2 2tt

t x t t t xt t tt tD u D u D u D u Dη η ξ τ ξ τ= − − − − ,                                                      (64) 

2 2 2 2 2tt

t x t t t xt t tt tD v D v D v D v Dϕ ϕ ξ τ ξ τ= − − − −                                                       (65) 

Hence, the criterion (2)

0, 1,2( ) 0
ii iW ∆ = =∆ =  gives the following equalities: 

2 2 1

0, 1,2

1
( ) 0

2
i

t x

i

a u a x aϕ ξ η η
∆ = =

 + + + − = 
 

                                                    (66) 

( )
0, 1,2

0
i

x

i
ϕ η

∆ = =
− =                                                                             (67) 

Replacing ,x tϕ ϕ  and 
xη  by their expressions in (66)-(67) and equalizing the coefficients of the remaining unconstrained 

partial derivatives of u  and v  to zero, one obtains: 

0
u

ξ = , 0
v

ξ = , 2
x t

ξ τ= ,                                                                       (68) 

0
x

τ = , 0
u

τ = , 0
v

τ = ,                                                                         (69) 

0
u

ϕ = , 0
vv

ϕ = ,                                                                              (70) 

2

24ttt taτ τ= , 2 2 1 2

2
2 3 ( )

3
tt ta a x a aξ τ ξ = + +  

,                                                    (71) 

2 2 2
x t v

u uη ϕ τ ϕ= − + ,                                                                       (72) 

2 1 2
2 ( ) 2 2

vx t t
a x a aϕ τ ξ ξ= + − + ,                                                            (73) 

2 1
2( ) 2

xx x t
a x aϕ ϕ ϕ= + + ,                                                                  (74) 

( )2 2 2

2 1 2 1 2 1 2 2 14 2 (2 4 ) 2 ( ) ( )tv tt t ta x a x a a a x a a a x aϕ τ τ ξ ξ= − + − + − − + + − + .                   (75) 

Equations (69) imply that τ depends only on t . Hence, relations in (68) yield to 

1
( )

2
t
x L tξ τ= + ,                                                                            (76) 
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where L  is a smooth function of t . Relations (70) imply that ϕ is independent from u  and is linear with right to v . That is 

there exists functions D  and E  depending only on x  and t  such that 

( , ) ( , )D x t v E x tϕ = + .                                                                       (77) 

Then, substituting ξ and ϕ  by their expressions in (73) and differentiating the resulting expression with respect to x , one 

obtains the equation 2
2 2 0

xx t tt
D a τ τ− + = . Thus 

2

2 1 2

1 1
( , ) ( ) ( )

2 4
t ttD x t a x B t x B tτ τ = − + + 

 
,                                                            (78) 

'

2 1 1

1
( ) ( ) ( ) 0

2
t

L t a L t B t a τ− + − = ,                                                                (79) 

where
1

B  and 
2

B  are smooth functions of t  only. Coming back to Equation (74), we find that 

2 1
2( ) 2 0

xx x t
D a x a D D− − − = ,                                                                       (80) 

2 1
2( ) 2 0

xx x t
E a x a E E− − − = .                                                                       (81) 

Here again, (81) is equivalent to (52). From Equations (78) and (80), one gets 

2 22 2

1 2 3( ) a t a tt C e C e Cτ −= + + ,                                                                        (82) 

2 2

1 1 2 2 4( ) ( 4 )
a t a t

B t a a C e C e
− −= − + ,                                                                  (83) 

2 2
2 2

22

2 1 4 1 2 2 52
2

1
( ) 2 a t

a t a t

e
B t a C C a e C a e C

a
−

− −= − + + +                                     (84) 

where 1 2 3 4
, , ,C C C C  and 5

C  are arbitrary constants. Now, Equation (79) yields: 

2 2 2 22 2 4
1 1 1 2 6

2

( )
2

a t a t a t a tC
L t a C e a C e e C e

a

− −= + + + ,                                                       (85) 

where 6
C  is an arbitrary constant. Hence, expressions (72), (76) and (77) read: 

2

2 2 22 2

1 2 1 2 2 1 4 6

2

( ) ( )
2

a t
a t a t a te

C a x a e C a x a e C C e
a

ξ
−

−= + − + + +                                                 (86) 

2 222 1
2 2 1 2 4 5

2

2 ( ) ( , )
a t a ta

C a x a a ve C x ve C v x t
a

ϕ β− − 
 = − + − + + + +  

 
,                      (87) 

( )2 2

2

2 22

1 2 2 2 1 2 2 2 1

1
4 5

2

2 ( ) 2 ( )

( , )

a t a

a t

x

C a u e C a x a a u a a x a v e

a
C v x u e C u x t

a

η

β

−

−

 = − − + − + + 

  
+ + + + +  

  

                (88) 

where 1 6
,...,C C  are arbitrary constants and ( , ) ( , )x t E x tβ =  is any solution of (81). It is now a little matter to complete the 

proof. 

It is readily verified that 3
W  and 5

W  in Proposition 3.2 are the only generators of the point symmetries of the system (51) 

that satisfy condition (44). Hence, we have the 

Proposition 3.3. The potential symmetries of the FPE are generated by the vector fields 

2 21
1

2 2

1

2

a t a ta
Y e x u v e

a x a u

− −  ∂ ∂= + + +  ∂ ∂  
                                                        (89) 
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( )2 2 22 2 22

2 2 1 2 1 2 2 2 1
( ) 2 ( ) 2 ( )a t a t a tY a x a e e a x a a u a a x a v e

x t u

− − −∂ ∂ ∂
 = − + + − + − + + ∂ ∂ ∂

         (90) 

Consider the Symmetries 3
W  which yields to the potential symmetry 

1
Y . The associated invariant surface conditions are 

2 1 2
2( ) 2 0

x
u a x a u a v− + − = ,                                                                (91) 

2 1
2( ) 0

x
v a x a v− + = .                                                                    (92) 

The system below admits the following solutions: 

[ ] 2

2 1 2 2 1( , ) 2 ( ) ( ) exp( 2 )u x t a xq t q t a x a x= + + , 
2

1 2 1( , ) ( )exp( 2 )v x t q t a x a x= + ,             (93) 

where 
1

q  and 
2

q  are smooth functions of the variable t . If we replace the expression of ( , )u x t  given by (93) in (1), we get 

[ ] [ ]2 2 1 1 2 22 ( ) ( ) ( ) ( ) 0a a q t q t x q t q t′ ′+ + − = .                                              (94) 

Hence, 1 2 1( ) ( ) 0q t a q t′ + =  and 2 2( ) ( ) 0q t q t′ − =  and this yield to 2

1( )
a t

q t ae
−=  and 2 ( ) tq t be= . Then we have the following 

solution of the FPE (1): 

2 2

2 2 1( , ) 2 exp( 2 )
a t tu x t a axe be a x a x

− = + +  ,                                              (95) 

where a  and b  are constants. 

Let us now deal with the symmetry generator 5
W  which provides the potential symmetry 2Y . The invariant surface 

conditions for this symmetry write 

2

2 1 2 1 2 2 2 1( ) 2 ( ) 4 ( ) 0x ta x a u u a x a a u a a x a v − + + + + − + + =  ,                               (96) 

2

2 1 2 1 2( ) 2 ( ) 0x ta x a v v a x a a v − + + + + − =  .                                              (97) 

A solution of Equation (76) writes 

( )2 2
2 1 2 1

2

2 1 2

( ) ( )
( , ) exp

( )

a tf a x a e a x a
v x t

a x a a

+  +=  +  
,                                              (98) 

where f  is a smooth function. Replacing the expression of ( , )v x t  given by (98) in (96) and solving the latter, we get 

( ) ( )2 2 2
2 2 1 2 1 2 1

2

2 1 2

4 ( ) ( ) ( )
( , ) exp

( )

a t a ta xf a x a e g a x a e a x a
u x t

a x a a

+ + +  +=  +  
,                             (99) 

where g  is another smooth function. Now, setting 2

2 1( )
a t

z a x a e= +  and putting expression (99) in the Fokker-Planck equation 

(1) yields to an equation that can be regarded as the vanishing of a polynomial of degree 3 in 2a t
e . Then, the vanishing of the 

coefficients of this polynomial leads to the following equations: 

2 2(1 ) ( ) ( ) 0a zf z a f z′− + = ,                                                               (100) 

2 1 2 1 2 28 ( ) 2 ( ) 4 ( 1) ( ) (1 ) ( ) 0a a f z a g z za a f z z a g z′ ′− + + − + − = ,                            (101) 

22 ( ) 2 ( ) ( ) 0f z zf z z f z′ ′′− + = ,                                                           (102) 

2 2

1 1 124 ( ) 6 ( ) 16 ( ) 4 ( ) 4 ( ) ( ) 0a f z g z a zf z zg z a z f z z g z′ ′ ′′ ′′− − + + − = .                         (103) 

i) If 2 1a = , the solution of the system is ( ) ( ) 0f z g z= =  for all z  and we get the trivial solution ( , ) 0u x t =  for all x  and 

t . 
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ii) Suppose 2
1a ≠ . Then (100) gives the solution 

2

2 1
( )

a

a
f z cz

−= , where c is an arbitrary constant. Hence, (101) reduces to 

( 2) 0a c− = . 

If 2
2a =  then the solution of the system (100)-(103) is 

2( )f z cz=  and 
2

1( ) 4g z a cz=                                                                   (104) 

If 
2

2a ≠ , then 0c =  and ( ) ( ) 0f z g z= = , for any z . It is now clear that the potential symmetry 5
W  yields to the solution 

2

1
1

( 2 )
( , ) ( 2 ) e x p 4

2

x a
u x t x a tλ  += + + 

 
                                   (105) 

for some real number λ  if 
2

2a = ; and to the trivial solution 

( , ) 0u x t =  for all �, � ∈ ℝ otherwise. 

4. Conclusions 

The approach we used to determine the point symmetries 

of the Fokker Planck equation (1) already exists in the 

literature. Given a trivial solution, one has constructed a 

family of solutions for this equation. The symmetry analysis 

of the equation (1) that we have performed highlights the fact 

that the potential symmetries constitute the powerful tool for 

solving partial differential equations provided that these are 

written in their conserved form. Exact solutions can be found 

from these types of symmetries as it is the case in the present 

work with the invariant surface conditions associated with 

the equation (1). 
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