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Abstract: Our motivation in this paper is to start and study the algebraic nature of (Q,L)-fuzzy normal ℓ-subsemirings of a 

ℓ-semiring. Our purpose of this paper is to initiate and study the notions of (Q,L) - fuzzy normal ℓ-subsemirings of ℓ-

semiring.We introduce the concept of (Q,L)-fuzzy normal ℓ-subsemirings of a ℓ-semiring. We study few of their elementary 

properties by (Q,L)-fuzzy normal ℓ-subsemirings of a ℓ-semiring and establish some results on these. These ideas are utilized 

in the improvement of some significant outcomes. We additionally made an endeavor to study the few properties of (Q,L)-

fuzzy normal ℓ-subsemirings of ℓ-semiring under homomorphism and anti-homomorphism. Also some theorem is the 

composition operation of functions (Q,L)-fuzzy normal ℓ-subsemirings of ℓ-semiring under isomorphism and anti- 

isomorphism. Also prove some more properties of homomorphism and anti-homomorphism image and pre- image of (Q,L)-

fuzzy normal ℓ-subsemirings of ℓ-semiring. Finally, we present the theorems of (Q,L)-fuzzy normal ℓ-subsemirings of ℓ-

semiring under image and pre- image of isomorphism and anti- isomorphism. 

Keywords: (Q,L)-fuzzy Subset, (Q,L)-fuzzy ℓ-subsemiring, (Q,L)-fuzzy Normal ℓ-subsemiring,  

Product of (Q,L)-fuzzy Subsets, Strongest (Q,L)-fuzzy Relation, Pseudo (Q,L)-fuzzy Coset 

1. Introduction 

The idea of Lattice was first characterized by Dedekind in 

1897 and then doveloped by Birkhoft. G, imposed an 

operation an open problem “Is there a common abstraction 

which includes Boolean algebra, Boolean rings and lattice 

ordered group or L-bunch is a mathematical design 

associating lattice also, bunch. The notion of fuzzy sets was 

first introduced by L. A. Zadeh [18], several researchers 

explored on the generalization of the concept of fuzzy sets. 

The notion of fuzzy subnearrings and ideals was introduced 

by S. Abou Zaid [12]. Biswas. R [5], have introduced fuzzy 

subgroups and anti-fuzzy subgroups. Palaniappan, N. and 

Muthuraj, R. [9] have introduced the notion of 

homomorphism, anti-homomorphism of fuzzy and anti-fuzzy 

groups. Palaniappan. N & Arjunan. K, Operation on fuzzy 

and anti fuzzy ideals was introduced by Palaniappan, N. and 

Arjunan. K [8]. A new algebraic structure called Q-fuzzy 

subgroups was introduced by A. Solairaju and R. Nagarajan 

[4]. Saravanan. V and Sivakumar. D [14, 15] have introduced 

and defined a new algebraic structure of anti-fuzzy and anti-

fuzzy normal subsemiring of a semiring. In this paper, we 

make some characterization of (Q,L)-fuzzy normal set and 

then proved some results on (Q,L)-fuzzy normal ℓ-

subsemiring of a ℓ-semiring. 

2. Preliminaries 

Definition 2.1 Let � be a non-empty set and � � ��, �� be 

a lattice with least element 0 and greatest element 1 and � be 

a non-empty set. A ��, ��-fuzzy subset �
 of � is a function 

�
 � � � � � �. 

Definition 2.2 Let � be a ℓ-semiring and � be a non empty 

set. A ��, ��-fuzzy subset � of � is said to be a ��, ��-fuzzy 
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ℓ-subsemiring (�������) of �  if the following conditions 

are satisfied: 

(i) �(� + �, �)  ≥  �(�, �)  ∧  A(�, �), 
(ii) �(��, �)  ≥  �(�, �)  ∧ �(�, �), 
(iii) �(� ∨ �, �)  ≥  �(�, �)  ∧ �(�, �), 
(iv) �(� ∧ �, �) ≥  �(�, �) ∧ �(�, �), for all �  and �  in � 

and � in �. 
Definition 2.3Let � be a ℓ-semiring and � be a non-empty 

set. An (�, �) -fuzzyℓ-subsemiring �  of �  is said to be 

an (�, �)-fuzzy normal ℓ-subsemiring(��������) of � if it 

satisfies the following conditions: 

(i) �(� + �, �)  =  �(� + �, �), 
(ii) �(��, �)      =  �(��, �), 
(iii) �(� ∨ �, �)  =  �(� ∨ �, �), 
(iv) �(� ∧ �, �) =  �(� ∧ �, �), for all �  and � in �  and � 

in �. 
Definition 2.4 Let �  and �  be any two (�, �) -fuzzy 

subsets of sets   and !, respectively. The product of � and �, 
denoted by � × �, is defined as � × � = {< ((�, �), �), � ×
� ((�, �), �) >/ for all � in � and � in ! and � in �}, where 

� × �((�, �), �) = �(�, �) ∧  �(�, �). 
Definition 2.5Let � and �' be any two ℓ-semirings � be a 

non empty set. Let (: � → �' be any function and �  be a 

(�, �) -fuzzy ℓ -subsemiring in �, *  be a (�, L) -fuzzy ℓ -

subsemiring in ((�) = �',  defined by *(�, �)  =

1( )x f y

sup
−∈

�(�, �), for all � in � and � in �′and � in �.Then � 

is called a pre-image of *  under f and is denoted by 

(-.(*). 
Definition 2.6 Let � be a (�, �)-fuzzy subset in a set �, the 

strongest (�, �) -fuzzy relation on �,  that is a (�, �) -fuzzy 

relation *  with respect to �  given by *((�, �), �)  =
 �(�, �) ∧ �(�, �), for all � and � in � and � in �. 

Definition 2.7 A (�, �)-fuzzy subset � of a set � is said to 

be normalized if there exists an element �  in �  such that 

�(�, �) = 1. 
Definition 2.8 Let � be an (�, �)-fuzzy ℓ-subsemiring of a 

ℓ-semiring � and / in �. Then the pseudo (�, �)-fuzzy coset 

(/�)0 is defined by ((/�)0)(�, �)  = 1(/)�(�, �), for every 

� in � and for some 1 in 2 and � in �. 
Definition 2.9 Let � be a (�, �)-fuzzy subset of �. Forα in 

�, a � -level subset of �  is the set �3 = { � ∈ �: �(�, �) ≥
α}. 

3. Properties of (5, 6)-fuzzy Normal  

7-subsemiringof8 7-semiring 

Theorem 3.1 Let � be a ℓ-semiring � be a non-empty set. 

If � and � are two(�, �)-fuzzy normal ℓ-subsemirings of �, 
then their intersection  � ∩ �  is an (�, �) -fuzzy normal ℓ -

subsemiring of �. 
Proof: Let  �  and � ∈ �.Let � = {〈(�, �), �(�, �)〉/ �  in � 

and � in �} and � = {〈(�, �), �(�, �)〉/ � in � and � in �} be 

(�, �) -fuzzy normalℓ-subsemirings of a ℓ -semiring  �. Let 

: = � ∩ �  and : = {〈(�, �), :(�, �)〉/�  in �  and �  in 

�}.Then, Clearly : is an (�, �)-fuzzy ℓ-subsemiring of a ℓ-

semiring  �,  since �  and �  are two (�, �) -fuzzy ℓ -

subsemirings of a ℓ -semiring � and,(i) :(� + �, �) =
�(� + �, �)  ∧ �(� + �, �) = �(� + �, �)  ∧ �(� + �, �) =
:(� + �, �), for all� and � in � and � in �.Therefore,:(� +
�, �) = (� + �, �),  for all �  and �  in �  and �  in 

�. (ii) :(��, �) = �(��, �) ∧ �(��, �) = �(��, �) ∧
�(��, �) = :(��, �),  for all �  and �  in �  and �  in 

�.Therefore, :(��, �) = :(��, �), for all � and � in � and � 

in �. Also, (iii) :(� ∨ �, �) =  �(� ∨ �, �) ∧ �(� ∨ �, �)  =
�(� ∨ �, �) ∧ �(� ∨ �, �) = :(� ∨ �, �),  for all �  and �  in 

� and �  in �.  Therefore, :(� ∨ �, �)  = (� ∨ �, �),  for all � 

and �  in �  and �  in �.  (iv) :(� ∧ �, �)  = �(� ∧ �, �) ∧
�(� ∧ �, �)  =  �(� ∧ �, �) ∧ �(� ∧ �, �) = :(� ∧ �, �),  for 

all �  and �  in �  and �  in �.  Therefore, :(� ∧ �, �)  = (� ∧
�, �),  for all �  and �  in �  and �  in �. Hence � ∩ �  is an 

(�, �)-fuzzy normal ℓ-subsemiring of aℓ-semiring�. 
Theorem 3.2Let � be a ℓ-semiring � be a non-empty set. 

The intersection of a family of (�, �) -fuzzy normal ℓ -

subsemirings of � is an (�, �)-fuzzy normalℓ-subsemiring of 

�. 
Proof: Let {�;};∈< be a family of (�, �) -fuzzy normal ℓ -

subsemirings of a ℓ-semiring � andlet 

� = = �;
;∈<

. 
Then for � and � in � and � in �.Clearly the intersection 

of a family of (�, �)-fuzzy ℓ-subsemirings of a ℓ-semiring � 

is an (�, �) -fuzzy ℓ -subsemiring of a ℓ -semiring �. (i) 

�(� + �, �)  =
1 ( )

inf
x f y−∈

�;(� + �, �) =
1 ( )

inf
x f y−∈

�;(� +

�, �) = �(� + �, �).  Therefore, �(� + �, �) = �(� + �, �), 
for all �  and �  in �  and �  in �.  (ii) 

�(��, �) =
1 ( )

inf
x f y−∈

�;(��, �) =  
1 ( )

inf
x f y−∈

�;(��, �) =

�(��, �). Therefore, �(��, �) = �(��, �), for all �  and �  in 

�  and �  in �.  (iii) �(� ∨ �, �) =
1 ( )

inf
x f y−∈

�;(� ∨ �, �) =

 
1 ( )

inf
x f y−∈

�;(� ∨ �, �) = �(� ∨ �, �).  Therefore, �(� ∨

�, �) = �(� ∨ �, �),  for all �  and �  in �  and �  in �.  (iv) 

�(� ∧ �, �) =
1 ( )

inf
x f y−∈

�;(� ∧ �, �) =  
1 ( )

inf
x f y−∈

�;(� ∧ �, �) =

�(� ∧ �, �).  Therefore, �(� ∧ �, �)  =  �(� ∧ �, �),  for all � 

and � in �  and �  in �.Hence the intersectionof a family of 

(�, �)-fuzzy normal ℓ-subsemirings of a ℓ-semiring�  is an 

(�, �)-fuzzy normalℓ-subsemiring of a ℓ-semiring�. 
Theorem3.3 Let � and � be (�, �)-fuzzy ℓ-subsemiring of 

the ℓ-semirings   and !, respectively. If � and � are (�, �)-

fuzzy normal ℓ-subsemirings.Then� × �  is an(�, �) - fuzzy 

normal ℓ-subsemiring of  × !. 
Proof: Let � and � be (�, �)-fuzzy normal ℓ-subsemirings 

of the ℓ-semirings   and !  respectively.Clearly � × � is an 

(�, �) -fuzzy ℓ -subsemiring of  × !. Let �.  and �>  be in 

 , �.  and �> be in !, � in �.Then (�., �.) and (�>, �>) are in 

 × !. Now, � × �?(�., �.) + (�>, �>), �@ = � ×
�A(�. + �>, �. + �>), �B = �(�. + �>, �) ∧ �(�. + �>, �) =
�(�> + �., �) ∧ �(�> + �., �) = � × �A(�> + �., �> +
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�.), �B = � × �?(�>, �>) + (�., �.), �@. Therefore, � ×
�?(�., �.) + (�>, �>), �@ = � × �?(�>, �>) + (�., �.), �@. And, 

� × � ?(�., �.)(�>, �>), �@ = � × �((�.�>, �.�>), �) =
�(�.�>, �) ∧ �(�.�>, �)  = �(�>�., �), �(�>�., �) = � ×
�?(�>, �>)(�., �.), �@.Therefore, � × �?(�., �.)(�>, �>), �@ =
� × �?(�>, �>)(�., �.), �@. Also, � × � ?(�., �.) ∨
(�>, �>), �@  =  � × �((�. ∨ �>, �. ∨ �>), �) = �(�. ∨
�>, �) ∨ �(�. ∨ �>, �) = �(�> ∨ �., �) ∧ �(�> ∨ �. , �) =
� × �((�> ∨ �., �> ∨ �.), �) = � × �?(�>, �>) ∨ (�., �.), �@.  

Therefore, � × �?(�., �.) ∨ (�>, �>), �@  =  � × �?(�>, �>)  ∨
(�., �.), �@. And, � × � ?(�., �.) ∧ (�>, �>), �@  =  � ×
�((�. ∧ �>, �. ∧ �>), �)  =  �(�. ∧ �>, �) C  �(�. ∧ �>, �) =
�(�> ∧ �., �) ∧ �(�> ∧ �. , �) =  � × �((�> ∧ �., �> ∧
�.), �) =  � × �?(�>, �>) ∧ (�., �.), �@.  Therefore, � ×
�?(�., �.) ∧ (�>, �>), �@  =  � × �?(�>, �>) ∧
(�., �.), �@. Hence � × �  is an (�, �) -fuzzy normal ℓ -

subsemiring of  × !. 
Theorem 3.4 Let � be a fuzzy subset in a ℓ-semiring � and 

*  be the strongest (�, �)-fuzzy relation on �. Then �  is an 

(�, �)-fuzzy normal ℓ-subsemiring of � if and only if  * is an 

(�, �)-fuzzy normal ℓ-subsemiring of � × �. 
Proof: Suppose that �  is a (�, �) -fuzzy normal ℓ -

subsemiring of �.Then for any � = (�., �>) and � = (�., �>) 

are in � × �  and �  in �. Clearly *  is a (�, �) -fuzzy ℓ -

subsemiring of � × �. We have, *(� + �, �) = *?(�., �>) +
(�., �>), �@ = *((�. + �. , �> + �>), �) = �((�. + �.), �) ∧
�((�> + �>), �) = �((�. + �.), �) ∧ �((�> + �>), �) =
*((�. + �., �> + �>), �) = *?(�., �>) + (�., �>), �@ =
*(� + �, �). Therefore, *(� + �, �) = *(� + �, �),  for all � 

and �  in � × �  and �  in �. We have, *(��, �) =
*?(�., �>)(�., �>), �@ = *((�.�., �>�>), �) = �((�.�.), �) ∧
�((�>�>), �) = �((�.�.), �) ∧  �((�>�>), �) =
*((�.�., �>�>), �) = *?(�., �>)(�., �>), �@ = *(��, �)  

Therefore, *(��, �) = *(��, �), for all � and � in � × � and 

�  in �.  Also, *(� ∨ �, �) =  *?(�., �>) ∨ (�., �>), �@  =
 *((�. ∨ �., �> ∨ �>), �) = �((�. ∨ �.), �) ∧  �((�> ∨
�>), �) = �((�. ∨ �.), �) ∧ �((�> ∨ �>), �)  =  *((�. ∨
�., �> ∨ �>), �) = *?(�., �>) ∨ (�., �>), �@ = *(� ∨
�, �).Therefore,*(� ∨ �, �) = *(� ∨ �, �), for all �  and �  in 

� × �  and �  in �. And, *(� ∧ �, �) =  *?(�., �>) ∧
(�., �>), �@  =  *((�. ∧ �., �> ∧ �>), �) = �((�. ∧ �.), �) ∧
�((�> ∧ �>), �) = �((�. ∧ �.), �) ∧ �((�> ∧ �>), �)  =
 *((�. ∧ �., �> ∧ �>), �) = *?(�., �>) ∧ (�., �>), �@ = *(� ∧
�, �) Therefore,*(� ∧ �, �) = *(� ∧ �, �), for all �  and �  in 

� × �  and �  in �. This proves that *  is a (�, �) -fuzzy 

normalℓ-subsemiring of � × �.Conversely, assume that * is 

a (�, �)-fuzzy normalℓ-subsemiring of � × �, then for any 

� = (�., �>) and � = (�., �>) are in � × �,  we have�(�. +
�., �) ∧ �(�> + �>, �) = *((�. + �., �> + �>), �) =
*?(�., �>) + (�., �>), �@ = *(� + �, �) = *(� + �, �) =
*?(�., �>) + (�., �>), �@ = *((�. + �., �> + �>), �) =
�(�. + �., �) ∧ �(�> + �>, �). We get, �((�. + �.), �) =
�((�. + �.), �),  for all �. and �.  in �  and �  in �.  And 

�(�.�. , �) ∧ �(�>�>, �) = *((�.�., �>�>), �) =
*?(�., �>)(�., �>), �@ = *(��, �) = *(��, �) =
*?(�., �>)(�., �>), �@ = *((�.�., �>�>), �) = �(�.�., �) ∧
�(�>�>, �). We get, �((�.�.), �) = �((�.�.), �),  for all 

�. and �.  in �  and �  in �. Also, �(�. ∨ �., �)  ∧ �(�> ∨

�>, �)  =  *((�. ∨ �., �> ∨ �>), �) = *?(�., �>) ∨
(�., �>), �@ = *(� ∨ �, �) = *(� ∨ �, �) = *?(�., �>) ∨
(�., �>), �@ = *((�. ∨ �., �> ∨ �>), �) = �(�. ∨ �., �) ∧
�(�> ∨ �>, �).We get, �((�. ∨ �.), �) = �((�. ∨ �.), �),  for 

all �. and �.  in �  and �  in �.  And, �(�. ∧ �. , �) ∧ �(�> ∧
�>, �) = *((�. ∧ �., �> ∧ �>), �) = *?(�., �>) ∧
(�., �>), �@ = *(� ∧ �, �) = *(� ∧ �, �) = *?(�., �>) ∧
(�., �>), �@ = *((�. ∧ �., �> ∧ �>), �) = �(�. ∧ �., �) ∧
�(�> ∧ �>, �).We get, �((�. ∧ �.), �) = �((�. ∧ �.), �),  for 

all �. and �.  in �  and �  in �. Hence �  is a (�, �) -fuzzy 

normal ℓ-subsemiring of �. 
Theorem 3.5 Let � and �′ be any two ℓ-semirings and � 

be a non-empty set. The homomorphic image of an (�, �)-

fuzzy normal ℓ-subsemiring of � is an (�, �)-fuzzy normal ℓ-

subsemiring of  �′. 
Proof: Let�  and �′  be any two ℓ-semirings  �  be a non-

empty set and (: �→�′ be a homomorphism. Then, ((� +
�) = ((�) + ((�) and((��) = ((�)((�), for all �  and �  in 

�. Let * = ((�),  where �  is an (�, �) -fuzzy normal ℓ -

subsemiring of a ℓ-semiring �. We have to prove that * is an 

(�, �)-fuzzy normal ℓ-subsemiring of a ℓ-semiring �′.Now, 

for ((�), ((�)  in �′,  clearly *  is an (�, �) -fuzzy ℓ -

subsemiring of a ℓ-semiring �′, since � is an (�, �)-fuzzy ℓ-

subsemiring of a ℓ -semiring �. Now, *(((�) + ((�), �) =
*(((� + �), �) ≥ �(� + �, �) = �(� + �, �) ≤ *(((� +
�), �) = *(((�) + ((�), �). Therefore, *(((�) + ((�), �) =
*(((�) + ((�), �),  for all ((�)  and ((�)  in 

�′. Again, *(((�)((�), �) = *(((��), �) ≥ �(��, �) =
�(��, �) ≤ *(((��), �) =
*(((�)((�), �). Therefore, *(((�)((�), �) =
*(((�)((�), �), for all ((�) and ((�) in �′.Also, *(((�) ∨
((�), �) = *(((� ∨ �), �) ≥ �(� ∨ �, �) = �(� ∨ �, �) ≤
*(((� ∨ �), �) = *(((�) ∨ ((�), �). Therefore, *(((�) ∨
((�), �) = *(((�) ∨ (((�), �),  for all ((�)  and ((�)  in �′. 
And, *(((�) ∧ ((�), �) = *(((� ∧ �), �) ≥ �(� ∧ �, �) =
�(� ∧ �, �) ≤ *(((� ∧ �), �) = *(((�) ∧
((�), �). Therefore, *(((�) ∧ ((�), �) = *(((�) ∧
(((�), �), for all ((�) and ((�) in �′.Hence *  is an (�, �)-

fuzzy normal ℓ-subsemiring of a ℓ-semiring �′. 
Theorem 3.6Let � and �′ be any two ℓ-semirings and � be 

a non-empty set. The homomorphicpreimage of an (�, �)-

fuzzy normal ℓ-subsemiring of  �′ is an (�, �)-fuzzy normal 

ℓ-subsemiring of  �. 
Proof: Let �  and �′ be any two ℓ-semirings � be a non-

empty set and (: � → �′ be a homomorphism. Then,((� +
�) = ((�) + ((�) and ((��) = ((�)((�), for all � and � in 

�. Let * = ((�),  where *  is an (�, �) -fuzzy normal ℓ -

subsemiring of a ℓ-semiring  �′. We have to prove that � is 

an (�, �)-fuzzy normal ℓ-subsemirring of a ℓ-semiring �.Let 

�  and �  in �.  Then, clearly �  is an (�, �) -fuzzy ℓ -

subsemiring of a ℓ-semiring �, since * is an (�, �)-fuzzy ℓ-

subsemiring of a ℓ-semiring�′.Now,�(� + �, �) = *(((� +
�), �) = *(((�) + ((�), �) = *(((�) + ((�), �) =
*(((� + �), �) = �(� + �, �). Therefore, �(� + �, �) =
�(� + �, �),  for all �  and �  in �  and �  in 

�. Again, �(��, �) = *(((��), �) = *(((�)((�), �) =
*(((�)((�), �) = *(((��), �) = �(��, �).  

Therefore,�(��, �) =  �(��, �), for all � and � in � and � in 
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�. Also, �(� ∨ �, �) = *(((� ∨ �), �) = *(((�) ∨
((�), �) = *(((�) ∨ ((�), �) = *(((� ∨ �), �) = �(� ∨
�, �). Therefore, �(� ∨ �, �) = �(� ∨ �, �), for all � and � in 

�  and q in � . And, �(� ∧ �, �) = *(((� ∧ �), �) =
*(((�) ∧ ((�), �) = *(((�) ∧ ((�), �) = *(((� ∧ �), �)  =
�(� ∧ �, �).  Therefore, �(� ∧ �, �)  =  �(� ∧ �, �),  for all � 

and � in � and � in �.Hence � is an (�, �)-fuzzy normal ℓ-

subsemiring of a ℓ-semiring �. 
Theorem 3.7Let � and �′ be any two ℓ-semirings and � be 

a non-empty set. The anti-homomorphic image of an (�, �)-

fuzzy normal ℓ-subsemiring of � is an (�, �)-fuzzy normal ℓ-

subsemiring of �′. 
Proof: Let �  and �′  be any two ℓ-semirings and �  be a 

non-empty setand (: �→ �′  be an anti-homomorphism. 

Then, ((� + �) = ((�) + ((�)  and ((��) = ((�) ((�),  for 

all �  and �  in �.Let * = ((�),  where �  is an (�, �) -fuzzy 

normal ℓ-subsemiring of a ℓ-semiring�. We have to prove 

that *  is an (�, �) -fuzzy normal ℓ -subsemiring of a ℓ -

semiring �′. Now, for ((�)  and ((�)  in �′,  clearly *  is an 

(�, �)-fuzzy ℓ-subsemiring of a ℓ-semiring �′, since � is an 

(�, �)-fuzzy ℓ-subsemiring of a ℓ-semiring �.Now,*(((�) +
 ((�), �) = *(((� + �), �) ≥ �(� + �, �) = �(� + �, �) ≤
*(((� + �), �) = *(((�) + ((�), �).  Therefore, *(((�) +
((�), �) = *(((�) + ((�), �),  for all ((�)  and ((�)  in 

�′. Again, *(((�)((�), �) = *(((��), �) ≥ �(��, �) =
�(��, �) ≤ *(((��), �) =
*(((�)((�), �). Therefore, (((�)((�), �) = *(((�)((�), �), 
for all ((�)  and ((�)  in �′. Also, *(((�) ∨ ((�), �)  =
 *(((� ∨ �), �) ≥ �(� ∨ �, �) = �(� ∨ �, �) ≤ *(((� ∨
�), �) = *(((�) ∨ ((�), �).  Therefore, *(((�) ∨ ((�), �) =
*(((�) ∨ ((�), �),  for all ((�)  and ((�)  in �′.  And, 

*(((�) ∧ ((�), �) =  *(((� ∧ �), �) ≥ �(� ∧ �, �) = �(� ∧
�, �) ≤ *(((� ∧ �), �) = *(((�) ∧ ((�), �). Therefore, 

*(((�) ∧ ((�), �) = *(((�) ∧ ((�), �),  for all ((�)  and 

((�) in �'. Hence * is an (�, �)-fuzzy normal ℓ-subsemiring 

of a ℓ-semiring �′. 
Theorem 3.8Let � and �′ be any two ℓ-semirings and � be 

a non-empty set. The anti-homomorphicpreimage of an 

(�, �) -fuzzy normal ℓ-subsemiring of �′  is an (�, �) -fuzzy 

normal ℓ-subsemiring of  �. 
Proof: Let� and �′ be any twoℓ-semirings and � be a non-

empty setand  (: �→ �′  be an anti-homomorphism. Then, 

((� + �) = ((�) + ((�)  and ((��) = ((�)((�),  for all � 

and � in �.Let * = ((�), where * is an (�, �)-fuzzy normal 

ℓ-subsemiring of a ℓ-semiring �′.We have to prove that � is 

an (�, �)-fuzzy normal ℓ-subsemiring of a ℓ-semiring �.Let 

� and � in �, then clearly � is an (�, �)-fuzzy ℓ-subsemiring 

of a ℓ-semiring �, since * is an (�, �)-fuzzyℓ-subsemiring of 

a ℓ -semiring �′. Now, �(� +  �, �) = *(((� + �), �) =
*(((�) + ((�), �) = *(((�) + ((�), �) = *(((� +
�), �) = �(� + �, �). Therefore, �(� + �, �) = �(� + �, �), 
for all �  and �  in �  and �  in �. Again, �(��, �) =
*(((��), �) = *(((�)((�), �) = *(((�)((�), �) =
*(((��), �) = �(��, �). Therefore, �(��, �) = �(��, �),  for 

all �  and �  in �  and �  in �. Also, �(� ∨ �, �) = *(((� ∨
�), �) = *(((�) ∨ ((�), �) = *(((�) ∨ ((�), �)  =
*(((� ∨ �), �) = �(� ∨ �, �).Therefore,�(� ∨ �, �) = �(� ∨
�, �),  for all �  and �  in �  and �  in �.  And, �(� ∧ �, �) =

*(((� ∧ �), �) = *(((�) ∧ ((�), �) = *(((�) ∧ ((�), �) =
*(((� ∧ �), �) = �(� ∧ �, �). Therefore, �(� ∧ �, �) =
�(� ∧ �, �),  for all �  and �  in �  and �  in �.Hence �  is an 

(�, �)-fuzzy normal ℓ-subsemiring of a ℓ-semiring �. 
Theorem 3.9 Let �  be an (�, �) -fuzzy normal ℓ -

subsemiring of a ℓ-semiring �, then the pseudo (�, �)-fuzzy 

coset(/�)0  is an (�, �) -fuzzy normalℓ-subsemiringof a ℓ-

semiring�, for / in �and � in �. 
Proof: Let � be an (�, �)-fuzzy normal ℓ-subsemiring of a 

ℓ-semiring  �.  For every �  and �  in � and �  in �,  we have, 

((/�)0)(� + �) = 1(/)�(� + �) ≥ 1(/){(�(�) ∧ �(�)} =
 {1(/)�(�) ∧ 1(/)�(�)} = {((/�)0)(�) ∧
((/�)0)(�)}. Therefore, ((/�)0)(� + �) = {((/�)0)(�) ∧
((/�)0)(�)}. Now, ((/�)0)(��)  = 1(/)�(��) ≥
1(/){�(�) ∧ �(�)} = {1(/)�(�) ∧ 1(/)�(�)} =
{((/�)0)(�) ∧ ((/�)0)(�)}. Therefore, ((/�)0)(��) =
{((/�)0)(�) ∧ ((/�)0)(�)}. Also, ((/�)0)(� ∨ �) =
1(/)�(� ∨ �) ≥ 1(/){(�(�) ∧ �(�)} = {1(/)�(�) ∧
1(/)�(�)} = {((/�)0)(�) ∧ ((/�)0)(�}. Therefore, 

((/�)0)(� ∨ �) = {((/�)0)(�) ∧ ((/�)0)(�)}.  And, 

((/�)0)(� ∧ �) = 1(/)�(� ∧ �) ≥ 1(/){(�(�) ∧ �(�)}  =
 {1(/)�(�) ∧ 1(/)�(�)}  =  {((/�)0)(�) ∧
((/�)0)(�)}. Therefore, ((/�)0)(� ∧ �) = {((/�)0)(�) ∧
((/�)0)(�)}. Hence (/�)0  is an (�, �) -fuzzy normal ℓ -

subsemiring of a ℓ-semiring �. 
Theorem 3.10 Let � and �  be (�, �)-fuzzy subsets of the 

sets �  and !  respectively, and let D  in �. Then (� × �)3 =
�3 × �3 . 

Proof: Let D in �. Let (�, �) be in (A × B)F if and only if 

� × �((�, �), �) ≥ D, if and only if {�(�, �) ∧ �(�, �)} ≥ D, 
if and only if �(�, �) ≥ D  and �(�, �) ≥  D, if and only if 

� ∈ �3 and � ∈ �3 , if and only if (�, �)  ∈ �3 ×
�3 .Therefore,(A × B)F = �3 × �3 . 

Theorem 3.11 Let �  be a (�, �) -fuzzy normal ℓ -

subsemiring of a ℓ-semiring �. If �(�, �) < �(�, �), for some 

�  and �  in �  and �  in �,  then �(� + �, �) = �(�, �) =
 �(� + �, �), for some � and � in � and � in �. 

Proof: It is trivial. 

Theorem 3.12 Let �  be a (�, �) -fuzzy normal ℓ -

subsemiring of a ℓ-semiring �. If �(�, �) > �(�, �), for some 

�  and �  in �  and �  in �,  then �(� + �, �) = �(�, �) =
 �(� + �, �), for some � and � in � and � in �. 

Proof: It is trivial. 

4. In the Following Theorem Is the 

Composition Operation of Functions 

Theorem 4.1 Let �  be an (�, �) -fuzzy normal ℓ -

subsemiring of a ℓ-semiring ! and ( is an Isomorphism from 

a ℓ-semiring � onto !. Then � ∘ ( is an (�, �)-fuzzy Normal 

ℓ-subsemiring of the ℓ-semiring �. 
Proof: Let� and � in � and � be an (�, �)-fuzzy normal ℓ-

subsemiring of aℓ-semiring !.Then clearly A ∘ f is an (�, �)-

fuzzy ℓ -subsemiring of a ℓ -semiring �. Now, (A ∘ f)(� +
�, �) = �(((� + �), �) = �(((�) + ((�), �) = �(((�) +
((�), �) = �(((� + �), �) = (A ∘ f)(� + �, �).  Therefore, 

(A ∘ f)(� + �, �) = (A ∘ f)(� + �, �), for all � and � in � and 

�  in �. And, 
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(A ∘ f)(��, �) = �(((��), �) = �(((�)((�), �) =
�(((�)((�), �) = �(((��), �) =
(A ∘ f)(��, �). Therefore (A ∘ f)(��, �) = (A ∘ f)(��, �),  for 

all � and � in � and � in �.Also, (A ∘ f)(� ∨ �, �) = �(((� ∨
�), �) = �(((�) ∨ ((�), �) = �(((�) ∨ ((�), �) = �(((� ∨
�), �) = (A ∘ f)(� ∨ �, �). Therefore, (A ∘ f)(� ∨ �, �) = (A ∘
f)(� ∨ �, �), for all � and � in � and � in �. And, (A ∘ f)(� ∧
�, �) = �(((� ∧ �), �) = �(((�) ∧ ((�), �) = �(((�) ∧
((�), �) = �(((� ∧ �), �) = (A ∘ f)(� ∧ �, �).  Therefore, 

(A ∘ f)(� ∧ �, �) = (A ∘ f)(� ∧ �, �), for all � and � in � and 

� in �. Hence A ∘ f is an (�, �)-fuzzy normal ℓ-subsemiring 

of a ℓ-semiring �. 
Theorem 4.2 Let �  be an (�, �) -fuzzyNormal ℓ -

subsemiring of a ℓ-semiring ! and ( is an anti-isomorphism 

from a ℓ-semiring  �  onto !.  Then � ∘ (  is an (�, �) -fuzzy 

Normal ℓ-subsemiring of the ℓ-semiring  �. 
Proof: Let� and � in � and � be an (�, �)-fuzzy normal ℓ-

subsemiring of a ℓ -semiring  !.  Then clearly A ∘ f  is an 

(�, �) -fuzzy ℓ -subsemiring of a ℓ -semiring �.  Now, (A ∘
f)(� + �, �) = �(((� + �), �) = �(((�) + ((�), �) =
�(((�) + ((�), �) = �(((� + �), �) = (A ∘ f)(� + �, �).  

Therefore, (A ∘ f)(� + �, �) = (A ∘ f)(� + �, �),  for all �  and � 

in �  and �  in �.  And, (A ∘ f)(��, �) = �(((��), �) =
�(((�)((�), �) = �(((�)((�), �) = �(((��), �) =
(A ∘ f)(��, �).  Therefore, (A ∘ f)(��, �) = (A ∘ f)(��, �),  for 

all �  and �  in �  and �  in �.  Also, (A ∘ f) (� ∨ �, �)  =
 �(((� ∨ �), �)  = �(((�) ∨ ((�), �)  = �(((�) ∨
((�), �)  = �(((� ∨ �), �)  = (A ∘ f)(� ∨ �, �).  Therefore, 

(A ∘ f)(� ∨ �, �) = (A ∘ f)(� ∨ �, �), for all � and � in � and 

�  in �. (A ∘ f)(� ∧ �, �) = �(((� ∧ �), �) = �(((�) ∧
((�), �) = �(((�) ∧ ((�), �) = �(((� ∧ �), �) =
(A ∘ f)(� ∧ �, �).  Therefore, (A ∘ f)(� ∧ �, �) = (A ∘ f)(� ∧
�, �),  for all �  and �  in �  and �  in �.  Hence A ∘ f  is an 

(�, �)-fuzzy normal ℓ-subsemiring of a ℓ-semiring �. 

5. Conclusion 

In the study of the structure of a fuzzy algebraic system, 

we notice that �-fuzzy with special properties always play an 

important role. In this paper, we define (�, �)-fuzzy normal 

ℓ -subsemirings of a ℓ -semiring and investigate some 

important results. We hope that the research along this 

direction can be continued, and in fact, this work would serve 

as a foundation for further study of the theory of semiring, it 

will be important to complete more hypothetical exploration 

to set up an overall structure for the commonsense 

application. 
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