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Abstract: In this communication, the homotopy perturbation method is modified and extended to obtain the analytical 

solutions of some nonlinear differential equations. Differential equations are used to mathematically formulate, and thus aid the 

solution of, physical and other problems involving functions of several variables, such as the propagation of heat or sound, 

fluid flow, elasticity, electrostatics, electrodynamics, etc. Fluid mechanics, heat and mass transfer, and electromagnetic theory 

are all modeled by partial differential equations (PDE) and all have plenty of real life applications. dynamic meteorology and 

numerical weather forecasting: the weather report you see every night on TV has been obtained from the numerical solution of 

a complex set of nonlinear PDEs. The numerical solution of nonlinear differential equations is extremely difficult. Here, the 

proposed technique is implemented to obtain the analytical solutions of the initial-value ordinary and partial differential 

equations. In the current study, some problems are solved using a newly modified method that outperforms all other known 

methods, with approximate results in the form of power series. The method's algorithm is described and illustrated using some 

well-known problems. The obtained results demonstrate the method's efficiency. Furthermore, those results implies that this 

new method is simpler to implement. The approach is powerful, effective, and promising in analyzing some classes of 

differential equations for heat conduction problems and other dynamical systems. To crystallize the new approach, some 

illustrated examples are introduced. 
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1. Introduction 

Linear and nonlinear differential equations are very 

important classes of evolution equations that have been 

developed in recent years. These classes have wide 

applications in chemistry, plasma physics, thermo-elasticity, 

and engineering mechanics. Several recent numerical 

techniques have been used to treat these problems. In 

addition, many powerful methods have been developed and 

modified to get the exact solution of such equations or to 

get a better approximate solution than the already existing 

one. The methods for solving linear differential equations 

are quite straightforward and well-established. Nonlinear 

differential equations, on the other hand, have fewer 

approaches for solving them, and linear approximations are 

typically required. Some scientists are currently attempting 

to devise a way for approaching the exact solutions of such 

nonlinear differential equations. Some of the researchers 

managed to get methods that solve some classes of 
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nonlinear problems. Others modified the existing methods 

to get a better solution or, in some cases, the exact solution. 

The homotopy perturbation method is one of these methods 

(HPM). This work is considered a continuation of El-Dib 

and Moatimid's work [1]. He [2] proposed the HPM for 

solving linear, nonlinear differential, and integral equations 

for the first time. That isn't to suggest that it always gets the 

exact answer. If a precise solution cannot be found, an 

accurate approximation of the answer is calculated. He [3-

7] and He et al. [8] have carried out more changes to the 

HPM. HPM has undergone a number of changes. See, for 

example, Siddiqui et al. [9]. By providing a new operator to 

solve Lane-Emden equations, Wazwaz [10] developed a 

straightforward adaptation of the Adomian decomposition 

approach. 

Those methods can be used effectively to solve the equations 

with many types of linearities such as the Klein-Gordon 

equations. The Klein-Gordon equation is used in a variety of 

scientific domains, including solid-state physics. The HPM was 

employed to attain approximate analytical solutions for the 

Klein–Gordon and sine-Gordon equations by Chowdhury and 

Hashim [11]. The potential of HPM in solving nonlinear partial 

differential equations was demonstrated by comparisons 

between exact solutions, solutions produced by the Adomian 

decomposition technique (ADM), and the variational iteration 

method (VIM). In addition, the motion of a rigid pendulum is 

attached to a stretched wire, nonlinear optics, and optical 

solitons [12–15]. Condensed matter physics [16], the interaction 

of solitons in a collisionless plasma and the recurrence of initial 

states, and quantum field theory [17] are considered as Klein-

Gordon direct applications. 

The rest of the paper is divided into the following sections: 

The analysis of the approach is presented in Section 2. The 

method's uniqueness and exactness are discussed in this 

section. In Section 3, the solution's algorithm is shown. Some 

examples are provided throughout Section 4 to demonstrate 

our methodology. The current work's conclusions are 

reported in Section 5. 

2. Analysis of the Method 

This section proves the uniqueness of the solution of 

�����,��
��� = 
���
, ��� + ����
, ��� + ��
, ��,          (1) 

with conditions ��
, 0� = �	���	���
, 0� = �, 

where 
���
, ���  is the linear part of the differential 

equation, ����
, ���  is the nonlinear part of the partial 

differential equation, and ��
, �� is a given function. 

Definition. 

Let � = �[�, �]  be the set of all continuous functions 

defined on the closed interval	[�, �]. The distance between 

any arbitrary functions ∝ ���, ���� 	 ∈ �  is defined in the 

form ��∝ ���, ����� = !�
"#�#$|∝ ��� − 	����|. It is known 

that ��, ��  is a complete metric space and the following 

properties are satisfied: 

1) ��∝, �� = 0	 ↔	∝= �	∀	∝, �	 ∈ � 

2) ��∝ +), � + )� = ���, ��	∀	∝, �, ) ∈ � 

3) ��∝ +), � + *� ≤ ���, �� + ��), *�	∀	∝, �, ), * ∈ � 

Now, consider that ��
, �� is a bounded function for all �
, �� ∈ , × , . Also, it is supposed that the linear and 

nonlinear operators 
	���	. satisfy Lipchitz conditions with 

� /
��, ��
��, 
��, ��0��1 ≤ 23	����
�, ��0��,23 ≥ 0,	 (2) 

� /.��, ��
��, .��, ��0��1 ≤ 25	����
�, ��0��,25 ≥ 0, (3) 

Let ! = �6786��	��
5 . 

Theorem. 

Assume that equations (2), (3) hold in such a way that 0 < ! < 1 , then there exists a unique solution to the 

problem given by the equation 

�����,��
��� = 
���
, ��� + .���
, ��� + ��
, 0�,     (4) 

with the initial conditions 

��
, 0� = ;, ����,<��� = =.                      (5) 

Proof. 

Let �	���	�∗	be two different solutions for equations (4) 

and (5), then we can write 

��
, �� = ; + =	� + ? ? /
���
, ��� + .���
, ��� + ��
, ��1 	��	��	�
<

�
< ,  

	�∗�
, �� = ; + =	� + ? ? /
��∗�
, ��� + .��∗�
, ��� + ��
, ��1 	��	��	�
<

�
< ,  

and 

���, �∗� = � /; + =	� + ? ? /���
, ��� + .���
, ��� + ��
, ��1 ��	��,�
<

�
< 	; + =	� + ? ? /
��∗�
, ��� + .��∗�
, ��� +�

<
�
<

��
, ��1 	�� 	��1  

=	� /? ? /
���
, ��� + .���
, ���1 ��	��,�
<

�
< 	? ? /
��∗�
, ��� + .��∗�
, ���1 	���

<
�
< 	��1 

≤ 	� /? ? /
���
, ��� + 
��∗�
, ���1 	���
<

�
< ��, ? ? /.���
, ��� + .��∗�
, ���1 	���

<
�
< ��	1  

≤ �6786��	��
5 = m	���, �∗�  
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Accordingly, one gets �1 −!�	���, �∗� 	≤ 0, since, 0 < ! < 1, then ���, �∗� = 0, which implies that � = �∗. 
This result proves that equation (4) has a unique solution. 

3. The Algorithm of the Solution 

This section starts with the basic concepts of the homotopy technique for Eq. (1). It may be decomposed into two parts; 

namely, 
 and � which are known as linear and nonlinear parts, respectively, as follows: 


���
, ��� + ����
, ��� + ��
, �� = 0,                                                                   (6) 

then a homotopy equation is constructed in the following form: 

���, A� = 
���
, ��� − 
�B�
, ��� + CD
�B�
, ��� + ����
, ��� + ��
, ��E = 0, C ∈ [0,1],                          (7) 

where B is an initial guess, sometimes called a trial function, for the solution of Eq. (1) with the use of the artificial homotopy 

parameter C to expand ��
, �, C� as 

��
, �, C� = �<�
, �� + C�3�
, �� + C5�5�
, ��+. . .,                                                         (8) 

take the initial guess as a power series function in 
 and � as 

B�
, �� = ∑ �H�
��HIHJ< .                                                                             (9) 

Now, consider 


��� = ��K��
, ��                                                                                  (10) 

Combining equations (8-10) and Eq. (7), one finds 

�<�K��
, �� + C�3�K��
, ��+. . . −B�K��
, �� + CDB�K��
, �� − ��
, �� − ����
, ���E = 0,                           (11) 

Equating the coefficients of like powers of C, one gets 

C<: �<�K��
, �� = ∑ �H�
��HIHJ< ,                                                                       (12) 

integrating both sides of Eq. (12), M −times, one gets 

�<�
, �� = ∑ �H�
��H+. . . +�
 + �IHJK ,                                                                 (13) 

C3: �3�K��
, �� = −B�K��
, �� − ��
, �� − ����
, ���,                                                        (14) 

: 

Set �3�
� = 0 in Eq. (14), then compare the coefficients of 

like powers of 
 to get the undetermined coefficients �H′O. 

At this stage, substitute from the coefficients of �H′O into 

Eq. (13) to obtain the required exact solution. 

It should be mentioned here that 

The selection of the guessing function in the classical HPM is 

rather difficult. Now, this new technique introduces a simple 

way of selecting a proper initial approximation. Therefore, this 

new technique gives a general method. It is a rapid convergence 

to the exact solution with simpler calculations. 

The exact solutions need a convergent series as given in 

Eq. (13). Otherwise, only an approximate solution of the 

given differential equation is obtained. 

The above method is still valid in the case of the linear as 

well as nonlinear. 

4. Illustrated Examples 

Duffing equation is one of the most significant and 

classical nonlinear differential equations because of its wide 

applications in science and engineering. Duffing equation is a 

result of potential applications in physics, biology, and 

communication theory. With initial conditions and bounded 

periodic solutions, Salas and Castillo [17] discovered an 

exact solution to the cubic Duffing oscillator problem. The 

Jacobi elliptic function is used to express their solution.P�. 

Example 1 

In this example, the applicability of the previous method in 

solving a Duffing equation is demonstrated. Consider the 

following cubic Duffing oscillator equation: 

�QQ�
� + ��
� − �R = 0,                                                                       (15) 

subjected to the initial conditions: ��0� = 0 and �Q�0� = 3
√5. 

On using the new modified method as given in our previous paper [1], the trial function of Eq. (15) may be written as the 
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following power series: 

B�
� = ∑ �H
HIHJ< ,                                                                           (16) 

where �′O are arbitrary constants to be determined. 

The homotopy equation of Eq. (15) may be written as: 

���, C� = T�
T�� �� − B� + C UT�VT�� + � − �RW = 0.                                                   (17) 

Following the homotopy perturbation, the solution of the dependent function ��
� as given in the homotopy equation (17), 

with the aid of the artificial parameter C, may be expanded as a power series as follows: 

��
, C� = �<�
� + C�3�
� + C5�5�
�+. ..                                                           (18) 

Substituting from Eq. (18) into Eq. (17) and equating the coefficients of like powers of C of both sides, one gets the 

following equations: 

C<: �<QQ�
� = ∑ ��� − 1��H
HX5IHJ5 ,                                                                (19) 

and 

C: �3QQ�
� = �<R�
� − �<�
� − ∑ ��� − 1��H
HX5IHJ5 .                                                      (20) 

The special solution of Eq. (19) will be found directly as 

�<�
� = �
√5+ ∑ �H
HIHJ5 .                                                                          (21) 

Substituting Eq. (21) into Eq. (20) and then integrating twice with respect to 
, it follows that the special solution of Eq. (20) 

may be written as: 

�3�
� = −�5
5 − /�R + 3
Y√51 
R − /�Z + "�

351 
Z + 3
[< �√2 − 4�R − 80�_�
_ + 3

Y< �3�5 − 2��Z + 30�Y��
Y+. . ..            (22) 

The cancellation of the first-order solution as given by Eq. (22) yields the following unknown coefficients �’O: 
The even-order terms are all of zero values, meanwhile, the odd-order terms give 

�R = − 3
Y√5 , �_ = 3

R<√5 , �b = − 3b
5_5<√5 , �c = R3

55Y[<√5…..etc.                                                    (23) 

Substituting from Eq. (23) into Eq. (21), it follows that the closed form of the given cubic Duffing oscillator equation is 

given by 

��
� = ���ℎ / �
√51.                                                                                 (24) 

On using similar arguments as given above, one can find the exact solution of the following cubic Duffing oscillator 

equation: 

�QQ�
� + ��
� + �R = 0,                                                                            (25) 

subject to the initial conditions: ��0� = 0, and �Q�0� = e
√5, in the form 

��
� = f ���ℎ / �
√51.                                                                              (26) 

It should be noted that similar solutions of the previous 

Duffing equations were obtained by Moatimid [18]. 

The nonlinear Schrödinger equation can be used to 

modulate a wide range of physical problems. The 

Schrödinger equation is a nonlinear partial differential 

equation that explains the evolution equation of surface 

waves in hydrodynamic stability [19]. The coupled 

Schrödinger equations are used to simulate a wide range of 

physical processes, including solid-state physics, plasma 

waves, and so on [12]. He's HPM can be described as a broad 

technique for solving nonlinear functional equations of 

various types. It's been used to solve nonlinear Schrödinger 

problems [13], nonlinear heat transfer equations [14], and the 

quadratic Riccati differential equation [15]. Aminikhah et al. 

[16] present a novel effective technique for systems of 

coupled Schrödinger equations. They used various examples 

to demonstrate the efficacy of their method. 

The main goal of this work is to extend our previous method 

[1] to obtain exact solutions for the different ordinary as well as 

partial differential equations. These equations acquire their 
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importance in accordance with the physical situations. Example 2 (Schrödinger equation) 

f�� + 3
5 ��� − � PgO5 
 − �5� = 0, h. �. ��0, �� = 0, ���0, �� = *XRe�/5                                  (27) 

Consider the two parts L�u� and N�u�	as follows: 


��� = ���	and	N���=	2iu� − 2� PgO5 
 − 2�5�                                                 (28) 

The initial guess, in this case, may be written as: 

B�x,t� = ∑ �H���
HIHJ<                                                                            (29) 

The homotopy function may be written as 

���, C� = ��� − B + C[B + 2f�� − 2� PgO5 
 − 2�5�],                                                          (30) 

According to the homotopy perturbation, the function u�x, t� may be written as: 

��
, �; C� = �<�
, �� + C�3�
, �� + C5�5�
, ��+. ..                                                           (31) 

Therefore, the given partial differential equation is written as 

�<�� + C�3��+. . . . −∑ �H���
H + C�∑ �H���
H + 2f�<� − 2�< PgO5 
 − 2�<5�<+. . .IHJ< �IHJ< = 0                  (32) 

Equating the coefficients of like powers of C by zero gives 

C<: �<�� = ∑ �H���
H, h. �.:	u<�0, �� =IHJ< 0, �<��0, �� = *XRe�/5                                                       (33) 

C: �3�� = 2�< PgO5 
 + 2�<5�< − 2f�<� − ∑ �H���
HI< 	h. �.:	u3�0, �� = 0, �3��0, �� = 0                            (34) 

The special solution of Eq. (33) is given by 

�< = 
*XRe�/5 + ∑ "p����pq�
�H83��H85�IHJ<                                                                  (35) 

Substituting Eq. (35) into Eq. (34), integrating twice with respect to x, and also applying the corresponding I. C., one finds 

�3 = ? U? U2 /
*XRe�/5 + ∑ "p����pq�
�H83��H85�IHJ< 1 PgO5 
W �
�

< W�
< �
 + ? t? t2 /
*XRe�/5 + ∑ "p����pq�

�H83��H85�IHJ< 15 /
*XRe�/5 +�
<

�
<

∑ "p����pq�
�H83��H85�IHJ< ∑ "p����pq7

H83IHJ< 1u �
u �
 − ? v? w∑ �H���
HIHJ< x�
�
< y�

< �
                             (36) 

The expansion of Eq. (36) may be rewritten as: 

�3 = − "z
5 
5 − 3

Y ��3 + *XRe�/5�
R + 3
35 ��< − �5 − f�<Q �
Z + 3

Y< ��3 − 3�Rf�3Q �
_+. . . ..                   (37) 

The basic idea in this approach is to cancel the first-order 

term, u3 = 0 , It follows that the remaining terms in the 

power series of the perturbed solution, as given by Eq. (28), 

will vanish. 

Now, the coefficients of the like power of x  will be 

equated to zero. This leads to obtaining the coefficients of the 

power series of the zero-order solution given by Eq. (33). 

These coefficients may be written as follows: 

�< = 0, �3 = −*XRe�/5, �5 = 0,	and	�R = 3
Y *XRe�/5. . . .. (38) 

The zero-order solution then becomes 

�< = U
 − 3
R! 
R + 3

_! 
_. . . . . . W *XRe�/5 = *XRe�/5 Of� 
 (39) 

Eq. (39) gives the required exact solution for the given 

partial differential equation. 

The Klein-Gordon (KG) equations play a significant role 

in relativistic quantum physics. Many investigations have 

been done on KG equations with various types of potentials, 

utilising a variety of methods to characterise and solve the 

related relativistic physical systems, including the asymptotic 

iteration method, the formal variable separation method, and 

supersymmetric quantum mechanics [18]. The following 

examples deal with some inhomogeneous linear and as 

nonlinear KG problems. 

Example 3 

Consider the following homogeneous sine-Gordon equation: 

��� − ��� + Of� � = 0,                    (40) 

with the initial conditions ��
, 0� = 0  and ���
, 0� =4|*Pℎ
 , where � = ��
, �� is a function of the variables 
 

and �. 
On using the new introduced method, the trial function 

may be written as given by 

B�
, �� = ∑ �H�
��HIHJ<                      (41) 
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The homotopy equation may be written as: 

���, C� = ��
��� �� − B� + C UB − ���

��� + Of� �W = 0   (42) 

In accordance with the homotopy perturbation, the 

solution ��
, �� of the homotopy equation (42), with the 

aid of the artificial parameter 	C , may be expanded as 

before. 

Substituting from the regular perturbation of the dependent 

function (�) into Eq. (42) and equating the coefficients of 

like powers of C  in both sides, one gets the following 

equations: 

C<: �<�� = ∑ ��� − 1��H�
��HX5IHJ5            (43) 

The special solution of Eq. (43) is directly 

�< = 4�|*Pℎ
 + ∑ �H�
��HIHJ5            (44) 

The first-order equation may be written as 

�3�� = �<�� −∑ ��� − 1��H�
��HX5IHJ5 − Of� �< (45) 

Substituting Eq. (44) into Eq. (45), then integrating twice with 

respect to � , it follows, after lengthy but straightforward 

calculations, that the special solution of Eq. (45) may be written as: 

�3 = −�5�5 − }�R + 4
3|*PℎR
~ �R + ��5QQ − �512 − �Z� �Z + }�_ − 4

5|*Pℎ_
~ �_ 

+	/"���X"�R< − �Y + 3Y"��eH��5��
3_�38�����5����eH��5����1 �Y − /�b + Z

b |*Pℎb
1 �b +⋯ . ..                                   (46) 

The cancellation of the first-order solution as given by Eq. 

(46) yields the following undetermined coefficients �H�
�′O. 
�H�
� = �Z�X�

�p�7�/�����p�
H ,	for	�	odd

0,	for	�	even
           (47) 

substituting Eq. (47) into Eq. (44), it follows that the closed 

form of the solution given sine-Gordon equation is given as 

��
, �� = 4∑ �X��p�7�/�
H����p�

IHJ3,R,_ .                   (48) 

Therefore, the closed form of Eq. (48) is 

��
, �� = 4;�P ���� �|*Pℎ
�,                   (49) 

which is the exact solution of the initial-value sine-Gordon 

equation that is given in Eq. (41). 

To this end, the present novel method is a powerful 

mathematical tool to solve the sine-Gordon equation. It is 

also a promising method to solve other nonlinear equations 

given in our previous work [1]. This method solves the 

problem without any need for the discretization of the 

variables. The Mathematica software is used to calculate the 

series obtained. It should be noted that the previous same 

solution is obtained by the reduced differential transform 

method (RDTM) by Keskin et al. [20]. 

Example 4 

Through this example, we demonstrate the applicability of 

the previous method to the following partial non-

homogeneous linear Klein-Gordon equation: 

��� − ��� − 2� = −2 Of� 
 Of� �,                (50) 

subjected to the initial conditions: ��
, 0� = 0  and ���
, 0� = Of� 
. 

On using the newly introduced method as given in our 

previous paper [1], the trial function of Eq. (50) as the 

following power series: 

B�
, �� = ∑ �H�
��HIHJ< ,                       (51) 

where �′O are arbitrary constants to be determined. 

The homotopy equation of Eq. (50) may be written as: 

���, C� = ��� − ��� − B�� + CwB�� − 2� + 2 Of� 
 Of� �x = 0.                                          (52) 

In accordance with the homotopy perturbation, the solution of the dependent function ��
, �, C� as given in the homotopy 

equation (52), with the aid of the artificial parameter	C, may be expanded as a power series as follows 

��
, �, C� = �<�
, �� + C�3�
, �� + C5�5�
, ��+. ...                                                      (53) 

Substituting Eq. (53) into Eq. (52) and equating the coefficients of like powers of C of both sides, one gets the following 

equations: 

C<: �<�� = ∑ ��� − 1��H�
�IHJ5 �HX5,                                                                  (54) 

and 

C: �3�� = �<�� + 2�< − 2 Of� 
 Of� � − ∑ ��� − 1��H�
�IHJ5 �HX5                                          (55) 

The special solution of Eq. (54) is directly 

�<�
, �� = � Of� 
 + ∑ �H�
��HIHJ5 .                                                                  (56) 

Substituting Eq. (56) into Eq. (55) and then integrating partially twice with respect to �, it follows that the special solution of 
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Eq. (54) may be written as: 

�3�
, �� = −�5�5 − }�R + Of� 

6 ~ �R + 1

12 �2�5 − 12�Z + �5QQ�
Z + 1
60 �Of� 
 + 6�R − 60�_ + 3�RQQ��_ 

+	 3R< �2�Z − 30�Y + �ZQQ���Y + /− �eH �
5_5< + 3

Z5 �2�_ − 42�b + �_QQ�1 �b +⋯                                                   (57) 

The cancellation of the first-order solution as given by Eq. (57) yields the following unknown coefficients �’O. 

The even-order terms are all of zero values, meanwhile, the odd-order terms give 

�R = − �eH �
R! , �_ = �eH �

_! , �b = − �eH �
b! , �c = �eH �

c! , . .. etc.                                              (58) 

Substituting Eq. (58) into Eq. (56), it follows that the 

closed form of the given cubic Duffing oscillator equation is 

given by 

��
, �� = Of� 
 Of� �.                             (59) 

The well-known sine-Gordon equation is one of the most 

important classes in all partial differential equations that 

appears in a wide range of applied mathematics. Partial 

differential equations can also be found in a variety of 

scientific domains, such as the motion of a stiff pendulum 

coupled to a stretched wire [21-24]. It also happens in solid-

state physics, nonlinear optics, and fluid motion instability. 

There are numerous numerical approaches for obtaining 

numerical answers for problems of this nature [22]. 

One of the sine-Gordon equations will be solved in the 

following example using the newly introduced method, which 

is offered to address the disadvantage of the other methods' 

extensive calculations. As a result, the method's fundamental 

advantage is that it offers the user with an analytical 

approximation, in many cases an exact solution, in a swiftly 

convergent sequence with elegantly computed terms. 

Example 5 

This example investigates the possibility of our method to 

solve the following partial non-homogeneous nonlinear 

Klein-Gordon equation: 

��� − ��� + �5 = ��
, ��,  ��
, �� = −
 PgO � + 
5 PgO5 �, (60) 

subjected to the initial conditions: ��
, 0� = 
  and ���
, 0� = 0. 

On using the newly introduced method as before the trial 

function of Eq. (60) may be written as given by Eq. (16) 

B�
, �� = ∑ �H�
��HIHJ< ,                     (61) 

The homotopy equation of Eq. (61) may be written as: 

���, C� = ��� − ��� − B�� + CwB�� + �5 + 
 PgO � −
5 PgO5 �x = 0.                           (62) 

In accordance with the homotopy perturbation, the solution 

of the dependent function ��
, �, C� as given in the homotopy 

equation (62), with the aid of the artificial parameter	C, may 

be written as given by Eq. (62). 

Substituting Eq. (61) into Eq. (62) and equating the 

coefficients of like powers of C of both sides, one gets the 

following equations: 

C<: �<�� = ∑ ��� − 1��H�
�IHJ5 �HX5,           (63) 

and 

C: �3�� = �<�� − �<5 − 
 PgO � + 
5 PgO5 � − ∑ ��� − 1��H�
�IHJ5 �HX5                               (64) 

The special solution of Eq. (63) is directly 

�<�
, �� = 
 + ∑ �H�
��HIHJ5 .                                                                     (65) 

Substituting Eq. (65) into Eq. (64) and then integrating partially twice with respect to �, it follows that the special solution of 

Eq. (64) may be written as: 

�3�
, �� = −/�5 + �
51 �5 − �R�R + 3

5Z �
 − 2
5 − 4
�5 − 24�Z + 2�5QQ��Z + 3
5< �−2
�R − 20�_ + �R,, ��_ + 3

b5< �−
 + 8
5 −
24�55 − 48
�Z − 720�Y + 24�ZQQ��Y + 3

53 /"�
��
5 − �5�R − 
�_ − 21�b1 �b+. . . . . ..                      (66) 

The cancellation of the first-order solution as given by Eq. (66) yields the following unknown coefficients �’O	as follows: 

the odd-order terms are all of zero values, meanwhile, the even-order terms are given by 

�5 = − �
5! , �Z = �

Z! , �Y = − �
Y! , �[ = �

[! , �3< = − �
3<! , . .. etc.                                                   (67) 

Substituting Eq. (67) into Eq. (65), it follows that the closed form of the given cubic Duffing oscillator equation is given by 

��
, �� = 
 PgO �.                                                                              (68) 

Example 6 

Consider now the Klein-Gordon equation, but for ��
, �� = 6
��
5 − �5� + 
Y�Y, i.e 
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��� − ��� + �5 = 6
��
5 − �5� + 
Y�Y,                                                                 (69) 

subjected to the initial conditions: ��
, 0� = 0 and ���
, 0� = 0. 

On using the newly introduced method as before, the trial function of Eq. (69) may be written as given by Eq. (20). 

The homotopy equation of Eq. (69) may be written as: 

���, C� = ��� − ��� − B�� + CwB�� + �5 − 6
��
5 − �5� − 
Y�Yx = 0.                                 (70) 

In accordance with the homotopy perturbation, the solution 

of the dependent function ��
, �, C� as given in the homotopy 

equation (17), with the aid of the artificial parameterC, may 

be written as given by Eq. (70) 

Substituting Eq. (17) into Eq. (70) and equating the 

coefficients of like powers of C  of both sides, one gets the 

following equations: 

C<: �<�� = ∑ ��� − 1��H�
�IHJ5 �HX5,                                                             (71) 

and 

C: �3�� = �<�� − �<5 + 6
��
5 − �5� + 
Y�Y − ∑ ��� − 1��H�
�IHJ5 �HX5                                (72) 

The special solution of Eq. (71) is directly 

�<�
, �� = ∑ �H�
��HIHJ5 .                                                                     (73) 

Substituting Eq. (73) into Eq. (74) and then integrating partially twice with respect to �, it follows that the special solution of 

Eq. (72) may be written as: 

�3�
, �� = �−�R + 
R��R + /�Z − 3
35�5QQ1 �Z + / R3< 
 + �_ − 3

5<�R,,1 �_  

+/ 3R<�55 + �Y − 3
R< �ZQQ1 �Y + / 353�5�R + �b − 3

Z5�_QQ1 �b+. ..                                            (74) 

The cancellation of the first-order solution as given by Eq. (74) yields the following unknown coefficients �’O	as follows: 

The odd-order terms are all of zero values, meanwhile, the even-order terms give 

�R = 
R, �Z = �_ = �Y = �b = �[ =. . . = 0…etc.                                                          (75) 

Substituting Eq. (75) into Eq. (73), it follows that the closed form of the given cubic Duffing oscillator equation is given by 

��
, �� = 
R�R                                                                                       (76) 

Table 1. The absolute error of a 4-term approximation of Example 4. 

�� �� ������� − ����.�����.��� ������� − �������.�.��� [25] ������� − ����� .�.�.��� 
0.1 0.1 2.755 x 10X3Y 2.724 x	10X3Y 0.0 

0.2 0.2 2.802 x 10X3R 2.802 x 10X3R 1.041 x 10X3Y 

0.3 0.3 1.602 x 10X33 1.602x 10X33 1.311 x 10X3Z 

0.4 0.4 2.809 x 10X3< 2.809 x 10X3< 4.088 x 10X3R 

0.5 0.5 2.575 x 10Xc 2.575x 10Xc 5.855 x 10X35 

Table 2. The absolute error of a 4-term approximation of Example 5. 

�� �� ������� − ����.�����.��� ������� − �������.�.��� [25] ������� − ����� .�.�.��� 
0.1 0.1 1.141 x 10X3b 1.242 x	10X3Y 0.0 

0.2 0.2 1.86747 x 10X3R 2.044 x 10X35 0.0 

0.3 0.3 5.451 x 10X33 5.968 x 10X3< 0.0 

0.4 0.4 3.059 x 10Xc 3.349 x 10X[ 0.0 

0.5 0.5 6.951 x 10X[ 7.615 x 10Xb 0.0 

Table 3. The absolute error of a 4-term approximation of Example 6. 

�� �� ������� − ����.�����.��� ������� − �������.�.��� [25] ������� − ����� .�.�.��� 
0.1 0.1 7.911 x 10X3R 3.749	x 10X35 0.0 

0.2 0.2 4.015	x 10X3< 1.128 x 10Xc 0.0 

0.3 0.3 1.518x 10X[ 3.175	x 10X[ 3.331 x 10X3Y 

0.4 0.4 1.969x 10Xb 3.229	x 10Xb 1.411 x 10X3Z 
0.5 0.5 1.413 x 10XY 1.781 x 10XY 2.545 x 10X3R 

 

In Table 1, Table 2, and Table 3, the absolute errors for three methods have been computed: the Picard method, the 



 American Journal of Mathematical and Computer Modelling 2022; 7(2): 20-30 28 

 

Homotopy perturbation method, and the Frobenius homotopy 

perturbation method [1]. These results shows the ease and 

accuracy of the outcomes of the last method after a few steps. 

Remark: 

The Absolute error for the Frobenius homotopy 

perturbation method is computed for only finite numbers of 

terms of the expansion (62), (65), and (73). 

Example 7 

Consider the following coupled Klein-Gordon equations: 

��� − ��� + Of� � = 0,                         (77) 

with the initial conditions ��;, �� = |*Pℎ�; − ��5  and ��=, �� = |*Pℎ�= − ��5 

���0, 0� = 2|*Pℎ�0�5 ���ℎ 0	 and ¢��0, 0� = 2|*Pℎ�0�5 ���ℎ 0, 

where � = ��0, �� and ¢ = ¢�0, �� are functions of the variables 0 and �. 
On using the newly introduced method, the trial function may be written as follows 

B�0, �� = ∑ �H���0HIHJ< and	£�0, �� = ∑ �H���0HIHJ<                                                    (78) 

The homotopy equation may be written as: 

�3��, C� = ¤5
¤05 �� − B� + CvB¥¥ − ��� − � + ¢y = 0 

�5�¢, C� = ��
�¥� �¢ − £� + Cv£¥¥ − ��� + � − ¢y = 0                                                     (79) 

In accordance with the homotopy perturbation, the 

solution ��
, �� of the homotopy equation (79), with the 

aid of the artificial parameter 	C , may be expanded as 

before. 

Substituting from the regular perturbation of the dependent 

function (�) into Eq. (79) and equating the coefficients of 

like powers of C  in both sides, one gets the following 

equations: 

For H1: C<: �<¥¥ = ∑ ��� − 1��H���0HX5IHJ5  

For H2: C<: ¢<¥¥ = ∑ ��� − 1��H���0HX5IHJ5                                                           (80) 

The special solution of Eq. (80) is directly 

�< = |*Pℎ���5 + ∑ �H���0HIHJ5 − 20|*Pℎ���5 ���ℎ �  
¢< = |*Pℎ���5 +∑ �H���0HIHJ5 − 20|*Pℎ���5 ���ℎ �                                                    (81) 

The first-order equation may be written as 

�3¥¥ = �<�� −∑ ��� − 1��H���0HX5IHJ5 + �< − ¢<  

¢3¥¥ = ¢<�� − ∑ ��� − 1��H���0HX5IHJ5 − �< + ¢<                                                      (82) 

Substituting Eq. (81) into Eq. (82), then integrating twice with respect to 0, it follows, after lengthy but straightforward 

calculations, and after canceling the first-order solution the undetermined coefficients �H���′O	and	�H���′O	of Eq. (82) are as 

follows: 

�5��� = 	 �−|*Pℎ�; − ��5 + 3	|*Pℎ�; − ��5 	 ���ℎ� ; − ��5� 
�R��� = 	− Z

R 	�−2	|*Pℎ�; − ��5 	���ℎ�; − �� + 3	|*Pℎ�; − ��5 	���ℎ�; − ��R�  
�Z��� = 	 3R 	�2	|*Pℎ�; − ��5 − 15	|*Pℎ�; − ��5 	���ℎ�; − ��5 + 15	|*Pℎ�; − ��5 	 ���ℎ� ; − ��Z�  

�_��� = 	 53_ 	�17	|*Pℎ�; − ��5 	���ℎ� ; − ��-60	|*Pℎ�; − ��5 	���ℎ� ; − ��R + 45	|*Pℎ�; − ��5 	���ℎ�; − ��_�    (83) 

: 
and 

�5��� = 	 �−|*Pℎ�; − ��5 + 3	|*Pℎ�; − ��5 	 ���ℎ� ; − ��5� 
�R��� = 	− Z

R 	�−2	|*Pℎ�; − ��5 	���ℎ�; − �� + 3	|*Pℎ�; − ��5 	���ℎ�; − ��R�  
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�Z��� = 	 3R 	�2	|*Pℎ�; − ��5 − 15	|*Pℎ�; − ��5 	���ℎ�; − ��5 + 15	|*Pℎ�; − ��5 	 ���ℎ� ; − ��Z�  
�_��� = 	 53_ 	�17	|*Pℎ�; − ��5 	���ℎ� ; − ��-60	|*Pℎ�; − ��5 	���ℎ�; − ��R + 45	|*Pℎ�; − ��5 	���ℎ�; − ��_�     (84) 

: 
Substituting Eq. (83) and Eq. (84) into Eq. (81), it follows 

that the closed form of the solution given equation is given as 

��0, �� = |*Pℎ�; + 0 − ��5	 
¢�0, �� = |*Pℎ�; + 0 − ��5,                   (85) 

which is the exact solution of the coupled Klein-Gordon 

equation that is given in Eq. (81). This is the same problem 

that was solved in [26] by DOHA et al. in 2014 using Jacobi-

Gauss-Lobatto collocation, but they only got an approximate 

solution to the problem. 

To this end, the present unique method demonstrates that it 

is a powerful mathematical instrument for solving Klein-

Gordon equations of various categories, as well as a potential 

way for solving additional nonlinear equations as described in 

our prior work [1]. This solution solves the problem without 

requiring the variables to be discretized. The obtained series is 

calculated using the Mathematica software. It should be 

mentioned that Keskin et al. [20] used the reduced differential 

transform method (RDTM) to obtain the prior solution. 

Example 8 

Consider the following nonlinear homogeneous partial 

differential equation: 

/ ��� − ��
���1 / �

�
��� − ��

���1 � − � ��
�� − ���

���
��
�� = 0,        (86) 

subjected to the initial conditions: ��
, 0� = PgO 
 , ���
, 0� = −Of� 
. and ����
, 0� = −PgO 
. 

On using the newly introduced method as before, the trial 

function of Eq. (84) may be written as given by Eq. (4.16). 

The homotopy equation of Eq. (86) may be written as: 

���, C� = ���� − B�� + CwB�� − ���� − ����� + ����� + ��� − �����x = 0.                          (87) 

In accordance with the homotopy perturbation, the solution 

of the dependent function ��
, �, C� as given in the homotopy 

equation (87), with the aid of the artificial parameter C, may 

be written as given by Eq. (87). 

Substituting Eq. (44) into Eq. (87) and equating the 

coefficients of like powers of C of both sides, one gets the 

following equations: 

C<: �<��� = ∑ ��� − 1��� − 2��H�
�IHJR �HXR,                                                    (88) 

And 

C: �3��� = �<��� + �<���� − �<���� + �<�<� + �<���<� −∑ ��� − 1��� − 2��H�
�IHJR �HXR                       (89) 

The special solution of Eq. (88) is directly 

�<�
, �� = PgO 
 − ��
5 PgO 
 − � Of� 
 + ∑ �H�
��HIHJR .                                            (90) 

Substituting Eq. (88) into Eq. (89) and then integrating partially triple with respect to �, it follows that the special solution of 

Eq. (89) may be written as: 

�3�
, �� = 3
Y �Of� 
 − 6�R��R + 3

Z[ �1 + 2 PgO 
 − PgO 2 
 + 2 Of� 
 − 12�R Of� 
 − 48�Z + 12�RQQ��Z  

+ 3
35< �PgO 
 + Of� 2 
 − 6�R PgO 
 − 24�Z Of� 
 − 120�_ + 6�RQQ + 24�ZQQ��_  

+ 3
Z[< /1 + PgO 2 
 − 4��R + 20�_� Of� 
 − 480�Y − 4 PgO 
 �8�Z + �RQ � + 16�ZQQ + 80�_QQ − 4�R�Z�1+. ..	  (91) 

The cancellation of the first-order solution as given by Eq. (52), yields the following unknown coefficients �’O	as follows: 

�R = �eH �
R! , �Z = ��� �

Z! , �_ = − �eH �
_! , �Y = − ��� �

Y! , �b = �eH �
b! , �[ = ��� �

[! , �c = − �eH �
c! , �3< = − ��� �

3<! ..            (92) 

Substituting Eq. (92) into Eq. (91), it follows that the closed 

form of the given cubic Duffing oscillator equation is given by 

��
, �� = PgO� 
 + ��.                       (93) 

5. Conclusion 

This paper modifies the well-known homotopy 

perturbation approach to provide analytical solutions to 

some initial-value ordinary and partial differential equations. 

The solution's unity has been proved. The Picard method 

and the Homotopy perturbation approach, which were 

utilised in the study, were compared for a few problems. 

The results reveal that this method stands out for its 

accuracy and simplicity of application, as it requires fewer 
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steps than others. Furthermore, unlike most previous 

methods, the suggested method finds forms of analytical 

solutions more readily and fast. 

6. Future Work 

The same method might be modified to solve fractional 

differential equations. Authors recommends that the reader 

might find this work important to expand it to work on 

differential equations of fractional order. 
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