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Abstract: Medical computer-aided diagnosis systems are essential applications that help doctors speed up, standardize, and 

improve disease prediction quality. Nevertheless, it is hard to implement a high-accuracy diagnosis system due to complex 

medical data structures that are hard to interpret even by an experienced radiologist, lack of the labeled data, and the 

high-resolution three-dimensional nature of the data. Meanwhile, modern deep learning methods achieved a significant 

breakthrough in various computer vision tasks. Thus, the same methods began to gain popularity in the community that works on 

the computer-aided systems implementation. Most modern diagnosis systems work with three-dimensional medical images that 

cannot be processed by traditional two-dimensional convolutional neural networks to get high enough prediction results. Hence, 

medical research introduced new methods that use three-dimensional neural networks to work with medical images. Even though 

these networks are usually an adapted version of state-of-the-art two-dimensional networks, they still have their specifics and 

modifications that help achieve human-level accuracy and should be considered separately. This article overviews the 

three-dimensional convolutional neural networks and how they are different from their two-dimensional versions. Moreover, the 

article examines the most influenced systems that achieve human-level accuracy in predicting the specific disease. The networks 

discussed in the perspective of two basic tasks: segmentation and classification. That is because the simple end-to-end 

classification neural networks usually do not work well on the available amount of data in the medical domain. 
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1. Introduction 

Lately, computer vision algorithms achieved a significant 

breakthrough through extensively applying deep learning 

approaches [1]. That led to the popularization and 

dissemination of deep learning methods in scientific and 

engineering communities. The basis of the breakthrough was 

using deep convolutional neural networks (CNN) that consist 

of many layers [2]. The wide use of CNN for optical 

information analysis attracted the attention of scientists who 

mainly work on creating medical applications that analyze 

medical images to predict patient diagnose in an automated 

way [3]. Applying deep learning methods to medical imaging 

allows achieving high-quality results, that in some tasks, rival 

the performance of an average human radiologist [4-7]. 

Analyzing medical images and data, however, remains quite a 

challenging task. There are several reasons for that: medical 

data contain quite complex structures that even humans find 

hard to interpret [8]; available datasets are generally small and 

have three-dimensional natures. In addition, medical data is 

hard to collect and annotate since it sometimes requires 

painful medical procedures and operates with sensitive private 

data that should not be publicly available or associated with 

any person. Thus, the building of more data-efficient and 

secure diagnosis systems is essential to maintain medical 

application prediction quality progress. Most of the medical 

data are three-dimensional images acquired based on 

computed tomography (CT) [9], magnetic resonance imaging 
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(MRI) [10], endoscopy video data [5], and so on. Hence, we 

believe that three-dimensional convolutional neural networks 

are among the deep learning models that can be used to 

improve current medical computer-aided diagnosis systems. 

In the scope of this article, we will consider how 

three-dimensional convolutional neural networks can be 

utilized to analyze medical images and how they are already 

used to achieve human-level performance in disease prediction. 

2. Convolutional Neural Networks 

Convolutional neural networks (CNN) are usually defined 

as special kind neural networks that use mathematical 

convolution operation in at least one of the neural network 

layers. The first successful CNN was introduced in 1998 by 

Yann LeCun et al. [2] for the handwritten digits recognition 

task. Proposed architecture LeNet was able to work with the 

image represented as two-dimensional data and use 

two-dimensional spatial information to achieve 

state-of-the-art results for that time. 

Convolutional neural networks were created with several 

architectural ideas in mind, such as local receptive fields that 

allows sparse interaction between layer activations; parameter 

sharing that allows reuse of neural network weights across 

different image locations; and spatial sub-sampling that allows 

networks to be invariant to small changes in the input data [2]. 

All those properties are incorporated into the structure of the 

neural network, which, in typical form, consists of several 

convolutional layers and a fully connected layer (multi-layer 

perceptron) at the end. The typical convolutional layer consists 

of three essential components: convolution operation, 

activation function, and a pooling layer, as shown in figure 1. 

 

Figure 1. Typical layer of the classic convolutional network. In modern 

network architectures, pooling stage might be omitted in some layers. 

For the two-dimensional data, such as image, convolution 

operation formula for image I and two-dimensional kernel K 

in a discrete form can be written as: 
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Usually, modern convolutional neural networks are built 

with machine-learning frameworks such as TensorFlow or 

Pytorch. These frameworks implement convolution operation 

as a cross-correlation function that does almost the same 

mathematical operations, except kernel transposition at the 

end that flips the kernel [11, 12]. That is because kernel 

flipping is not usually necessary for the neural network, and 

without kernel flipping, convolution operation works faster 

[13]. Thus, for most modern convolutional neural network 

implementations convolution operation can be written as 

cross-correlation: 
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There are several more differences between mathematical 

convolution operation and convolution operation used in the 

neural networks. First, neural network convolution operation 

supports “padding” and “stride” parameters that give a 

possibility to trick sliding windows step and the output size of 

the matrix. The “padding” parameter allows padding input 

image with zero values. The stride parameter specifies the 

window step size of convolution operation. In addition, 

convolution operation in neural networks can have multiple 

channels, which means several kernels can be applied to the 

same input in parallel. In case of input data contains more than 

one channel (RGB image or network intermediate layer 

output), convolution operation calculated as [13]: 
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where I is an input image that represents as a 3D array that 

consists of the Ii, j, k elements that represent value in channel I, 

in the row j, and column k; K is a kernel that represented as a 

4D array that consists of Ki, j, k, l elements giving weights 

between a unit in channel I of the output and a unit in the 

channel j of the input, with an offset of k rows and l columns 

between the output and input units. 

As we can see from the formula, if input data contains 

multiple channels, then a two-dimensional convolution will be 

the sum of all channel values multiplied by corresponding 

kernel values. Therefore, two-dimensional convolution 

operation cannot describe the spatial relationships in all three 

directions since it moves only in two directions by width and 

height. It causes the neural network to lose spatial information 

in the depth direction (see figure 2a). For the 2D color input 

images, it is not a problem since the neural network works 

with two-dimensional data. However, for the medical imaging 

problem, we often must work with three-dimensional data, 

and thus, they should be described and approximated in three 

directions. To make this possible, a three-dimensional 

convolution operation can be used. 

Three-dimensional convolution operation has a filter depth 

dimension smaller than the input data depth, and thus, sliding 

window moves in all three directions as a cube (see figure 2b). 

Formally, three-dimensional convolution in a position x, y, z 

at i-th channel can be written as 
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where p, q, r are the coordinates of the three-dimensional 

kernel of convolution operation; K is the kernel; I is three- 

dimensional data on " channel. 

The three-dimensional convolution behaves like the 
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two-dimensional convolution operation and applies similar 

architectural concepts to the input data, such as local receptive 

fields and shared weights. The only difference is the fact that 

three-dimensional convolution operation is applied to the cube 

and uses a smaller cube as a kernel; meanwhile, 

two-dimensional convolution operation just sums up all the 

values in the third dimension. The visual differences between 

them are shown in figure 2. 

 

Figure 2. These two images show the differences between 2D and 3D 

convolutions. Left side image shows how 2D convolution works with 

three-dimensional data. The right-side image shows that the 3D convolution 

applies cubic kernel to the three-dimensional data. 

For the first time, a three-dimensional convolution 

operation has been applied to human action recognition task in 

the video [14]. It was successful and outperformed other 

models that use recurrent neural networks to work with 

information from the temporal dimension in the video. The 

same approach can be applied to endoscopy video analysis. 

The second component of the convolutional network layer 

is an activation function. This stage is used to add the 

nonlinearity to the layer to detect patterns on the input data. 

The most popular activation function in convolutional neural 

networks is the rectified linear unit [15]. 

The last stage of the convolutional neural network layer is a 

pooling function. In the context of convolutional neural 

networks, pooling function is the function that replaces output 

from the activation stage based on the summary statistic of the 

nearby values in the output. For example, there can be a 

max-pooling function that calculates maximum value in the 

input data within a rectangular neighborhood [16]. Also, there 

are plenty of other popular pooling functions that are used in 

convolutional neural networks such as the average pooling or L
2
 

norm of a rectangular neighborhood [17]. In all types of pooling, 

one of the core ideas of the pooling layer is to reduce the size of 

the data and improve feature representation invariance to the 

small variation in the input. However, the downside of this is 

that the pooling stage loses lots of useful information that might 

be useful to improve the final accuracy of the neural network. 

That is the reason why modern architectures do not use a 

pooling function on each convolutional layer. 

In three-dimensional convolution neural networks, the 

subsampling stage (pooling) is applied in the same manner as 

in the two-dimensional convolutional neural networks, except 

that it works with three dimensions. It allows network to 

operate on cubes instead of squares. 

3D convolution, activation functions and 3D pooling, as 

described above, allow us to build a three-dimensional 

convolutional neural network that can be applied to medical 

images. In the next section, we will discuss how such 

three-dimensional convolutional neural networks can be used 

to build disease detection systems. 

3. Three-dimensional Convolutional 

Neural Network Usage 

In this section, we consider how three-dimensional neural 

networks can help build medical computer-aided diagnosis 

systems. First, we will describe the typical medical data that 

can be analyzed by three-dimensional neural networks. Then, 

describe existing systems and how they use 3D CNN to 

improve the results of different tasks. 

3.1. Typical Medical Images and Computer-aided Diagnosis 

Systems 

Computer-aided diagnosis systems are the systems that 

assist doctors with medical image interpretation to speed up 

and improve the quality of patient disease diagnosis. Usually, 

x-ray images, computed tomography (CT) [9], magnetic 

resonance imaging (MRI) [10], or endoscopy video data [18] 

can be used. All these images aim to visualize human internal 

organ structures, so that the doctors can diagnose patient 

disease and prescribe related treatments. 

There are several types of computer-aided diagnosis 

systems that can be used in hospitals [19]: 

1) Systems that detect and label potentially suspicious 

areas on a medical image. These areas should show the 

anomaly that causes a patient’s disease. In this case, the 

main task is to reduce the load on the radiologist via 

automated detection and description of related areas. 

2) Computer-aided systems that diagnose patient disease 

using available medical images. In the ideal case, the 

system should return a correct diagnosis without 

involving a radiologist. In practice, diagnosis systems 

still require validation from the experts, so it should also 

include information about the location of abnormal areas. 

The actual implementation of an automated diagnostic 

system heavily depends on the input data that is used for 

making diagnoses because it might require different 

preprocessing steps. 3D convolutional neural networks are 

usually used for CT scans, MRI, and endoscopy video data. 

For example, modern medicine practice recommends using 

a low-dose CT scan of the human chest to investigate lung 

cancer presence [20]. CT scan represents a three-dimensional 

image of the patient’s lungs obtained by the X-ray that 

gradually passes through the human body’s tissue, layer by 

layer, in different directions, angles, and positions. Combined 

layers of such images form a 3D image of the patient’s chest 

that can be used as an input to the 3D convolutional neural 

network. The same can be done for other body parts. For 

each distinct disease, a separate dataset should be created, 

and specialized network trained. 

Magnetic resonance imaging is another type of the 

layer-by-layer sequence scan that uses strong magnetic fields 
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and radio waves to generate image of the organ’s internal 

representation in the human body. It enables getting the same 

slice-by-slice image of the required human part and combining 

all of them to get a 3D image that can be analyzed. 

3.2. Building Medical Applications that Analyze Medical 

Images 

In the simple case, to build the computer-aided diagnosis 

system that works with a CT scan or MRI, we can reuse a 

simple 3D convolutional neural network that gets 3D images 

as input and makes a prediction as output. For example, it is 

possible to reuse convolutional neural networks like C3D 

[21], 3D ResNet [22], or 3D DenseNet [23]. 3D ResNet and 

3D DenseNet neural networks are an adapted version of the 

ResNet and DenseNet that are used for two-dimensional 

image classification and were initially used on the ImageNet 

data. An example of the 3D DenseNet architecture that can 

be used for patient disease prediction is shown in figure 3. 

 

Figure 3. An example of the 3D DenseNet for the patient disease prediction based on the three-dimensional medical data like CT scans or MRIs. 

In addition, any modern convolutional neural network 

architecture, that shows state-of-the-art results on the 

ImageNet dataset, can be adapted to the 3D data by replacing 

two-dimensional convolution and pooling operations with its 

three-dimensional version. However, the downside of the 

approach is lack of the ability to use transfer learning to 

speed up the neural network training. 

In practice, using a 3D convolutional neural network for 

classification does not work well since network training 

requires a vast amount of the data that is a rare case in 

medical domain. For example, such neural network training 

results show accuracy only of 70%-72% for the lung cancer 

detection problem [24]. For the modern computer-aided 

diagnosis systems, this is not enough. 

To improve the diagnosis system’s prediction results, the 

diagnosis process can be divided into two smaller tasks: 

segmentation and classification. In the segmentation task, the 

neural network should find any possible abnormal lesion 

region in the medical image. Then, the classification step 

model should consume the abnormal region at the 

segmentation stage and predict the presence of the disease in 

the patient [4, 6]. Let us consider each task in more detail. 

3.2.1. Segmentation Task 

The main goal of the segmentation task is to assign labels 

to each image pixel so that each region and object on the 

image becomes associated with a corresponding label. The 

typical convolutional neural network architecture that is used 

for analyzing 2D medical imaging is U-Net [25]. U-Net is a 

fully convolutional neural network that consists of two parts: 

a contracting path that follows typical convolutional network 

architecture described in the previous section and an 

expansive path that does upsampling of the feature maps 

from the contractive path. The peculiarity of this architecture 

is the use of feature maps from corresponding contractive 

path intermediate layer in the corresponding intermediate 

layer of the expansive path. This technique helps solve the 

problem of losing information when applying convolution 

operation due to the decreased size of the input data. U-Net 

showed state-of-the-art results on the ISBI cell tracking 

challenge and high accuracy, even on the small datasets. 

Soon, this architecture was used and adapted to the different 

tasks in the medical domain [26, 27]. 

The U-Net architecture was adapted to the 

three-dimensional medical images as a 3D U-Net [28-30] or 

V-Net [31] network. To adapt U-Net to the three-dimensional 

data, all convolutional operations were replaced by 

three-dimensional convolutions. In the expansive path, all 

upsampling operations were replaced by three-dimensional 

upsampling operations. That solution works quite well and 

allows for high results on different tasks. For example, work 

[31] reports an average dice coefficient of 0.869 on prostate 

MRI segmentation task. Likewise, applying 

three-dimensional U-Net architecture to the brain tumor 

segmentation problem [32] allows achieving a dice 

coefficient of 0.858. In the last years, this fully convolutional 

network architecture is still popular; however, it is applied 

with modifications that allow building more deep 

architecture [26]. 

There are several other convolutional network architectures 

that can help with region detection in the medical images; 

however, they were initially used for object detection outside 

the medical domain. First, it is the Faster R-CNN [33] network 

that was a winner of COCO 2015 and ILSVRC 2015 object 

detection competitions. This detector basically consists of two 

stages. In the first stage, the Region Proposal Network (RPN) 

generates a possible object bounding box. Then, in the second 

stage, another neural network extracts feature maps from each 

generated possible object bounding box and performs 

regression and classification. As a result, Faster R-CNN 

returns the objects bounding box and labels them as associated 

with corresponding supported objects. 

Faster RCNN architecture can be adapted to the 

three-dimensional data by replacing two-dimensional 

convolution operations with three-dimensional versions. For 

example, 3D Faster RCNN detectors were used in the work 

[34] for multi-organ segmentation in head and neck on MRI 

images, and were able to achieve a dice coefficient of 0.89 in 

the best case. 
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Finally, for the instance segmentation of the regions in 

the images can be used the Mask RCNN [35]. It is a 

two-stage convolutional neural network that modifies 

Faster RCNN architecture by adding binary mask output 

for each generated possible object bounding boxes in the 

second stage. This approach can be adapted to the 

three-dimensional medical data in the same way as Faster 

RCNN. For example, 3D Mask RCNN was used for the 

kidney and tumor segmentation tasks [36], and pulmonary 

nodule detection problems [37]. There were dice similarity 

coefficients of 0.96 and 0.80 reported for each task, 

respectively. In addition, 3D Mask RCNN was an 

important part of the four-stage neural network for the 

lung cancer screening system [4] that achieved the 

accuracy level of the average radiologist. 

3.2.2. Classification Task 

Classification of the diseases based on the medical images 

using the deep learning approach gained popularity lately. 

Usually, classification tasks are used in combination with a 

segmentation task, where the abnormal regions for 

classification are obtained by the segmentation task [4, 6]. 

This approach gives the radiologist an advantage of more 

transparent work of computer-aided diagnosis system 

because it gives information about why the system predicts 

disease. In addition, doing classification based on the 

segmented regions gives a possibility to reduce memory 

consumption and usage of computational resources on the 

classification stage. 

The classification works with three-dimensional regions 

(cubes) that were segmented on the segmentation stage. 

Indeed, the classification model should reason about disease 

presence using some portions of the segmented regions. It 

can be implemented by classifying all generated regions with 

the classification model and then combining results with the 

multi-instance learning assumption. This assumption says 

that if there exists an instance that is positive, the whole bag 

is positive. The whole bag is negative if all instances are 

negative [38]. Thus, the classification network should be run 

on all segmented regions, and if some of them give a high 

probability of the disease, the system should conclude 

positively about disease presence. 

The three-dimensional segmented regions usually 

processed by the three-dimensional classification neural 

networks. These networks typically represent 

two-dimensional neural networks, initially created for 

ImageNet, with adaptation to the three-dimensional data. For 

example, it might be adapted architectures like ResNet [39] 

or DenseNet [40]. As with the segmentation task, adaptation 

to three-dimensional data usually can be made by replacing 

existing convolution and pooling operations with 

three-dimensional counterparts. Such networks help achieve 

high results in different domains [41, 42]. For example, in the 

lung cancer screening application, combining segmentation 

and classification task gives an accuracy of 95% [4]. 

There are research papers that show results using the 3D 

CNN for classification only. However, as discussed earlier, 

that method does not show good results and requires a vast 

amount of data to train the network [24, 43]. 

4. Conclusion 

Most modern medical computer-aided diagnosis systems 

that work with three-dimensional medical images or video data 

use 3D convolutional neural networks under the hood. Usually, 

3D CNN architecture mimics the known two-dimensional 

CNNs; however, they replace all the convolution and pooling 

operations with their three-dimensional counterparts. Moreover, 

to achieve human-level accuracy in disease prediction, the 

system splits prediction into the smaller tasks of segmentation 

and classification. In the segmentation stage, the network 

should find three-dimensional regions that contain probable 

abnormal regions; meanwhile, classification three-dimensional 

neural networks use segmentation outputs and multi-instance 

learning assumption to evaluate the probability of disease in 

the image. As shown in the paper, each step allows the 

building of diagnosis systems with a human-level accuracy in 

many medical domains. 

Nevertheless, pipelines with three-dimensional (3D) CNNs 

have their drawbacks. First, 3D convolution operation 

requires much more computation and memory resources in 

comparison to the two-dimensional counterpart. In fact, 3D 

convolution operation resource requirements grow cubically 

with increasing input size limiting the input medical image 

size due to GPU memory constraints. 

Second, there are no pre-trained 3D convolutional neural 

networks that can be used for transfer learning. Therefore, the 

networks should be trained from scratch. However, this issue 

can be easily solved as far as research goes, in case the 

solutions will be publicly available. 

Third, existing state-of-the-art pipelines still require a vast 

amount of data to achieve high disease prediction results and 

require much data-labeling work. This is a problem for the 

medical domain since, usually, not much data are available, 

and radiologists’ work is expensive. Therefore, modern 

systems should still consider improving network-training 

efficiency. 

Finally, modern systems lack the interpretability that might 

cause diffidence on the system by radiologists. It is a 

common problem for all the neural networks since they come 

as a black-box model that improves its work via consumed 

data on the training stage. Therefore, tools and methods that 

help with neural network system interpretability should still 

be created. Indeed, it will help medical applications and 

make it possible to build trust between humans and 

automated systems. 
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