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Abstract: Being greatly inspired by the natural flowing regulation of water, we propose a new meta-heuristic algorithm — 

Flowing Water Algorithm (FWA) for the solution of combinatorial optimization problems (COPs). Since the solution space of 

COPs is multidimensional, complex and has many local extreme values, according to our proposed method, it appears to be 

similar to an endless hilly area with mountains, valleys and plateaus. The downward-flowing water in such area finds its way to 

the lowest point in the hill. Water always flows downward and eventually converges at the lowest place without any outside 

intervention except for gravity. Such a flowing course can be deemed as a process for the water to seek for the lowest point. The 

proposed algorithm is derived from such a water flow process. This algorithm combines a local search strategy with a 

population-based search strategy to improve both local and global search abilities. Four operators, including the local search, 

water overflow, drilling water tunnel and evaporation-rain are included in FWA, making this algorithm successfully perform tabu 

search, positive feedback, “survival of the fittest”, and local optimum escape. Two examples of its application in the traveling 

salesman problem (TSP) show that FWA outperforms the benchmark methods for both solution quality and convergence speed. 
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1. Introduction 

Combinatorial optimization problems (COPs) are widely 

found in practical applications such as scheduling, routing, 

placement, investment, configuration, design and insurance. 

Extensive studies have been carried out to investigate the 

methods for solving COPs. The currently available methods 

can be simply classified into two categories: exact approaches 

and non-exact approaches [1]. The exact approaches, such as 

enumeration, branch and bound, branch and cut, and dynamic 

programming, seek optimal solutions through exact 

computations. However, many combinatorial optimization 

problems are often NP-hard, and their search space (i.e., the 

number of possible choices) is characterized by the 

“combination explosion” because of the increase in the 

problem size. Thus, the exact approaches cannot obtain the 

optimal solutions of the combinatorial optimization problems 

within polynomial time. In this case, non-exact approaches 

such as heuristic algorithms have been proposed to search for 

good solutions which are near-optimal within a reasonable 

computational time [2]. 

Heuristic algorithms are very popular approximate 

approaches used in practice. Heuristic algorithms cannot offer 

a convergence guarantee but can flexibly make use of the 

special properties of the search space to exploit the 

near-optimal solutions [2]. Inspired by the surrounding world 

(physics, nature, biology, etc.), researchers have proposed 

various intelligent heuristic algorithms [3], such as genetic 

algorithms (GA) [4], simulated annealing (SA) [5], Tabu 

search (TS) [6], ant colony optimization (ACO) [7] and 

particle swarm optimization (PSO) [8]. These techniques are 

widely applied to search for the satisfactory albeit not optimal 

solutions of combinatorial optimization problems within a 

limited time. Specifically, heuristic algorithms can be 

classified into two categories: tailored-heuristics and 

meta-heuristics. The standard tailored heuristics are designed 

to solve specific problems and tailored to fit the inherent 
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characteristics of the problem at hand. Generally, tailored 

heuristics are regarded to have little value in other problems, 

so most researchers pay close attention to meta-heuristics 

which can be readily adapted for many types of problems. 

Meta-heuristics are designed to be sufficiently flexible to 

solve as many different combinatorial optimization problems 

as possible. The user only needs to change the neighborhood 

structures when applying the method to another problem 

domain. Many well-known meta-heuristic methods have 

demonstrated their usefulness and efficiency such as SA [9], TS 

[10], greedy search [11], GA [12], ACO [13], and PSO [14]. 

Local search and population search are used as the two 

basic principles in the development of meta-heuristics [15]. 

Local search methods, such as SA and TS, are directed to 

explore the neighborhood solution space intensively for new 

better feasible solutions. Population search methods, such as 

GAs, ACO algorithms and PSO, integrate "self-adaptation 

operation" with "co-operation", enabling the individuals to 

evolve through iterations according to certain rules. 

"Self-adaptation operation" denotes the individual's 

independent evolution path. "Co-operation" means that the 

individuals synergistically evolve by exchanging information 

with each other. To date, many meta-heuristic algorithms have 

been introduced in the literature based on different 

philosophies of intensification and diversification [16]. 

Though the abovementioned meta-heuristics algorithms for 

combinatorial optimization problems have their own 

advantages, they also have disadvantages. This has motivated 

the ongoing exploration of new, better algorithms. 

Inspired by the phenomenon of flowing water in nature, we 

propose a new meta-heuristic algorithm —Flowing Water 

Algorithm (FWA) integrating two main principles: local 

search and population search. This algorithm integrates the 

advantages of the above algorithms. 

The remainder of the paper is organized as follows. Section 

2 gives a brief description of COPs, especially the traveling 

salesman problems (TSP). In section 3, this paper 

systematically presents the proposed FWA, including the 

insights from the natural flowing water phenomenon, FWA’s 

characteristics and the detailed algorithm operation. In section 

4, the advantages of FWA are demonstrated by its application 

to the TSP and the obtained results are compared to those 

obtained using some well-known meta-heuristic algorithms. 

Finally, conclusions are drawn in the last section of this paper. 

2. Combinatorial Optimization Problem 

Description 

Combinatorial optimization problems can be formulated as 

follows. Given a solution � = ����, ���, ⋯ ,��
� , 

(	
�, 
�, ⋯ , , 

) as a permutation of set�1, 2,⋯ , ��. Let � be 

the space of the solutions and 	�  be the problem size. 

Furthermore, let ���� be the optimality function that seeks 

the global optimal solution �∗, thus �∗ = ����min�∈� �����. 
Obviously, the solutions structure �  and the optimality 

function ���� depend on the characteristics of the specific 

combinatorial optimization problems. 

Without the loss of generality, in this paper we study the 

Flowing Water Algorithm by using the example of the 

well-known TSP as the benchmark of the combinatorial 

optimization problems. TSP can be described as follows. 

Assume �  cities, ���
 = 1, 2,⋯ , ��  is used to construct a 

complete weighted undirected graph, i.e.,  = �!, "� . 

Therefore,	!� � = ���, ��, ⋯ , �
� is called the set of cities of 

graph   and "� � = 	 #$�%&�	
, ' ∈ �1, 2,⋯ , �	�, 
 ≠ '	�  is 

called the edge-set of graph  . Furthermore, the distances 

between every two cities 
 and ' are already known and are 

denoted as )�% . It is required in TSP that the salesman should 

travel through all cities in the city set without any repetition by 

taking the shortest path among all feasible paths. Thus, the 

mathematical model of this problem is given as: min	 ∑ ∑ )�%+�%
%,�
�,�   

s.t.	∑ +�% = 1	
 = 1,⋯ , �
%,� 	∑ +�% = 1	' = 1,⋯ , �
�,�   (1) +�% ∈ �0, 1�	
 ≠ ' 
where +�%  denotes whether the edge $�% is passed through. If 

yes, then it is marked as 1; if no, then it is marked as 0. 

3. Flowing Water Algorithm 

 

Figure 1. 3D plot of water flowing process. 

 

Figure 2. Pictorial representation of water overflowing. 

Being greatly inspired by the natural flowing regulation of 

water, we propose a new meta-heuristic algorithm — Flowing 
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Water Algorithm (FWA) to obtain the near-optimal solutions 

of COPs. Since the solution space of COPs is 

multidimensional, complex and has many local extreme 

values, it appears to be similar to an endless hilly area with 

mountains, valleys and plateaus. The downward-flowing 

water in such area finds its way to the lowest point in the hill. 

Water always flows downward and eventually converges at 

the lowest place without any outside intervention except for 

gravity. Such a flowing course can be deemed as a process for 

the water to seek for the lowest point as shown in Figure 1. A 

water source from the initial position A flows through the 

anchor point positions (local minima) B, C and D, and 

eventually reaches the lowest point E. The proposed algorithm 

is derived from such a water flow process. The position points 

that the water flows through map the feasible solutions of 

COPs. Specifically, flowing water possesses the following 

characteristics: 

Local search of flowing water. Water always flows 

downward and keeps searching for the next better or lower 

positions locally, which implies its nature of local search. 

Consequently, it always chooses the lowest and shortest 

possible path during its flow. Additionally, water possesses the 

characteristics of tabu search because it never flows inversely. 

Overflowing of water. As shown in Figure 2, the flowing 

water stagnates at the locally good position A that it has just 

found. However, with the increase of the flow, the water level 

rises, and the water eventually overflows from an appropriate 

local suboptimal point B toward the global optimal point C. 

From the view of the optimization algorithms, such a feature 

of the flowing water reflects its ability to escape from the local 

minimum. 

 

Figure 3. Pictorial representation of drilling water tunnel. 

Drilling water tunnel. When water flows downward to the 

next position, the lower the position is, the greater the kinetic 

energy converted from the gravitational potential energy of the 

water. In an extreme case, if the gravitational potential energy 

is sufficiently high, water can chronically wear away the 

boundary limits to form a water tunnel which directs the 

following water to an even lower position. In practice, people 

often lead water to a lower position by artificially drilling a 

water tunnel. Similarly, as shown in Figure 3, when the 

flowing water stagnates at a locally good position A, we can 

drill a water tunnel to divert its path to another position B 

which is closer to the global optimum position C. The above 

phenomenon provides inspiration for solving COPs by using a 

“drilling water tunnel” to artificially help the searching 

process to jump out of the local minimum and accelerate the 

convergence to the globally optimal solution. 

Evaporation-rain. Competition is common in natural 

systems. Compared to the flowing water with the large water 

volume in the low position, the flowing water with a small 

water volume in the high position evaporates much more 

easily into vapor. Such water vapor usually rains randomly 

under certain conditions and thus some new flowing waters i.e. 

new positions (new positions denote new solutions) are 

generated. From the viewpoint of the optimization algorithms, 

evaporation shows the flowing water system’s feature of 

“survival of the fittest” which eliminates the relatively bad 

solutions. Additionally, rain diversifies the flowing waters 

population (new solutions) and endows the system with the 

capability of searching for global optima. 

Convergence of water flow. In nature, flowing water tends 

to continually select the lower paths locally and may 

continuously converge to larger rivers in lower positions 

during the flow process and eventually find its way into the 

sea. Therefore, the lower paths attract more flowing water and 

correspondingly the water volume in these paths is larger. In 

other words, the paths which have accumulated more water 

lead the directions of the following flowing water. The above 

phenomenon reflects the strong positive feedback mechanism 

of water volume which directs the flowing water to choose the 

lower (optimum) paths toward the lowest position with greater 

probability. 

3.1. Proposed Algorithm 

Inspired by the natural flowing water phenomenon, the 

Flowing Water Algorithm (FWA) for solving COPs is 

proposed. This analogy endows our algorithm with 

advantageous characteristics of strong global search and local 

search capabilities, tabu search, positive feedback and the 

ability to escape from local minima. In FWA, we develop 

artificial water as an optimization tool. Compared to the 

natural flowing water, the artificial water has three additional 

characteristics as described below: 

Countable. Each artificial water is a numerable and discrete 

“point” (its location denotes a solution of COPs) with some 

amount of flow volume which is inversely proportional to the 

altitude of the point. 

Communication abilities. The individuals of the artificial 

waters population can exchange the information about the 

current global optimal point. 

Memory abilities. Each artificial water can remember the 

information about all the points it has flown through including 

the current global optimal point. 

The simple paradigm of the FWA is displayed in Figure 4. 

Without the loss of generality, the detailed design and 

corresponding operation of the FWA are given as follows: 

A. Encoding 

In FWA, each position that the artificial waters flow 

through denotes a single feasible solution. Different COPs 

usually need different encoding patterns. Taking the TSP as an 

example, a feasible solution to the problem is a path by which 

a salesman can travel through all cities without any repetition 

and the encoding pattern is a permutation of the cities set 
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!� � = ���, ��, ⋯ , �
�. 

 

Figure 4. Paradigm of FWA. 

B. Initialization 

We comprehensively adopt the stochastic rule and the 

heuristic rule to generate the flowing artificial waters 

population, i.e., the initial feasible solutions. The stochastic 

method generates a part of the feasible solutions population 

randomly without any rules, thus it guarantees the diversity 

and randomness of the solutions population. Meanwhile, the 

heuristic method generates the rest of the initial solutions 

population according to heuristic rules, guaranteeing the 

goodness of the solutions population. In nature, water always 

flows downward and chooses the shortest possible path during 

its flow. Therefore, the initialization stage adopts the 

drop-altitude rule that the lower and shorter paths are more 

probable to be chosen by the artificial waters. 

C. Local search operator 

The local search capability of FWA enables the artificial 

water to constantly exploit the next better positions in their 

neighborhood. Each artificial water independently starts the 

local search at an initial feasible solution in its corresponding 

neighborhood of solutions obtained by making small changes. 

A better solution is found to replace the current solution. 

Moreover, artificial waters possess a memory ability which 

ensures that the previously visited solutions are not searched 

again. In this work, the local search proceeds by exchanging 

the positions of two codes within one-step (. = 1) distance in 

the encoding of a solution, as illustrated in Figure 5. For 

example, there exists a one-step (. = 1) distance between 

code a and code b in the encoding pattern and a new solution is 

obtained by swapping the positions of the two codes as shown 

in Figure 5. 

 

Figure 5. Pictorial representation of local search by exchanging points positions. 

Generally, the local search operator is combined with the 

overflowing water operator. The detailed illustration of the use 

of the local search operator with the overflowing operation is 

given in Figure 6. 

D. Overflowing operator 

Overflowing operator enables the artificial water to escape 

from the current local optima. It forces the local search to 

proceed by positioning the artificial water at a suboptimum 

solution position. The placement of artificial water at a 

suboptimum solution forces it to escape from the current 

position and proceed to the local search; this is called the 

overflowing operator. In the case of Figure 2, the artificial 

water becomes trapped in the local optima A. Overflowing 

operator forces it to overflow from a suboptimum solution B 

which is obtained by modifying the neighborhood of the 

current solution A. This may deteriorate the objective function 

value but can definitely enable the artificial water to jump out 

of the local minimum and to come closer to the global optima 

C. Specifically, the overflowing water operator has various 

tactics, and here we give one paradigm of the overflowing 

water operator for TSP, which is shown in step 4 of Figure 6. 

E. Drilling water tunnel operator 

To enable the artificial waters escape from the local optima 

and speed up the convergence to the current global optimal 

solution, the FWA employs the drilling water tunnel operator. 

In this work, we propose the following strategy for the TSP 

problem. First, a local optimum search for a better solution is 

performed with a certain number of steps from the current 

position to the current global best position (global optima). 

Specifically, firstly a comparing point in the encoding scheme 

is chosen and the local optimum and global optimum are 

compared, and then the local optimum swaps another code 

with the comparing point to make the comparing point have 

the same value as the global optima. Taking the comparing 
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point in Figure 7 as an example, code b in the encoding 

scheme of the original local optimal solution is different from 

code c in the encoding scheme of the current global optimal 

solution. Thus, in order to approach the current global optimal 

solution, code c and code b in the encoding scheme of the local 

optimal solution are swapped, generating a new solution. 

 

Figure 6. Paradigm of local search operator and overflowing operator. 

 

Figure 7. Pictorial representation of drilling water tunnel operator. 

F. Evaporation-rain operator 

The evaporation-rain operator integrates evaporation and 

rain sub-operations. The inferior artificial waters (solutions) 

are evaporated and transformed into vapor in a certain 

proportion by the artificial evaporation and then the artificial 

rain transforms the vapor completely into the same amount 

of new artificial waters (solutions) as the evaporated 

artificial waters. The new solutions are randomly generated 

to diversify the flowing waters population. Specifically, the 

rain operator generates the new artificial waters according to 

the drop-altitude rule and the water volume rule, as 

illustrated below (see section 3.2 and 3.3). 

3.2. Solution Generation 

The feasible solutions of artificial waters in the 

initialization stage and the artificial rain stage are generated 

by successively choosing a series of fragment paths according 

to the drop-altitude rule and the positive feedback mechanism 

of water volume rule. The shorter paths at the same drop in 

altitude are chosen with higher probability by artificial waters. 

This demonstrates the principle of local optimization. 

Meanwhile, the larger the water volume of a path is, the more 

likely is this path to be selected by the artificial waters, which 

implies the positive feedback mechanism of the water volume 

and stronger cooperation among all flowing artificial waters. 

This demonstrates the global optimization principle. For TSP, 

at the /th iteration, the artificial water . from point	
 selects 

path	�
, '� as the next path to the point	' with the probability 

of 2�%3 �/� given by 

2�%3 �/� = 	4 56789: �;�<=��>5�?89:∑ @56789: �;�<=��>5�?89: A9∈B8C
, if	' ∈ E�3

	0, otherwise 	    (2) 

where E�3  denotes the collection of nodes that the artificial 

water	. can choose to move to in the next step. For TPS, E�3 

consists of all unvisited nodes that are directly connected to 

node	
 in figure	 = �!, "�. ��%K = 1 − ��%∗  is the path distance 

contribution parameter, and ��%∗ = @��% −minM��%NA /@maxM��%N − minM��%NAdenotes the normalized distance ��%  
of path �
, '� . 	R�%K �/� = 6R�%�/� − min @R�%�/�A< /6max @R�%�/�A − min @R�%�/�A<  is the water volume 
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contribution parameter calculated as the normalized value of R�%�/�; and R�%�/� denotes the water volume of path	�
, '� in 

the 	/th  iteration. S  denotes the parameter that control the 

relative importance of the water volume. 

3.3. Principle of Updating Water Volume 

Simulating the natural convergence and evaporation 

regulation of flowing water, the FWA updates the water 

volume after each iteration. Specifically, after the 	/th 

iteration, the water volume R�%�/ + 1�  of path �
, '�  is 

updated as 

R�%�/ + 1� = R�%�/� − UR�%�/� + ∑ ΔR�%3W3,� �/�, ∀�
, '� ∈ Y	 (3) 

where U ∈ �0, 1]	denotes the evaporation ratio of the water 

volume. 

After the iteration, the water volume of the artificial 

water	. is denoted as �3�/� and the corresponding altitude is 

denoted as )3�/�. These are inversely correlated as described 

by �3�/� = [/)3�/�               (4) 

where [  is a constant. After the 	/th  iteration, the 

correspondingly water volume increment  on any 

fragment path �
, '� flowed through by the artificial water	. 

is identical to �3�/�, so ΔR�%3 �/� = �3�/�. 
4. Computational Experiments 

Our FWA is elaborately devised based on the natural 

regulation of flowing water and is characterized by strong 

global and local search capabilities, tabu search, positive 

feedback and the ability to escape from local premature. To 

demonstrate its utility and effectiveness, this section will show 

the examples of its application to two standard TSPs with test 

data sets Eil51 and CH130. 

The standard TSP Eil51 has about fifty-one cities and to 

date, the best solution to this problem is known as 426. In our 

experiment, the parameters for this problem are set as below: 

the number of flowing artificial waters population � = 100; 

the number of maximum iterations E!W?\ = 100 ; the 

evaporation proportion of the waters population $]�2 = 0.8; 

the probability of drilling water tunnels ��]$ = 0.2 ; the 

weight of water volume S = 0.5 ; the evaporation ratio of 

water volume U = 0.1. 

We ran FWA twenty times using the parameters specified 

above, and the best result is achieved as 428.9816 which is 

very close to the known best value of 426. Correspondingly, 

the best tour is (44, 17, 37, 15, 45, 33, 39, 10, 49, 5, 38, 11, 

32, 1, 22, 2, 16, 50, 9, 30, 34, 21, 29, 20, 35, 36, 3, 28, 31, 8, 

26, 7, 43, 24, 23, 48, 6, 27, 51, 46, 12, 47, 4, 18, 14, 25, 13, 

41, 40, 19, 42), where the numbers represent the codes of the 

cities and their sequence reflects the travelling schedule. 

This tour can be observed in Figure 8 which gives the 

locations of all cities. Figure 9 illustrates the processes of the 

iterations and the lower line and the upper line respectively 

stand for the best tour length value and the average tour 

length value. Compared to the results obtained by SA, TS, 

GAs, ACO and PSO methods reported in the literature [17] 

that ran for the same times with the same number of 

maximum iterations as that in our experiment, it can be 

obviously seen from Table 1 that the results obtained by 

FWA are much closer to the already-known best solution to 

this problem than those of the other meta-heuristics 

algorithms. Furthermore, the FWA achieves these results 

using many fewer iterations. 

Table 1. Comparisons of various meta- heuristic algorithms on eil51. 

algorithm Best optima Worst optima Average iterations 

AA 450.9815 455.8169 123 

GA 467.9805 490.1634 259 

SA 439.3299 444.6047 172 

TS 491.8765 544.4865 277 

PSO 456.5339 487.7408 264 

FWA 428.9816 438.5315 46 

To evaluate the effectiveness of FWA in solving 

large-scale combinatorial optimization problems, this paper 

uses the standard TSP test data CH130 with approximately 

130 cities which has the exact solution of 6110. In our 

experiment, the parameters for this problem are set as 

follows: the number of flowing waters population	� = 100; 

the number of maximum iterations E!W?\ = 500 ; the 

evaporation proportion of the waters population $]�2 =0.8; the probability of drilling water tunnels ��]$ = 0.2; 

the weight of water volume S = 0.5; the evaporation ratio 

of water volume	U = 0.1. 

We ran FWA twenty times using the parameters above, 

obtaining the best result of 6188.9484 which is very close to 

the exact solution of 6110. Correspondingly, the best tour is 

(39, 71, 50, 130, 50, 2, 118, 80, 46, 20, 93, 37, 22, 47, 40, 

23, 122, 55, 60, 51, 42, 44, 4, 35, 54, 17, 34, 31, 27, 19, 100, 

116, 24, 15, 29, 95, 79, 12, 87, 81, 103, 77, 94, 89, 110, 98, 

68, 48, 25, 113, 32, 36, 84, 119, 111, 123, 101, 82, 57, 9, 56, 

65, 52, 75, 74, 99, 73, 92, 38, 106, 58, 49, 53, 120, 72, 91, 6, 

102, 10, 14, 96, 67, 13, 33, 21, 18, 108, 8, 126, 114, 3, 83, 

76, 109, 61, 129, 124, 64, 69, 86, 88, 26, 97, 70, 63, 43, 104, 

107, 127, 1, 41), where the number represent the codes of the 

cities and their sequence reflects the travelling schedules. 

This tour can be observed in Figure 10 which gives the 

locations of all cities. Figure 11 illustrates the processes of 

iterations and the lower line and the upper line, respectively, 

represent the best tour length value and the average tour 

length value. 

Compared to the results obtained using the SA, TS, GAs, 

ACO and PSO methods as reported in the literature [17], 

where the same times with the same number of maximum 

iterations were use as in our experiment, the results obtained 

by the FWA are much closer to the exact solution of 6110 than 

those obtained by the other meta-heuristics algorithms as 

shown in Table 2. Additionally, the FWA requires relatively 

fewer iterations. 

tht

)(twk
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Figure 8. The optimal travelling path for Eil51. 

 

Figure 9. Iteration process of solving Eil51. 

 

Figure 10. The optimal travelling path for CH130. 

 

Figure 11. Iteration process of solving CH130. 

Table 2. Comparisons of various meta- heuristic algorithms for CH130. 

algorithm Best optima Worst optima Average iterations 

AA 6417.9875 6430.9665 151 

GA 7118.2572 7322.3878 432 

SA 6350.4431 6471.0394 266 

TS 10516.1795 12258.2495 354 

PSO 8134.7704 8234.6089 407 

FWA 6188.9484 6258.2782 346 

5. Conclusion 

This paper proposes the novel meta-heuristic algorithm, 

FWA, inspired by the natural phenomenon of flowing water, 

for the solution of COPs. FWA integrates four operators 

including the local search operator, overflowing operator, 

drilling water tunnel operator and evaporation-rain operator. It 

displays six search properties, including (i) combination of 

local search and population search, (ii) feature of tabu search 

strategy because water never flows inversely, (iii) ability of 

escaping from local convergence by using the overflowing 

water operator, (iv) acceleration of the convergence speed to 

the global optimum by using the drilling water tunnel operator; 

(v) ability to speed up the search for global optimal solutions 

with the evaporation-rain operator, which embodies the idea 

of “survival of the fittest” and diversifies the flowing waters 

population; (vi) allowing water volume positive feedback for a 

more efficient and effective search by the synergy of artificial 

waters. We adopt FWA for solving TSP and test its efficiency 

using two representative TSP cases. The results show that 

FWA outperforms the benchmark meta-heuristic algorithms 

with respect to the quality of final solutions, number of 

iterations and convergence speed. 

The research on the FWA in this paper is currently only in 

the preliminary stage, and many further studies should be 

carried out for the characteristics of this algorithm in the future, 

such as the astringency, theoretical basis, the sensitivity and 

the impact that the parameters have on the optimization. Given 

that the FWA displays its remarkable superiority in 

optimization of combinatorial optimization problems, it can 
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be anticipated that this algorithm possesses broad prospects of 

application, requiring ongoing explorations and in-depth 

investigations in future studies. 
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