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Abstract: Optimization processes in mathematics, computer science, and economics solve problems effectively by selecting 

the best element from a set of available alternatives. One of the most important and successful applications of optimization is 

the transportation problem (TP), which is a subclass of linear programming (LP) in operations research (OR). Its goal is to find 

shipping routes between supply and demand centers that will meet the demand for a given quantity of goods or services at each 

destination center while incurring the fewest transportation costs. Various transportation-related problems involving 

constraints, mixed constraints, intervals, bottlenecks, and uncertain quantities have recently received a great deal of attention. 

This relates to the transportation problem. In order to solve the TP, numerous researchers have proposed various exact, 

heuristic, and meta-heuristic strategies in the literature. Some strategies seek an initial, basic, feasible solution, whereas others 

seek the optimal way to solve the TP. Because it promotes economic and social activity, the transportation problem is important 

in operations research and management science. This research paper provides a high-level overview of various transportation-

related issues and mathematical models. This can be used successfully to solve various business problems relating to the 

distribution of products, which are commonly referred to as transportation problems. 

Keywords: Classical Transportation Problems, Bottleneck Transportation Problems,  

Multi-objective Transportation Problems, Interval and Fuzzy Transportation Problems 

 

1. Introduction 

Introduction TPs are a major focus of Operations Research 

(OR), with a wide range of applications including inventory 

control, communication networks, production planning, 

scheduling, and personal allocation, to name a few. The TP is 

another well-known optimization problem in which the goal is 

to minimize the total transportation cost of distributing 

resources from a number of sources to a number of 

destinations. In today's highly competitive market, 

organizations are under increased pressure to find better ways 

to create and deliver products and services to customers. It 

becomes more difficult to determine how and when to send 

products to customers in the quantities they require while 

remaining cost-effective. Transportation models offer a strong 

framework for addressing this challenge. As evidenced by the 

literature, different techniques have been developed in the past 

to solve the TP. Some techniques focus on determining an 

initial feasible solution (IFS), while others focus on 

determining the optimal solution (OS) to the TP. The 

Northwest, Least Cost, and Vogel's Approximation techniques 

are used to find an initial basic feasible solution, whereas the 

Modified Distribution (MODI) Method and the Stepping Stone 

Method are used to find an optimal solution to the TP. 

However, in some cases, particularly when dealing with large-

scale TPs, these methods fail to produce an optimal or near-
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optimal solution in a reasonable amount of time. 

2. History of Transportation Problem 

Leornado DaVinci (1503–1517) participated in the war 

against Prisa because he knew how to conduct bombardments 

and construct ships, armored vehicles, cannons, catapults, and 

other warlike machines. F. W. Lanchester, who conducted a 

mathematical study on opponents' ballistic potency and thus 

developed, from a system of differential equations, 

Lanchester's Square Law, which can be used to predict the 

outcome of a military battle, was another forerunner of the use 

of OR. Thomas Edison made use of OR by contributing to the 

anti-submarine war with great ideas such as ship-mounted 

torpedo shields. Many mathematicians, such as Newton, 

Leibnitz, Bernoulli, and Lagrange, worked on determining the 

maximum and minimum conditions for specific functions. 

Jean Baptiste and Joseph Fourier, two French mathematicians, 

developed the methods of modern linear programming (LP). In 

the late 18th century, Gaspar Monge [82] developed 

Descriptive Geometry, which laid the groundwork for the 

Graphical Method. Janos Von Neumann [85] published "The 

Theory of Games," which introduced mathematicians to the 

basic concept of LP. THE "FATHER OF LINEAR 

PROGRAMMING," GEORGE B. DANTZIG, was a founding 

member of The Institute of Management Sciences. The 

mathematical theory known as "linear programming" was 

developed by the Russian mathematician Kantorovich [60] in 

collaboration. The Nobel Prize was awarded to them as a result 

of their investigation. In the late 1990s, George Joseph Stigler 

presented a specific problem known as "special diet optimal," 

or more colloquially known as "diet problem," that occurred as 

a result of the US army's concern to guarantee some four 

nutritional requests at a lower cost for his troops. It was solved 

with a heuristic method whose solutions only differed in some 

centimes from the solution contributed years later by the 

Simplex Method. Kantorovich and Koopmans [72] studied the 

TP independently for the first time in 1941 and 1942. Initially, 

this type of problem for solving the TP was known as the 

Koopmans-Kantorovich problem. They used geometric 

methods based on Minkowski's theory of convexity to solve 

his problem. However, it is not considered that a new science 

known as OR was born until the Second World War, during the 

Battle of England, when the Deutsche Air Force, or Luftwaffe, 

subjected the British to a heavy air raid due to their lack of 

aerial capability, despite their combat experience. The British 

government, looking for a way to defend their country, 

convened a group of scientists from various disciplines to try 

to solve the problem so that they could get the most out of the 

radars they had. Thanks to his efforts in determining the best 

antenna localization and signal distribution, they were able to 

double the effectiveness of the aerial defense system. In order 

to recognize the scope of this new discipline, England formed 

additional groups of the same type in order to achieve the best 

results in the dispute. Similarly, when the United States (USA) 

entered the war in 1942, it established the project SCOOP 

(Scientific Computation of Optimal Programs), where George 

Bernard Dantzig [25] developed the Simplex algorithm. 

During the Cold War, the old Soviet Union (USSR) Plan 

Marshall aimed to control terrestrial communications, including 

river routes from Berlin. To avoid the city's rendition and 

submission to the German communist zone, England and the 

United States decided to supply the city, either through escorted 

convoys (which could spark new confrontations) or through 

airlift, breaking or avoiding the blockage from Berlin. The 

second option was to begin the Luftbrücke (airlift) on June 25, 

1948. This followed on from the problems solved by the 

SCOOP group, which could carry 4500 daily tons in December 

of that same year and 5, after studies of Research Operations 

optimized the supply to get to the 800,000 daily tons in March of 

1949. Because this cipher was the same as that used for 

terrestrial transport, the Soviet Union decided to lift the blockade 

on May 12, 1949. Following the Second World War, the 

management of the United States' resources (USA) (energy, 

armaments, and all kinds of supplies) took advantage of the 

opportunity to accomplish it through optimization models, 

resolved by intervening LP. At the same time that the principle 

of OR is being developed, computation techniques and 

computers are also being developed, which has resulted in a 

reduction in the time required to solve problems. The first result 

of these techniques was given in 1952, when the National 

Bureau of Standards used a SEAC computer to solve a problem. 

The success at the resolution time was so encouraging that it was 

immediately used for all kinds of military problems, such as 

determining the optimal height at which the planes should fly to 

locate the enemy submarines, monetary foundation management 

for logistics and armament, and determining the depth at which 

the charges should be sent to reach the enemy submarines in 

order to cause the higher casualties, which resulted in a five-fold 

increase in Air Force efficacy. Because of its application in 

commerce and industry, OR grew in popularity and 

development during the 1950s and 1960s. 

Consider the problem of calculating the best construction 

sand transportation plan for the city of Moscow's edification 

works, with 10 origin points and 230 destinations. To resolve 

it, a Strena computer was used, which took 10 days in June 

1958, and such a solution contributed to an 11 percent 

reduction in expenses compared to the original costs. 

Previously, these issues were presented in a discipline known 

as "research companies" or "analysis companies," which did 

not have as effective methods as those developed during the 

Second World War (for example, the Método Smplex). There 

are numerous applications of OR in war that we can imagine, 

such as cattle nutrition, agricultural field distribution, goods 

transportation, location, personnel distribution, networking 

problems, queue problems, graphics, and so on. The following 

topics in OR are used to solve various types of problems. 

3. Different Types of Transportation 

3.1. Classical Transportation Problem (CTP) 

Many scientific disciplines, including operations research, 

economics, engineering, geographic information science, and 
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geography, have contributed to the analysis of TPs. To 

proceed with a minimal total cost solution technique to the 

TP, an IFS is required. As a result, IFS serves as a foundation 

for a minimum total cost solution technique to this problem. 

When the cost coefficients, as well as the demand and supply 

quantities, are known, efficient algorithms for solving TPs 

have been developed. The mathematical model of the TP was 

provided by Hitchcock [49]. The stepping stone method, 

developed by Charnes and Cooper [23], provided an 

alternative method for determining the simplex method 

information. As for the primal simplex transportation 

method, Dantzig [26] applied the simplex method to TPs. In 

his book LP, Hadley [45] also included the transportaUpper 

bounded transportationtion problem. Several heuristic 

solutions approaches, such as Goyal's [41], looked into the 

IFS and degeneracy resolution in the TP. Arsha [13] studied 

a general TP algorithm of the Simplex type. Krzysztof 

Goczyla [73], a transportation network expert, spoke about 

optimal routing. For a specific TP, Adlakha and Kowalski [1] 

proposed an alternative solution algorithm based on absolute 

point theory. Sharma and Sharma [123] proposed a new dual-

based procedure based on heuristics for the TP. In their 

Determination of Degeneracy in TPs, Sultan [133] and Goyal 

[41] Ekanayake [33] investigated the TP and maximum 

flows. Okunbor [86] employed goal programming to address 

TPs. Putcha [101] devised a method for arriving at an initial 

basic feasible solution for engineering optimization 

problems. Adlakha and Kowalski [2] proposed an analysis of 

alternate solutions for TPs. Immam et al. [52] used an 

Object-Oriented Model to solve the TP. For example, Klibi et 

al. [66], for example, looked into the stochastic multi-period 

location TP. Pandian and Natarajan [89] proposed a novel 

method for dealing with TPs and Ahamed et al. [5, 6] 

proposed a new approach to solve TPs. 

Many heuristic solution techniques have been presented in 

the literature to obtain an IFS for the TP. The Northwest 

Corner Method and the Minimum Cost Method Taha [134] 

are well-known. Furthermore, Sharma and Prasad [122] 

presented a heuristic that provided a very efficient initial 

feasible solution to the proposed VAM-TOC approach. 

Because of the impracticality of performing enormous 

calculations in the northwest corner method, minimum cost 

method, row minimum cost method, column minimum cost 

method, and VAM for finding an IFS to the TP, Imam et al. 

[52] and Sen et al. [120] implemented them in C++. Kulkarni 

and Datar [74] created a heuristic-based algorithm to arrive at 

an initial feasible solution in order to obtain the modified 

unbalanced TP with a low total cost. Vasko and 

Storozhyshina [140] investigated the role of the dummy 

column (row) in the VAM, the Greedy heuristic [126], the 

Northwest Corner method, Pargar et al. [98] proposed a 

heuristic for obtaining an initial solution for the TP with 

experimental analysis, and Hillier and Lieberman [50] in 

solving unbalanced TPs. Shimshak et al. [125] and 

Balakrishnan [15] proposed changes to VAM in order to 

obtain preliminary solutions to the unbalanced TP. Schrenk 

et al. [117] investigated degeneracy characterizations for two 

classical problems: the transportation paradox in linear TPs 

and pure constant fixed charge TPs (there is no variable cost 

and the fixed charge is the same on all routes). In 2013 and 

2014, Juman et al. proposed a sensitivity analysis and an 

implementation of the well-known Vogel's approximation 

method for solving an unbalanced transportation problem and 

a heuristic solution technique to achieve the minimal total 

cost bounds of transporting a homogeneous product with 

varying demands and supplies. Liu [77] investigated the TP 

with varying demands and supplies within their respective 

ranges. Following these variations, the minimal total cost was 

also varied within an interval. So he created a pair of 

mathematical programs in which at least one of the supply or 

demand variables changed to calculate the lower and upper 

bounds of the total transportation cost. Korukolu and Balli 

[70] proposed an improvement to the well-known VAM by 

accounting for total opportunity cost. Using computational 

experiments, they claimed that this improved VAM provided 

a more efficient and feasible initial solution to a large scale 

TP. Singh et al. [126] improved optimization and analysis of 

some variants through Vogel’s approximation method 

[VAM]. To provide an initial feasible solution to the TP, 

Deshmukh [31] proposed a new method called the innovative 

method. However, among the existing heuristics for 

obtaining an IFS, VAM is one of the most efficient heuristics 

for TPs because it allows for a very good IFS (often an 

optimal solution). Furthermore, Sudhakar et al. [131] recently 

proposed a new approach for finding an optimal solution for 

TPs. Winston [142], Operations Research: Applications and 

Algorithms, Mathirajan, [80], Experimental analysis of some 

variants of Vogel’s approximation method [129], Srinivasan 

and Thompson [129], The Red-Blue TP, and Cost Operator 

Algorithms for the TP. Adlakha [3] and Das et al. [27] 

investigated the Logical Development of Vogel's 

Approximation Method (LD-VAM): a method for 

determining a basic viable solution to the TP. Gen, at el. [39], 

Samuel [114], and Zangiabadi [143] proposed improvements 

and a new model for TPs with qualitative data, respectively. 

Gupta [42] investigated paradoxical situations in TPs, as well 

as the identification of vanishing variables in TPs and their 

potential applications. Mathirajan [80] also proposed an 

experimental analysis of some variants. Ramadan [105] and 

Ramadoss [106] proposed a hybrid two-stage algorithm for 

solving the TP and an evolutionary heuristic algorithm for 

solving the assignment problem, which Kowalski et al. [71] 

also investigated. Pradipkundu [100] investigated some solid 

transportation models with crisp and rough costs, while 

Aizemberg's [7] Formulations for a Problem of Petroleum 

Transportation investigated the initial basic feasible solution 

and the resolution of degeneracy in TPs. Arsham and Khan 

[13] investigated a Simplex-type algorithm for the general TP, 

while Kirca and Statir [67] proposed obtaining an initial 

solution to the TP. Bertsekas and Castanon [19] worked on an 

auction algorithm for the transportation problem. Kleinschmidt 

[68] suggested a strongly polynomial algorithm for the 

transportation problem and Reinfeld and Vogel, Math [109], 

proposed mathematical programming. Ekanayake at el. [34, 
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35] recently proposed using the Ant Colony algorithm (ACA) 

in the first stage to find an improved initial basic solution and 

an Effective Alternative New Approach in Solving TPs. 

Mathematical Model of the Transportation Problem: The 

TP can be formulated as an LP model and usually 

represented in a tabular form. Let us assume that in general 

that a particular product is manufactured in m production 

plants known as supply denoted by ��, ��, … , ��  with 

respective capacities 	��, ��, … , �� , and distributed to n 

distribution centers known as demands denoted by 

	�, 	�, … , 	� with respective demands 	
�, 
�, … , 
� . Also, 

assume that the transportation cost from i
th

 - supply to the j
th

 - 

demand is �
� (unit transportation cost) and the amount of 

product shipped is	�
� , where i = 1, 2,..., m and j = 1, 2,..., n. 

The following table is known as the transportation cost: 

Table 1. Transportation cost table. 

Supply / Demand �� �� �� … �� Supply 

�� ��� ��� ��� … ��� �� 

�� ��� ��� ��� … ��� �� 
⁞ ⁞ ⁞ ⁞  ⁞ ⁞ 

�� ��� ��� ��� … ��� �� 
Demand 
� 
� 
� … 
�  

 

The mathematical model of TP can be formulated as given 

below: 

Minimize	� = 	∑ ∑ �
��
��
���

�

�� 	(Total	transportation	cost) 

Subject to the constraints 

∑ �
� =�
��� �
, ' = 1,2, … ,*(Supply	constraints) 

∑ �
� =�

�� 
�, = 1,2, … , .	(Demand	constraints), and 

�
� ≥ 0 for all ' = 1,2, … ,* and 5 = 1,2, … , . 

In the above model, if the total supply is equal to total 

demand, then the TP is known as a balanced TP and 

otherwise, it is known as unbalanced TP. 

These balanced and unbalanced TPs can be mathematically 

stated as below respectively: ∑ �
 =�

�� ∑ 
��

���  and 

∑ �
 >�

�� ∑ 
��

��� 	78	 ∑ �
 <�

�� ∑ 
��

��� . 

3.2. Mixed Constraint Transportation Problems 

Pandian [90, 91] proposed the Fourier Method for Solving 

TPs with Mixed Constraints and the Solving TPs with Mixed 

Constraints in Rough Environment. Mondal and colleagues 

[81], Klingman [69] worked on an innovative method for 

unraveling TPs with mixed constraints, titled "Solving 

Transshipment Problems with Mixed Constraints and the TP 

with Mixed Constraints." Various methods of Solving the 

Transshipment and TPs with Mixed Constraints." Heinz [47] 

and Bielefeld [20] propose various methods for solving the TP 

with mixed constraints. When shipping the same amount or 

more from each origin and to each destination while keeping 

all transportation costs non-negative, the More-For-Less (MFL) 

paradox occurs. MFL occurs in distribution problems in nature. 

The mixed constraints of TP have been extensively studied in 

previous years. Another method was proposed by Rabindra et 

al. [103], and Akilbasha et al. [9] proposed a heuristic method 

for solving TP with Mixed Constraints in Rough Environment 

[8]. Gupta et al. [43] and Arora [65] obtained the more-for-less 

solution for the TP with mixed constraints by relaxing the 

constraints and introducing new slack variables. Pandian [88, 

96, 97] proposed a Fourier method for solving TPs with mixed 

constraints in rough environments. 

Mathematical Model of the Mixed Constraint Transportation 

Problems: If m is the number of origins or sources and n is the 

number of destinations, the cost of carrying one unit of the 

commodity from origin i to the destination j is	�
� .	Let	�
  be 

the quantity of the commodity available at origin i and	
� be 

the quantity required at destination j. Thus �
 ≥ 0	for i and 


� ≥ 0	for each j, The general formulation of the TP with 

mixed constraints proposed by Pandian and Natarajan [92] can 

now be written as follows: 

Table 2. Transportation cost table. 

Destination→ 

source↓ 
D1 D2 … Dn Supply 

S1 ��� ��� … ��� =,≤, 78	 ≥ �� 
S2 ��� ��� … ��� =,≤, 78	 ≥ �� 
⁞ ⁞ ⁞  ⁞ ⁞ 

Sm ��� ��� … ��� =,≤, 78	 ≥ �� 
Demand =,≤, 78	 ≥ 
� =,≤, 78	 ≥ 
� … =,≤, 78	 ≥ 
�  

 

If �
�is the quantity transported from source i to destination j 

then the TP with mixed constraints is written with the help of 

Adlakha et al. [3] and Pandian and Natarajan [92] as 

Minimize � = ∑ ∑ �
��
�
�
��

�

��  

subject to the constraints 

∑ �
� ≥	�

�
��� , 78	 ∑ �
� ≤	�


�
��� , 78 ∑ �
� =	�


�
���   

∑ �
� ≥	
��

�� , 78 ∑ �
� ≤	
��


�� , 78 ∑ �
� =	
��

��   

�
� ≥ 0, '	 = 	1,2, . . . , *, and 5	 = 	1,2, . . . , .	and integers; 

�
� , is the cost of shipping one unit from supply point i to 

the demand point j; 
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�
 ,	is the supply at supply point i; 


� , is the demand at demand point j and 

�
� , is the number of units shipped from supply point i to 

demand point j. 

3.3. Interval Transportation Problems with Mixed 

Constraints 

Several methods for solving interval TPs with precisely 

defined cost coefficients and source and destination parameters 

have been developed in recent years, but in many practical 

situations, this is not always sufficient to meet the main 

objective. Akilbasha et al [10] applied the split and separation 

method to a rough integer interval TP. Pandian [89] solved the 

TP with mixed constraints in a rough environment using the 

rough slice sum method and developed a new method for 

finding an optimal solution to fully intervaled integer 

transportation problems. Ramesh et al. [107] proposed a 

method for solving interval LP problems that does not require 

converting them to classical LP problems. Furthermore, 

Purushothkumar et al. [102] developed a diagonal optimal 

algorithm to solve interval integer TPs beautifully. Ganesan 

[38] and Natarajan [83, 84] proposed some properties of 

interval matrices and a new method for finding an optimal 

solution to fully interval integer TPs. Roy and Mahapatra 

[111], Multi-Objective Interval-Valued Transportation 

Probabilistic Problem Involving Log-Normal. [104] proposed 

a new heuristic technique for solving the Integer Interval TP 

with Mixed Constraints as excellent. Das et al. [28] solved 

interval TPs using the right bound and the interval's midpoint. 

Sengupta and others. [118, 119] Theory and Methodology 

Regarding the comparison of interval numbers. Safi et al. [113] 

used interval parameters to solve a fixed charge TP by 

converting interval fuzzy constraints into multiobjective fuzzy 

constraints. Ummey [138] also proposed a new method to 

solve interval TPs and a multiobjective stochastic interval TP 

involving a general form of distribution. Panda and Das [87] 

determined that the best interval TP was a cost-varying interval 

TP with two vehicles. 

3.3.1. Mathematical Model of the Interval Transportation 

Problems 

Let us assume that in general that a particular product is 

manufactured in m production plants known as sources 

denoted by ��, ��, … , ��  with respective capacities [�
 , 8
] , 

and total distributed to n distribution centers known as sinks 

denoted by 	�, 	�, … , 	� with respective demands [
� , >�] . 

Also, assume that the transportation cost from i
th

 - source to 

the j
th

 - sink is	�
�and the amount shipped is �
� , where i = 1, 

2,..., m and j = 1, 2,..., n. To assign the supply and demand 

units, use the table below. 

Table 3. Transportation Table. 

Destination→ 

source↓ 
D1 D2 … Dn supply (ai) 

S1 [���, ?��] [���, ?��] … [��� , ?��] [��, 8�] 
S2 [���, ?��] [���, ?��] … [��� , ?��] [��, 8�] 
⁞ ⁞ ⁞ … ⁞  

Sm [���, ?��] [���, ?��] … [��� , ?��] [��, 8�] 
Demand (bj) [
�, >�] [
�, >�] … [
� , >�]  

 

3.3.2. Lower Bounded Transportation Problem 

The total transportation cost is 

Minimize∑ ∑ �
��
�
�
���

�

��  

Subject to the constraints 

∑ �
� =�
��� �
, ' = 1,2, … ,* 

∑ �
� =�

�� 
�, 5 = 1,2, … , . 

Where,  

3.3.3. Upper Bounded Transportation Problem 

The total transportation cost is 

Minimize∑ ∑ @
�?
�
�
���

�

��  

Subject to the constraints 

∑ ?
� =�
��� 8
 , ' = 1,2, … ,* 

∑ ?
� =�

�� >�, 5 = 1,2, … , . 

where, ?
 �   ≥   0  ∀  ',  5. 

3.4. Bottleneck Transportation Problem (BTP) 

A time-minimizing TP, also known as a bottleneck TP, is a 

type of TP in which each shipping route is assigned a time 

frame. The goal of this process is to reduce the time it takes 

to transport all supplies to their destinations rather than to 

reduce costs. When transporting perishable goods, delivering 

emergency supplies, providing fire services, or dispatching 

military units from their bases to the front lines, the BTP is 

encountered. A BTP minimizes the time spent transporting 

items from origins to destinations while meeting certain 

conditions such as source availability and destination 

requirements. According to Hammer [46], the time-

minimizing version of this classic problem is very nice 

research. Hammer's problem was described using the terms 

"time TP" and "bottleneck TP." The goal of this problem is to 

shorten the time it takes to transport goods from supply 

sources to various demand destinations. Hammer's work 

distinguished itself from previous studies of the TP by 

focusing on time minimization. Garfinkel and Rao [40], 

Szwarc [132], Sharma [124], A Minimax Method for Time 

Minimization, and Agarwal and Sharma's TP with Mixed 

Constraints [4]. Seshan and Tikekar [121], Khanna, Bakhsi, 

jix ji ,0 ∀≥
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and Arora [14], and Isserman [56] looked into Hammer's 

problem further. The best algorithm for solving 2 x n 

bottleneck TPs was developed by Ravi Varadarajan [108]. 

Sonia and Puri [128] studied a two-level hierarchical 

balanced time-minimization TP. Issermann [54] used 

Peerayuth Charnsethikul and SaereeSvetasreni [99] and The 

Transportation Constrained Bottleneck Problem. A Novel 

Approach to Solving Transportation Bottlenecks and Cost 

Issues Ilija Nikolic [53] and Pandian and Natarajan [95] both 

presented the total transportation time problem in terms of 

active transportation routes. On Sharma-Swarup algorithm 

for time minimizing TPs, Seshan, C. R., and Tikekar [121] 

proposed an algorithm for solving it. Pandian and Natarajan 

[91] developed two algorithms: one for locating the best 

bottleneck-cost TP solution and the other for locating all 

efficient bottleneck-cost TP solutions. Alhazov and Tkacenko 

[136] described a method for generating total transportation 

schedules by minimizing TP with impurities in the 

commodity using linear fractional time in the multiobjective 

transportation bottleneck problem. Using a transportation 

algorithm, Sharif Uddin [137] calculated the shortest possible 

travel time. Jain and Saksena [55] looked into time-

minimizing TP with a fractional bottleneck objective 

function. 

Mathematical Statement of BTP: Bottleneck transportation 

problem can be stated mathematically as follows: 

Minimize =	 [B��'*'�C(
,�)	D
�/	�
� > 0] 

Subject to the constraints 

∑ �
� =�
��� �
, ' = 1,2, … ,* 

∑ �
� =�

�� 
�, 5 = 1,2, … , . and 

�
� ≥ 0 for all 'and 5. 

where m is the number of supply points; n is the number of 

demand points; �
�  is the number of units shipped from 

supply point i to demand point j; D	
�  is the time of 

transporting goods from supply point i to demand point j; 

�
 is the supply at supply point iand 
�  is the demand at 

demand point j. In a BTP, time matrix FD
� 	G is given where 

D
�is the time of transporting goods from the 'HI origin to the 

5HI  destination. For any given feasible solution 

J	={�
� : '	=1,2, . . . , *	�.@	5	=1,2, . . . , .}  of the problem (P), 

the time transportation is the maximum of D
�′>  among the 

cells in which there are positive allocations. This time of the 

transportation remains independent of the amount of 

commodity sent so long as �
� > 0. 

3.5. Multi-objective Transportation Problem (MOTP) 

Numerous analysts have created efficient methods for 

unraveling at least two destinations at the same time, which 

are optimizing TPs with multiple objectives, Lee et al. [76], 

Linear multiobjective programming Zeleny [145] developed 

different algorithms for all the non-dominated solutions for 

linear multi-objective TPs, Das and Isermann [28, 54], and 

Ummey [139] worked Multiobjective stochastic TP involving 

general forms of distributions, Li [79] proposed a neural 

network approach for multicriteria solid TP. Simplex multi-

criteria method for a linear multiple objective TP, Gupta et al. 

[44], A simplified interactive multiple objective LP 

procedure, Kaur [62] and Reeves et al. [110] investigated "A 

New Approach to Solving Multi-Objective Transportation 

Problems." Applications and Applied Jimenez [57] worked 

Interval multiobjective solid transportation problem via 

genetic algorithms Aneja and Nair [11] worked bi-criteria 

transportation problem. An efficient algorithm for 

multiobjective transportation problems, Kasana et al. [61], 

Revised multi-choice goal programming, Chang [22], A 

simple algorithm for a multi-objective transportation model, 

Bai et al. [17], A new method for solving the bi-objective 

transportation problem, Pandian et al. [93], Banderet al. [16], 

Solving multi-objective transportation problems, Diaz, J. A. 

[29], A super non-dominated point for multi-objective 

transportation problems Evans et al. [36] and Henriques, C. 

O., and Coelho, D. [48] are proposing Graphic Matroids and 

the Multicommodity Transportation Problem and 

Multiobjective Interval Transportation Problems: A Short 

Review. in optimization and decision support systems for 

supply chains. A multi-objective solid transportation problem 

with interval costs in source and demand parameters is 

proposed by Nagarajan [83, 84] etc. 

Mathematical Formulation: In real life situations, usually 

every organizer wants to achieve multiple goals 

simultaneously while making In real life situations, normally 

every coordinator needs to accomplish multiple objectives at 

the same time while making transportation of products. So 

MOTP developed by analysts to achieve various objectives. 

Like classical transportation problem, in MOTP, Quantity 

(�
�) is to be transported from sources i (i = 1, 2,..., m) to 

destinations j (j = 1,2,..., n) with cost O
�
P, where O
�

P can be 

transportation cost, total delivery time, energy consumption 

or minimizing transportation risk etc. 

The reality, anyway all transportation problems are not 

single objective. The transportation problem was described 

by multiple objective functions. The decision maker would 

like to minimize set of p objectives simultaneously. Quantity 

(�
�) is to be transported from sources i (i = 1, 2,..., m) to 

destinations j (j = 1, 2,..., n) with cost O
�
P, where O
�

P can be 

transportation cost, cost of damage or total delivery time 

costs, energy consumption or minimizing transportation risk, 

etc. The p objectives Q�(�), Q�(�), … . , QR(�)  are to 

minimize the total cost of transportation. It is always 

assumed that the balance condition holds (i.e. that the total 

demand is equal to the total supply). With these assumptions, 

the MOTP can be written as follows: 

Q�(�) = ∑ ∑ O
�
��
�

�
���

�

��   

Q�(�) = ∑ ∑ O
�
��
�

�
���

�

��   

⁞ 

QR(�) = ∑ ∑ O
�
R�
�

�
���

�

��   
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Subject to the constraints 

∑ �
� =	�

�
���  i = 1, …, m 

∑ �
� =	
��

��  j = 1, …, n 

�
� ≥ 0, ' = 1,2, … . ,*	�.@	5 = 1,2, … . . . 

Where, 

O
�
PCo-efficient of the k-th objective; �
supply amount of 

the product at source i (Si); 
�  demand of the product at 

destination j (Dj), and �
 > 0 for all i, 
� > 0 for all j. and 

∑ �
 =�

�� ∑ 
��

��� (balanced condition). The balanced 

condition is both necessary and sufficient for solving the 

transportation problem in both the cases single and multiple 

objectives. 

Table 4. Multi-objective Transportation Transportation cost Table. 

Destination→ 

source↓ 
D1 D2 … Dn supply (ai) 

S1 

O��
�
 O��

�
 … O��

�
 

�� 
O��

�
 O��

�
 … O��

�
 

⁞ ⁞ ⁞ ⁞ 
O��

R
 O��

R
 … O��

R
 

S2 

O��
�
 O��

�
 … O��

�
 

�� 
O��

�
 O��

�
 … O��

�
 

⁞ ⁞ ⁞ ⁞ 
O��

R
 O��

R
 … O��

R
 

⁞ ⁞ ⁞ … ⁞  

Sm 

O��
�
 O��

�
 … O��

�
 

�� 
O��

�
 O��

�
 ⁞ O��

�
 

⁞ ⁞ … ⁞ 
O��

R
 O��

R
  O��

R
 

Demand (bj) 
� 
� … 
�  

 

3.6. Fuzzy Transportation Problem 

Hitchcock and Koopmans [49, 72] first established the 

transportation problem, and they discussed it in detail in their 

paper, Optimal Utilization of the Transportation System. 

Dantzig created efficient methods for discovering 

arrangements, and Charnes and Cooper [21] later developed 

the stepping stone method. There are also numerous 

specialists [12] assigned to this field. If a few or all of the 

parameters of a transportation problem are fuzzy numbers, 

the problem is an FTP. The value of the fuzzy number has 

been addressed in numerous research papers on 

transportation costs, supply, and demand. Many scientists 

investigate various approaches to solving a balanced and 

unbalanced transportation problem using fuzzy numbers and 

various algorithms. The fuzzy set hypothesis has been 

applied in a lot of fields, for example, operation research, 

management science, and control theory, and soon. In the 

literature, a few strategies are proposed for solving 

transportation problems in a fuzzy environment, such as the 

possibility of a fluffy set that was introduced by Zadeh [144] 

in 1965. Bellman and Zadeh [18] discussed the concept of 

decision-making in a fuzzy domain. For example, after this 

initiating work, numerous authors have studied fuzzy LP 

problem techniques. For example, Zimmermann [146] 

showed that solutions obtained by fuzzy LP are reliably 

effective, Fang et al. [37], Rommelfanger et al. [112], and 

Tanaka et al. [135], Wakas [141] and Liu [78] worked by 

Solving Fuzzy Transportation Problems (FTPs) using a New 

Algorithm and Solving FTPs based on extension principle. 

Kumar [75], proposed A Simple Method for Solving Type-2 

and Type-4 FTPs, and Samuel, and Raja [115], developed A 

New Approach for Solving Unbalanced FTPs. In addition, 

Samuel and Venkatachalapthy [116] worked on IZPM for 

Unbalanced FTPs; Sobha [127] proposed Profit 

Maximization of Unbalanced FTPs; and Srinivas [130] 

developed an Optimal Solution for Degeneracy FTP Using 

Zero Termination and Robust Ranking Methods., Pandian 

[94] by A new algorithm for finding a fuzzy optimal solution 

for FTPs and Jimenez [59] Uncertain solid transportation 

problems, and Jimenez [58] proposed solving fuzzy solid 

transportation problems by an evolutionary algorithm based 

parametric approach. Also, a trisectional fuzzy trapezoidal 

approach to optimize interval data based transportation 

problems is presented [30]. A simplified new approach for 

solving FTPs with generalized trapezoidal fuzzy numbers, by 

Ebrahimnejad [32] and Fang et al. [37] proposed LP with 

fuzzy coefficients in constraints. Hunwisai [51] and Kaur [63] 

proposed A method for solving a fuzzy transportation 

problem via Robust ranking technique and ATM and A new 

method for solving FTPs using a ranking function and a new 

method for solving FTPs using generalized trapezoidal fuzzy 

numbers, by A. Kaur and A. Kumar [64] and so on. The FTP 

is a transportation problem whose decision parameters are 

fuzzy numbers. Christi [24] examined solutions to FTPs 

using the Best Candidates Method and different ranking 

techniques. The objective of the FTP is to transport some 

products from various sources to different destinations with a 

minimum cost of transportation and satisfaction of the fuzzy 

supply and demand constraints. 

The FTP is a TP in which the transportation expenditures, 

supply, and demand quantities are fuzzy quantities. The 

objective function is also regarded as a FN because the goal 

is to minimize total cost or maximize profit. The objective of 

this section is to find the minimum FTC using the ranking 

technique and concept of the ACO algorithm, and provides 
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an analysis of its applications to solving the FTP. 

The fuzzy transportation cost table describes the general 

FTP in a tabular format [Table 3]. The table exhibits the 

representative value of the fuzzy unit cost, fuzzy supply, and 

fuzzy demand. Here, all	>T	U and @VW  are assumed to be positive, 

and >TU  are called supplies and @VW  are called demands, �̂
� the 

cost of transshipment of one unit from i 
th 

source to j 
th

 

destination. 

The Fuzzy Transportation Problem as a Mathematical 

Formula: 

Minimize YZ = ∑ ∑ �̂
�JZ
��
��[

�

�[  

Subject to 

∑ JZ
�	 ≤	>TU�
���  for ' = 1,2,3, … . ,* 

∑ JZ
�	 ≤	@VW�

��  for 5 = 1,2,3, … . , . 

JZ
�	][ for ' = 1,2,3, … . ,* and 5 = 1,2,3, … . , . 

Here, all	>T	U and @VW  are assumed to be positive, and >TU  are 

typically called supplies and @VW  are called demands, as shown 

in the beneath table. The fuzzy cost �̂
�  are all non-negative. 

If	∑ >T	U^
_�� = ∑ @VW`

a�� , it is a balanced TP. If this condition isn't 

met, a dummy origin or destination is generally introduced to 

make the problem balanced. 

4. Conclusion 

This paper provides a brief overview of some types of 

transportation problems, including classical transportation 

problems, transportation problems with mixed constraints, 

interval transportation problems, bottleneck transportation 

problems, multi-objective transportation problems, and FTPs. 

This chapter also discussed the work done so far by many 

scientists and statisticians on the transportation problem, as 

well as mathematical models for each. 
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