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Abstract: The aim of the present paper is to check - or better to confirm - the mathematical validity of chemical reaction rate, 

faced as a set of differential equations. Firstly one - way elementary reactions are considered, in the most general case. 

Secondly the same thing is done with two-way (opposing) elementary reactions. At this stage, we show that the two – way 

reaction, as we mean it, is compatible with the reduction of the total Gibbs energy as expected in every natural process. As an 

example of a two way elementary reaction of a completely solvable problem we give the hydrolysis of sucrose to glucose and 

fructose, where the “inversion” of sucrose is examined not only with the initial linear reaction of “Wilhelmy” (1850), but also 

with the two way nonlinear reaction introduced. Finally the validity of the mathematical model is checked for more complex 

cases such as the Michaelis-Menten mechanism or reactions in solution, where it is found that the two cases, apparently are 

four – dimensional while in reality are two – dimensional (after the “subtraction” of the constraints of “motion”) and naturally 

cannot exhibit chaotic behavior. In all cases the treatment is not one-hundred-percent mathematically austere but it has also 

arbitrary although reasonable hypotheses. 
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1. Introduction 

For closed chemical systems of reactants and products 

when they are kept at constant temperature and/or constant 

pressure, there is experimental evidence that their 

components tend to constant values as time goes to infinity. 

[1-4]. Once this is observed, at least for simple systems of 

reactions, one faces the challenge to try to prove the above 

fact from the general equations that can be written for the 

reactions in question. The idea is that this behavior is 

inherent in the equations and the way they are written. 

However, as we shall see, one can find the number of 

degrees of freedom (i.e., the number of independent 

functions describing the system) that a system of reactions, or 

a single reaction is associated with, and when this is n = 1 or 

n = 2, it is straightforward to prove the above property (i.e., 

that limt→∞ ci(t) = ci∞ = const. ≥ 0). This asymptotic behavior 

is also supported by the solutions of the chemical reaction 

rate differential equations, either real or hypothetical, that can 

be found in various systems. [1-4]. 

Moreover, the constants ci∞ are non-negative and, as 

expected, this can be proved, by proving that ci(t) ≥ 0 for 

every t ≥ 0 from the system of differential equations, 

provided that ci(0) ≥ 0. When the number of degrees of 

freedom is n ≥ 3 (i.e., an autonomous system of three 

differential equations), the dynamics may not necessarily 

lead, in principle, to constant asymptotic behavior of the 

concentrations as t → +∞, since now oscillations of the 

reactants and/or products as well as possible chaotic behavior 

may appear. 

However, we believe that for closed systems, even in the 

case n ≥ 3, the asymptotic behavior tends to constant values, 

although we do not have the relevant mathematical ma- 

chinery to prove this by the set of the differential equations 

of the chemical reactions. 

An example of a completely solvable problem of a two-
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way elementary reaction is the hydrolysis of sucrose forming 

glucose and fructose: 

[S] + H2O → [G] + [F].                    (1) 

This reaction which can take place in an enzyme or acid 

environment is usually taken to be an one-way reaction starting 

from sucrose and is detected by using standard techniques of 

polarimentry, since all the species S, G, and F, are optically 

active with sucrose and glucose being dextrarotatory and 

fructose levarotatory. [3, 4]. The above two-way elementary 

reaction, can be shown that it is actually one-way elementary 

reaction when the initial concentration of sucrose is small 

enough. However, for larger values of sucrose initial 

concentration, the inverse reaction probably becomes 

important too, and it has to be taken into account. In this case a 

“method” is given for the calculation of both rate constants k1 

and k−1. Finally, the point of the inversion of sucrose is 

examined and it is found that for large initial concentration of 

sucrose the phenomenon may not hold, as it is expected. 

2. One-way Elementary Reactions 

Suppose that we have the one-way elementary reaction 

αΑ + βΒ 
�→ γΓ + δ∆ (R1)                   (2) 

where [A] = a, [B] = b, [Γ] = c, [∆] = d, and α, β, γ, δ are 

integers whose greatest common divisor is 1. Defining the 

molecularity of (R1) as the number of molecules coming 

together to give a succesfull conversion to products then this is 

α + β. Furthermore, if we suppose that the order of the reaction 

is p with respect to [A] and q with respect to [B], then we have 

the following set of differential equations describing the 

formation of products and the consumption of reactants 

− �
�

��
�� =	− �

�
��
�� =	 �
 ��

�� =	 �� ��
�� = �a���        (3) 

Obviously the overall order is p + q. We also suppose that p ≥ 

1 and q ≥ 1 or if p = 0 then q ≥ 1 and vice versa, an assumption 

the importance of which will become clear later. The quantities a, 

b, c, d are functions of time while α, β, γ, δ and k, p, q, are 

parameters of the system of differential equations (3). 

Supposing that the concentration functions a(t), b(t), c(t), 

d(t) are continuous (or even more, differentiable) functions of 

time, we expect the solutions of the system of Eqs. (3) to 

have the following properties 

(1) a(t), b(t), c(t), d(t) to be always positive definite for 

every t ≥ 0. 

(2) Starting with a0 > 0, b0 > 0, c0 = 0, d0 = 0, where a0 ≡ 

a(t = 0), etc., a and b will be decreasing and c, d 

increasing functions of time. 

(3) limt→+∞ a(t) = a∞ for a(t), b(t), c(t), d(t) to reach 

constant values as t → +∞. More precisely we expect 

that if 
��
�  < 

�
� then limt→+∞ a(t) = a∞ = 0 and limt→+∞ b(t)  

= b∞ = b0 - 
�
� a0 or the reverse. 

In what follows we will try to prove properties P1, P2 and 

P3 from the system of differential equations (3). The 

“generalization” to other cases, for instance when only one 

reactant is present, or more than two, or something similar 

for the products, follows immediately following the same 

steps. 

The relationship − �
�

��
�� =	− �

�
��
��  when integrated gives 

b = 
�
� (a - a0) + b0,                              (4) 

where a0 = a(t = 0) and b0 = b(t = 0). Eq. (3) can be written in 

a similar way as 

b = 
�
� a + σ0,                                 (5) 

where 

σ0 = b0 - 
�
� a0.                              (6) 

Now without loss of generality we can assume that 

��
�  < 

��
� ,                                     (7) 

From which we have 

σ0 > 0.                                      (8) 

Substituting Eqs. (5) and (6) into Eq. (3), we get 

��
�� = - ��a�(σ� 	+ 		�� 	a)�,                     (9) 

where we recall that p ≥ 1 and q ≥ 1. We will firstly prove that 

if a0 > 0 then a(t) > 0 for every t ≥ 0. Suppose that there is a tc ϵ 

(0, +∞) such that a(tc) = ac = 0 (Figure 1). Next we consider the 

Taylor expansion of the solution a(t) around tc as follows 

assuming that the function is analytic with respect to time: 

a(t) = a(tc) + (t − tc)a� (tc) + · · · + 
�
�! (t	 −  !)�"� 	(�) (tc) + · · ·.                                          (10) 

We further suppose that the radius of convergence r of the 

series is greater than tc: r > tc. Using equation (9) and its 

derivatives and then calculating them at tc we have: 

a(tc) = a�  (tc) = a# (tc) = · · · = a(n)(tc) = 0.         (11) 

This implies that a(t) = 0 inside the radius of convergence, 

which in turn is a contradiction since a(0) = a0 > 0 and a(t) 

has been considered to be continuous. 

The above result means that the solution a(t) cannot have 

roots (like at tc) and since the solution is continuous (and 

since a0 > 0) it must be always positive definite (a(t) > 0 for 

all times). Secondly we will prove that a(t) is a decreasing 

function of its argument (time): 

From Eq. (9) and the fact that a(t) > 0 as well as that σ0 > 0, 

we have that 
��
�� < 0 which 
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Figure 1. A hypothetical curve, for the time evolution of a reactant “a”, 

which reaches the value zero at a finite time tc (Impossible!). 

means exactly that a(t) is a decreasing function of time. From 

a well-known theorem of analysis we know that if a function 

is bounded from below and decreasing then it converges to a 

constant value. Finally we will prove that if 
��
�  < 

��
�  then 

limt→+∞ a(t) = 0. Equation (9) can be written as follows: 

��
�� = - ��a�b� .                              (12) 

For t → +∞ we have that 

limt→+∞ a(t) = a+∞ = constant 

limt→+∞ b(t) = b+∞ = constant 

limt→+∞ (
��
��) = 0. 

Substituting these equations into Eq. (12) we have 

a%�  b%�  = 0 ⇒ a∞ = 0 or b∞ = 0.                  (13) 

 

Figure 2. The function f(x) which displays a single root xr (f(xr) = 0) with 

negative slope f ′(xr) < 0. 

From Eqs. (4)-(6) we have 

b∞ = 
�
� a∞ + b0 - 

�
' a0                           (14) 

If we suppose a∞ = 0 then b∞ = b0− 
�
' a0 > 0, while if we 

suppose b∞ = 0 then a∞ = a0 – 
�
(  b0 < 0, which is in 

contradiction since a(t) > 0 for every t ≥ 0. Therefore, if 
)�
�  < 

��
�  ⇒ a∞= 0 and b∞ = b0− 

�
' a0 > 0. 

3. Two-Way (Opposing) Elementary 

Reactions 

Before we begin the presentation of this subject we prove 

first the following Lemma: 

Lemma: 

Suppose the initial value problem *�  = f(x), x ∈ R and x(t 

= 0) = x0. Suppose further that the function f(x) has a single 

root xr for which f ′(xr) < 0. Then limt→+∞ x(t) = xr (Figure 2). 

Proof: Let us suppose that a probable scenario for the 

solution x(t) is the following (Figure 3) 

 

Figure 3. A hypothetical curve x(t) for the time evolution of the differential 

equation *�  = f(x), x(0) = x0> xr > 0. The scenario displayed in the figure is 
impossible. 

We will prove that this scenario is impossible, i.e., we will 

prove, the most rigorously we can, there is no tr such that 

x(tr) = xr. Let us take the Taylor expansion of the solution 

x(t) around tr, that is 

x(t) = x(tr) + (t − tr)*�  (tr) + 
�
+ 	x#(tr)( 	 − 	 -)+ + …,   (15) 

and the only assumption made is that such an expansion 

exists and the radius of convergence r1 is r1 > tr. Since the 

differential equation is *�  = f(x), we have 

*�(tr) = f(x(tr)) = f(xr) = 0. 

Furthermore, *#  = f ′(x)	*�= f(x)f ′(x), which implies that *#  
(tr) = f(xr)f ′(xr) = 0. Provided that the derivatives of the 

function f(x) are not infinite at x = xr, we have finally 

*(�)(tr) = 0, for every n ≥ 1.                     (16) 

Equations (15) and (16) can be combined to yield x(t) = xr 

for every t ≥ 0, which is in contradiction since x(0) = x0 = xr 

in the general case and x(t) is a continuous function of t. In 

other words: Let us suppose that x0 > xr. x(t) cannot intersect 

x = xr and this means that it is bounded from below since it 

must be connected smoothly with the initial value x(0) = x0 > 

xr (requirement of continuity). Similar results can be obtained 

when x0 < xr, at this time the solution is bounded from above. 

Now we return to the case x0 > xr. Given that f(xr) = 0 and 

f ′(xr) < 0 (since xr is a single root), we have that f(x) > 0 

when x < xr and f(x) < 0 when x > xr. We have shown above 

that when x0 > xr we are in the region x > xr which by itself 

implies that x˙ = f(x) < 0 and this in turn means that x(t) is a 

decreasing function of time. 

So totally we have x(t) bounded from below and decreasing 

(x0 > xr). By a well-known theorem of analysis this implies 

that the function tends to a constant value x∞ for which x0 ≥ x∞ 

≥ xr. Furthermore, we have *�  = f(x), and since limt→∞ [x(t)] = 

x∞= constant ⇒ limt→∞[*�(t)] = 0. Now we have 

limt→∞ [*�(t)] = limt→∞ [f(x(t))] ⇒ 0 = f(x∞), 

since 

limt→∞ f(x(t))] = f(limt→∞ [x(t)]) = f(x∞) = 0 

continuous.) Finally f(x∞) = 0 and f(xr) = 0 (single root) ⇒ x∞ 

= xr and the theorem is proved. 

We return now to the problem of a two way opposing 

reaction. We suppose that we have a reaction of two 

“reactans” and two “products”: (the generalization to one or 
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more than two species is straightforward) 

ν1A1  + ν2A2 ⇄ ν3A3  + ν4A4, (R2)             (17) 

where the νi’s, i = 1, 2, 3, 4 are integers whose greatest 

common divisor is unity (1). Obviouslly, νi ≥ 1. 

When an experiment of chemistry takes place such as the 

reaction Eq. (R2) at constant temperature and pressure then 

the change of the total Gibbs energy (of the whole system) is 

negative (δG < 0). Then we can write 

δG = µ1δn1 + µ2δn2 + µ3δn3 + µ4δn4,             (18) 

where δni is the change in moles of the [particular] i−th species 

and µi the corresponding chemical potential. Taking into account 

the stoichiometry of the reaction Eq. (R2) we have 

- 
��.
/.  = - 

��0
/0  = + 

��1
/1  = + 

��2
/2  = δξ.                  (19) 

Introducing the earlier equation into Eq. (18) we get 

δG = (∆r G)δξ,                                 (20) 

and 

∆r G = ν3µ3 + ν4µ4 − ν1µ1 − ν2µ2,                (21) 

where ∆r G is the reaction Gibbs energy change. From Eqs. 

(20) and (21), one can deduce that if dξ > 0 there is a 

displacement of R2 to the right (from “reactants” to 

“products”) while the opposite happens when dξ < 0. 

Now the crucial point is that for both cases δG < 0, the 

change in the Gibbs energy is negative (since both processes 

can be natural processes) and from Eq. (20) we have that 

∆r G < 0: displacement to the “products” (right). 

∆r G > 0: displacement to the “reactants” (left). 

Using the usual expressions of µi’s, at least for gases, we 

have that 

∆r G = ∆r G0 + RT ln Qc,                        (22) 

where 3! 	= 
!141!242
!.4.!0

40, ∆r G is the change of the reaction Gibbs 

energy, and ∆r G0 is the change in the reaction Gibbs energy 

at the same temperature and 5�  = 1 atm. Obviously when 

equilibrium is achieved then ∆r G = 0 and Qc = Kc, where Kc 

= ��/k−1, which implies that 

0 = ∆r G0 + RT ln Kc.                        (23) 

Combining Eqs. (22) and (23), we get 

∆r G = RTln 8�
9�.                               (24) 

From the earlier equation it is deduced that if 

Qc < Kc ⇒ displacement to the products (right). 

Qc > Kc ⇒ displacement to the reactants (left). 

We will now prove that the above results are reproduced 

exactly by the reaction rate of 

R2: 

− �
/.

�:.
�;

 = − �
/0

�:0
�;

 = 
�
/1

�:1
�;

 = 
�
/2

�:2
�;

 = ��<�
/.<+

/0- �=�<>
/1<?

/2,  (25) 

from which we have 

“reaction rate” = ��<�
/.<+

/0(1 - 
8�
9�),                  (26) 

where 3! 	= 
!141!242
!.4.!0

40, and Kc = 
�.
�@.. We now suppose that QB < 

KB  then the left-hand-side of Eq. (26) is positive which 

implies that c1 and c2 decrease while c3 and c4 increase giving 

a displacement of the equation R2 to the right. The reverse 

happens if Qc > Kc. 

One more result is worth noticing, i.e., if Qc ≪ Kc, then 

obviously the reaction not only “turns” to the right but it also 

becomes one-way reaction. 

Returning to the reaction (R2) and considering the 

dynamics of the related differen- tial Eqs. (R2) and (25) we 

expect that its solutions will be differentiable (and therefore 

continuous) and furthermore: 

(i) ci’s: i=1,2,3,4 positive definite 

(ii) they tend to constant values ci∞ as t → ∞ (limt→+∞ ci(t) 

= ci∞), and 

(iii) they satisfy the following relation E! 	= 
!1F41 !2F42
!0F

40 !.F4.
. 

Supposing again reaction (R2) having initial concentrations 

ci0, i = 1, 2, 3, 4. Let us suppose also that without loss of 

generality 3!�	= 
!1�41!2�42
!.�4.!0�

40 < E! . Since 3!�< E! , c1 and c2 will, 

at least initially, decrease and c3 and c4 will increase. If at 

time t the concentration of ci(t) has become lesser to an 

amount z(t), then we have 

c1(t) = c10 − z(t),                               (27) 

c2(t) = c20 −	/0
/. z(t),                           (28) 

c3(t) = c30 +	/1
/. z(t),                           (29) 

c4(t) = c40 +	/2
/. z(t),                          (30) 

Substituting Eqs. (27)-(30) into Eq. (25) we get 

�
/.

�G
�; = ��(B��	– 	I)/.(B+�–	/0

/. I)/0  - �=�(B>� +	/1
/. I)/1(B?� +	/2

/. I)/2 ,                                   (31) 

or equivalently 

I� = f(z),                                                                                        (32) 

where 
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f(z) = v1k1 (c10 − z)v�(B+�	– 	/0
/. I)/0  - v��=�(B>� +	/1

/. I)/1(B?� +	/2
/. I)/2                                (33) 

Writing 

zm = min {c10, 
/.
/0 c20},                   (34) 

zM = min {
/.
/1 c30, 

/.
/2 c40},                (35) 

we limit our analysis in the interval − zM ≤ z ≤ zm and we 

observe that in this interval all the parentheses of Eq. (33) are 

greater or equal to zero. 

We also have 

f(zm) = - v��=�(B>� +	/1
/. IK)/1(B?� +	/2

/. IK)/2  < 0, (36) 

f(−zM) = v1k1 (B�� − zM)v1(B+�	– 	/0
/. IL)/0  > 0,    (37) 

f(0) = v1k1<��
/.<+�

/0  - v��=�<>�
/1<?�

/2 

= v1k1<��
/.<+�

/0 (1 - 
8��
9� ) > 0                     (38) 

 

Figure 4. An approximate graph of the function f(z) given be the reactions 

Eqs. (33) to (35). 

Taking the derivative of the function f(z) with respect to z 

we have 

f ′(z) = - k1 M�+ (c10 + z)v1 -1(B+�	– 	/0
/. I)/0  

- ��M++(c10 + z)v1(B+�	–	/0
/. I)/0	=� 

	−	�=�M>+(B>� +	M>
M�

I)/1	=�(B?� +	M?
M�

I)/2  

	−	�=�M?+(B>� +	/1
/. I)/1	(B?� +	/2

/. I)/2	=�           (39) 

we have obviously 

f ′(z) < 0, for every z ∈ (−zM, zm).            (40) 

Combining the information of Eqs. (36)-(40) we have the 

following portrait of the function (shown in Figure 4) Since f(0) > 

0 and f(zm) < 0, as well f ′(z) < 0, combining Bolzano’s and 

Rolle’s theorems we find that there is a unique root of f(z) such 

that: 0 < zr < zm for which we also have f ′(zr) < 0. Now applying 

the proved lemma, we find that the function f(z) has the property 

0 < z < zr and limt→+∞ z(t) = zr = const. Now we have 

c1∞ = limt→+∞ c1(t) = c10 - IN = const. 

c2∞ = limt→+∞ c2(t) = c20 - 
/0
/. IN  = const. 

c3∞ = limt→+∞ c3(t) = c30 + 
/1
/. IN  = const. 

c4∞ = limt→+∞ c4(t) = c40+ 
/2
/. IN  = const. 

So far we have proved that the final concentrations of ci’s 

are constant. We still have to prove that they are positive 

definite. Obviously we have 

0 ≤ z(t) ≤ zr < zm 

from which it is straightforward that c3(t) = c30 + 
/1
/. z(t) >0 

and similarly for c4(t). c1 and c2 are a little bit more 

problematic: 

0 ≤ z(t) ≤ zr < zm ⇒ 0 ≥ −z(t) ≥ −zr > −zm 

⇒ c1(t) = c10 − z(t) ≥ c10 − zr > c10− zm ≥ 0 

The last inequality hold since zm = min {c10, 
/.
/0 	B+�}→ 

c1(t) > 0 for all t ≥ 0. Similarly, 

c2(t) = c20 - 
/0
/. z(t) ≥ c20 - 

/0
/. zr 

> c20 - 
/0
/. zm = 

/0
/. (

/.
/0 c20 - zm) ≥ 0 

→ c2(t) > 0                                  (41) 

for all t ≥ 0. As t → ∞ then 

limt→+∞Qc = Kc ⇒ Kc = 
	(�>�O	414.PN)41	(�?�O	424.PN)42
(Q��	=	PN)4.(Q+�	=	404.	RS)40

, 

which determines the exact unique value of zr and 

consequently of ci’s. 

In the case where Qc0 > Kc, then zr is negative and the 

whole analysis is very similar to the first case. If Qc0 = Kc 

then zr = 0 and the “system” does not evolve at all. 

One more thing has to be mentioned. If instead of Eq. (25) 

we have the more general equation 

− �
/.

�:.
�;  = − �

/0
�:0
�;  = 

�
/1

�:1
�;  = 

�
/2

�:2
�;  = ��<�

T.<+
T0- �=�<>

T1<?
T2, (42) 

where now the ρi’s are real positive numbers as well, then a 

similar analysis can be carried out and similar conclusions 

can come forward although now the link to “simple” 

chemistry has been lost. 

4. The Hydrolysis of Sucrose [9-11] 

“The first known example of a detailed study of the progress 

of a chemical reaction was the work of Wilhelmy in 1850 on 

the hydrolysis of sucrose in acid solution using a polarimeter”. 

In this work it was found that the reaction rate is proportional 

to the first power of the sucrose concentration: 3 

C12H22O11 + H2O → C6H12O6 + C6H12O6,      (43) 
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οr 

S + H2O → G + F.                              (44) 

However the condition of the experiment is such that, 

initially, only sucrose is present, while there is almost 

complete absence of G and F ([S](t = 0) = σ0 > 0, [G](t = 0) = 

0, [F](t = 0) = 0). Therefore it is doubtfull, if one finds the 

simple law, that the reaction rate is proportional to the first 

power of the sucrose concentration, when the reaction has 

proceeded further and the inverse reaction 

G + F → S + H2O,                           (45) 

starts to take place. 

In the analysis that follows we consider the hydrolysis of 

the sucrose as a two-way ele- mentary reaction and show that 

one gets essentially the same results as if it were a one-way 

reaction provided that the sucrose initial concentration σ0 is 

much less than k1/(4 k−1), i.e., σ0 << 
U�

?	U=�, where k1 and k−1 

are the forward and the inverse rate constants, respectively. 

The concentrations that satisfy this inequality are not of 

negligible measure since one expects in general k−1 to be 

much less than k1 (expressed in appropriate units) and 

therefore σ0 can get moderately large values, although σ0 << 
U�

?	U=� at the same time. At the end of the present analysis a 

“method” to determine the constants k1 and k−1 and their 

links to the experiment, as we imagine it, is given, while at 

the same time one can easily recognize that the 

concentrations [S](t), [G](t), [F](t), expressed as functions of 

time, retain the properties (i)-(iii) of Section III. 

The mathematical model 

We consider the hydrolysis of sucrose to glucose and 

fructose as a two-way reaction: 

C12H22O11 + H2O ⇄ C6H12O6 + C6H12O6,        (46) 

or symbolically 

                           (47) 

One can easily derive the following rate equations 

	V[X]
VZ  = −k1 [S] + k−1 [G][F],                   (48) 

	V[[]
VZ  = 

	V[\]
VZ  = + k1 [S] − k−1 [G][F],             (49) 

with the initial conditions, appropriate for only sucrose 

present initially: 

[S](0) = σ0 > 0, [G](0) = [F](0) = 0.           (50) 

From Eqs. (48) and (49) with the conditions Eqs. (50) we 

can easily get the following constraints: 

[G](t) = [F](t),                           (51) 

[S](t) + [G](t) = σ0,                     (52) 

[S](t) + [F](t) = σ0.                   (53) 

It is important to notice that the constraints Eqs. (51)-(53) 

are also valid in the case where the rate equations are first 

order in sucrosse concentration (k−1 = 0). Substituting the 

constraints Eqs. (51)-(53) into Eqs. (48) and (49) and solving 

the resulting differential equations we have 

[F](t) = [G](t) = ρ2 
(�=]@√_;)

�O `0
|`.|]@√_;,                   (54) 

[S](t) = 
(σ�=b+)OT+ σ�

|`.|]@√_;	
�O `0

|`.|]@√_;                    (55) 

where 

ρ2 = 
=	U�O	√c

+U=� , |ρ1| = 
	U�O	√c
+U=� ,                   (56) 

with ρ1 < 0 <ρ2, and 

D = ��+ + 4k1k − 1	σ�.                   (57) 

Unambiguously expression Eq. (54) is positive. The same 

should be true for Eq. (55) if σ0 > ρ2 which is straightforward 

to prove using Eq. (56) and (57). Moreover we have [F]∞ = 

[G]∞ = ρ2 = const. > 0 and [S]∞ = σ0 − ρ2 > 0 (constant). We 

observe now that if ρ2/|ρ1| ≪ 1 the curves corresponding to 

Eqs. (54) and (55) respectively become the simple 

equations for exponential growth and decay, respectively.: 

[F](t) = [G](t) = ρ2(1 − f=√c�),                   (58) 

[S](t) = ≃ (σ0 −ρ2) + ρ2f=√c� .                   (59) 

From the expressions of |ρ1|, ρ2, we can readily see that the 

condition ρ2 ≪ |ρ1| is equivalent to 

σ0 << 
U�

?	U=�                                  (60) 

One more remark, at this limit, is that ρ2 ≃ σ0 and the 

equations (58) and (59) become completely first order in 

concentration of sucrose. If one sets k = √i then one has 

K = j��+ 	+ 	4k1k − 1	σ� = kl1 + ?U=�	σ�
U� 	 ≃ k1+2k-1σ�, 

or 

k ≃ k1 + 2 k−1 σ�.                          (61) 

Now in principle the constant k can be measured by a 

polarimetry experiment for dilute solutions from which 

plotting k as a function of σ� one can get k1 as the intercept 

and 2k−1 as the slope. 

 

Figure 5. A linear graph of the rate constant k of the reaction S + H2O � G 

+ F, at the vicinity σ0 ≃ 0 with intercept k1 and slope 2 k−1. 
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Two comments have to be made: (a) The intercept k1 

cannot be found by setting σ0= 0 because then no experiment 

exists but it can be found by extrapolation near σ0= 0. (b) The 

slope is expected to be very small and a variety of σ0 must be 

taken until one reaches a large σ0, but not so large to destroy 

the linear behavior. 

The inversion of sucrose 

(For the present subsection we replace [S] = Cs, [G] = Cg, 

[F] = Cf, to make symbols easier to handle.) It is well known 

from the 19th century that when polarized light passes 

through a relatively dilute solution of one optically active 

substance, then there is a rotation of the plane of the 

polarized light at an angle α depending upon: (a) the 

wavelength of the light source (λ), (b) the temperature of the 

solution (T), (c) the length of the optical path in the solution 

(ℓ), (d) the nature of the sample (e.g., sugar solution), (e) the 

concentration of the optically active substance. 

Summarizing the above facts we have the law of 

polarimetry: 

α = ℓωC,                                      (62) 

where α is the angle of rotation measured in degrees (o), C is 

the concentration of the optically active substance measured 

in mol/lt or g/cm
3
, ℓ is the length of the beam inside the 

solution measured in dm, and ω is the specific rotation which 

depends both on λ and T which is measured in 

degrees/(dm/(mol/lt)), or in degrees/(dm/(g/cm3)). Having 

ω = Ω (
�]mN]]n
�Kopq

q;
) = Ω’ (

�]mN]]n
�K r

so1
) 

the two numerical values Ω and Ω′ are related through Ω = 
LN

����Ω′, where Mr is the molecular weight of the optical 

substance. A question that naturally arises, is what happens 

with the angle of rotation, when we have a mixture of 

optically active substances such as sucrose, glucose, and 

fructose. Obviously, it is a function of the concentration of 

each species, having ℓ, λ, T as parameters, i.e., 

α = Φ(Cs, Cg, Cf; ℓ, λ, T,                   (63) 

where Cs, Cg, and Cf are the concentrations of sucrose, 

glucose, and fructose, respectively, and ℓ, λ, T have the same 

meaning as above. From the earlier equation we have Φ(0, 0, 

0) = 0, as well Φ(Cs, 0, 0) = ℓωsCs, and similarly for Φ(0, Cg, 

0) and Φ(0, 0, Cf), which is a clear sign that the function Φ is 

analytical around (0, 0, 0) and therefore we can take its 

Taylor expansion around this point from which we have 

α ≃ 0 + ℓ[ωsCs + ωg Cg + ωf Cf] + 0(C2).    (64) 

Considering now that we have a dilute sample in all three 

species (i.e., ’low’ concentrations), the dominant term is the 

linear one, while the quadratic, qubic, etc. give only small 

corrections and therefore 

α = ℓ[ωsCs + ωg Cg + ωf Cf],             (65) 

Now, consider the conditions of the experiment performed, 

in which only sucrose is initially present. Since the 

concentrations are functions of time, then α is also a function 

of time. Inserting the constraints Eqs. (51)-(53) of the 

differential equations into Eq. (65) we find that 

α(t) = ℓ [(ωs − (ωg + ωf))Cs(t) + (ωg + ωf)σ0].      (66) 

Now it is known that ωs > 0, ωg > 0, ωf < 0, and ωf + ωg < 0. 

Initially, only sucrose is present and we have, in the case 

where the whole process is considered of first order with 

respect to sucrose concentration, Cs(0) = σ0, which yields: 

α0 = ℓωsσ0 > 0.                               (67) 

Finally we have that Cs(∞) = Cs,∞= 0 and this yields 

α∞ = ℓ(ωg + ωf)σ0 < 0.                    (68) 

Inserting Eqs. (67) and (68) into Eq. (66) one can get 

Cs(t) = σ0 (
α(Z)=	α∞	
α�=	α∞	 )                       (69) 

Now, what happens in the case Cs∞ = σ0 − ρ2 > 0? Then, 

σ0 − ρ2 may be large enough such that the first term in Eq. 

(66) (positive) may be larger than the second (negative) 

resulting to α∞ > 0 and no inversion occurs. We will prove 

that provided k1/ k-1 is large this happens in unusually large 

concentrations: Since 0 < σ0 − ρ2 < σ0 we may write 

(σ0 − ρ2) = λσ0, 0 ≤ λ < 1,                   (70) 

and respectively 

α∞ = ℓ[(ωs + |ω+|)λσ0 − |ω+|σ0],              (71) 

with ω+ = 
trOtu
���� , ωs > 0, ω+ < 0. No inversion can occur 

when α∞ > 0 resulting to 

λc = 
|ωv|

ωw	O	|ωv|  < λ <1.                      (72) 

Solving Eq. (70) with respect to σ0 we get 

σ0 = 
λ

(�	=	λ)+	
U�
U=�.                           (73) 

The function σ0 with respect to λ is an increasing function 

of its argument, therefore the concentrations that do not 

invert sucrose are these for which σ0 > σ0c = σ0 (λc), or 

σ0 > σ0c = 
|ωO|
ωn  (1 + 

|ωO|
ωn ) 

U�
U=�,                   (74) 

where ω = Ω 
�]mN]]n
�Kopq

q;
. Having xOy  ≃ 39.7o, xny  ≃ 66.5o, and Ω 

=
LN

���� Ω′, we get 

σ0c ≃ 0.413	 U�
U=�,                             (75) 

where σ0c is in mole/L, k1 in s−1, and i k−1 n s−1L/mole.in 

s−1L/mole. The critical concentration is probably very large 

since k−1 is expected to be small, and for sure it is far from 

the limit of inequality (60), indicating that the inverse 

reaction G + F → S + H2O is important too. Although we 
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have tried to present our results with the greatest possible 

accuracy, there are complications which can destroy at least 

partially the simple and nice view of the phenomenon under 

investigation: 

(a) For large concentrations of sucrose and/or glucose and 

fructose Eq. (65) (the simple law of polarimetry) may 

not be valid anymore, but need to add to it quadratic or 

qubic terms of the concentrations, the best work done 

when Eq. (63) is completely known. 

(b) In the whole of our analysis, starting from the 

differential equations describing the system we have 

considered that the concentration of water is found in 

large excess. This is not the case when we have large 

concentrations of sucrose where the water has to be 

faced as a reactant, consumed and regenerated. 

(c) The last remark concerns the difficulty in the 

transparence of the polarimeter to visible light, when 

the concentration of sucrose is very large. 

5. Reactions in Solution [15] 

Reactions in solution happen in a much different way than 

reactions in the gas phase. Two reactants A and B come 

together, they form an intermediate complex AB and then 

dissociate into products P. However, since solvent is always 

present between A and B the two reactants have to jostle 

enough before they form the intermediate complex and this 

makes more difficult the reaction. Furthermore, the solvent 

molecules do not allow easily the dissociation of AB into P 

for the same reason. The last effect is known as the cage 

effect. 2 

The whole process is described phenomenologically by the 

following set of reactions: 

 

where d stands for diffusion and r for reaction. The meaning 

of the rate constants kd and kr is straightforward while k−d 

expresses the dynamics for which the A and B reactants are 

reformed from the intermediate complex. The differential 

equations describing the whole process are the following: 

	V[{]
VZ  = 

	V[|]
VZ  = - kd[A][B] + k−d[AB],              (76) 

	V[{|]
VZ  = kd[A][B] - (k−d + kr) [AB],               (77) 

	V[}]
VZ  = kr [AB].                              (78) 

The usual route of facing the problem is to apply the 

steady state approximation [3] (or else principle of stationary 

states [4]) for the intermediate product (here [AB]) and 

impose 
	V
VZ [~�] ≃ 0 and [AB] small enough. 

However we know from the simplest case of a problem 

with an intermediate product   

A �.→ � �0→ < 

that the steady state approximation is valid only if �� >> �+. 

This means, in our case that may not, for all values of kd, k−d, 

kr, the steady state approximation be valid and one has to 

examine the full model Eqs. (76)-(78) and confirm that it 

gives reasonable results no matter the values of the rate 

constants. 

The conditions that have to be fulfilled are the following: 

(i) 0 ≤ [A, B, AB, P] < constant < +∞. 

(ii) limt→+∞[A](t) = constant ≥ 0, 

and similarly for [B, AB], and [P] as t → +∞. From the left-

hand-side of Eq. (76) we get 

[B] = [A] + δ0,                              (79) 

where 

δ0 = [B]0 − [A]0.                           (80) 

Without loss of generality we can choose δ0 ≥ 0. Otherwise, 

we interchange the roles of A and B. Adding Eqs. (76), (77), 

and (78), we have 
	V
VZ ([A] + [AB] + [P]) = 0 or else 

[A] + [AB] + [P] = σ0,                      (81) 

where 

σ0 = [A]0 + [AB]0 + [P]0.                    (82) 

 

Figure 6. A hypothetical scenario for the time evolution of the concentration 

of the species [A, AB], and [B]. [A] is reflected toward the y−positive axis 

when it reaches the t−axis, remaining always positive. 

Let’s suppose now that starting from positive initial values 

of [A]0, [B]0, [AB]0, one of them let’s say the [A] - is the first 

that reaches the t−axis. 

We have then 

(	V[{]
VZ )� = −kd[A]c[B]c + k−d[AB]c > 0 

which implies that [A] is reflected toward the positive y−axis 

and cannot pass into negative values. If [AB] first reaches the 

t−axis then from Eq. (77) we have a similar conclusion and 

therefore [AB] cannot take negative values. If [A] or [AB] 

attempts for a second time to pass the t−axis, the same thing 

happens and so on. [B] cannot take negative values because it 

is larger than [A] and so it is proved that all concentrations 

are greater than zero. The same is valid for [P]: 

[P] = [P]� + � k-	[AB]�
�  dt ≥ [P]0 ≥ 0, 

since [AB] ≥ 0. From the positiveness of [A, AB, P] ≥ 0 and 

the condition Eqs. (81) and we get 

0 ≤ [A] ≤ σ0,                                    (83) 
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0 ≤ [AB] ≤ σ0,                                  (84) 

0 ≤ [P] ≤ σ0,                                    (85) 

0 ≤ [B] ≤ σ0.                                    (86) 

This means that all concentrations are bounded below from 

the value zero and above from the value σ0. Eqs. (76)-(78) is 

probably impossible to be solved analytically. Although this 

cannot be done, a discussion can be made that will shed light 

to the nature of the solutions especially when they tend to 

infinity. First of all, Eqs. (76)-(78) apparently seem to have 

four degrees of freedom, exactly as many as they are the 

concentrations of each species taking part in the three 

reactions. Such a dynamical problem could even be possible 

of exhibiting chaotic behaviour or strange oscillations or 

another exotic behaviour. However, imposing equations (79) 

and (81) onto Eqs. (76)-(78), the number of degrees of 

freedom reduces to two. 

According to the accepted opinions, an autonomous 

system of ordinary differential equations with two degrees of 

freedom cannot exhibit chaotic behavior. Besides ordinary 

differential equation systems with two degrees of freedom, 

i.e., ODEs on the plane, have been very well studied and we 

know that their dynamics is mainly governed by the so-called 

Poincaré - Bendixson theorem. It is known from the proof of 

the Poincaré - Bendixson theorem that if the solution remains 

in a compact set K (which is closed and bounded) for t ≥ 0 

(and especially as t → +∞) enclosing a single fixed point, 

then the solution finally either tends to the fixed point or to a 

limit cycle. [5], [6]. As an immediate conclusion of the above 

theorem is the following corollary: 

Corollary 

Suppose the initial value problem 

x˙ = P (x, y), y˙ = Q(x, y), x(t = 0) = x0, y(t = 0) = y0 

which has a single fixed point located at (0, 0) [without loss 

of generality], i.e., P (0, 0) = Q(0, 0) = 0, and |P (x, y)| + |Q(x, 

y)| > 0 for (x, y) ∈ R2− (0, 0). Making the substitution x = 0 

+ ξ1, y = 0 + ξ2 we take the linearized problem (from a Taylor 

expansion) keeping only the linear terms: 

ξ˙1 = σ11ξ1 + σ12ξ2 + O(ξ
2
), 

ξ˙2 = σ21ξ1 + σ22ξ2 + O(ξ
2
), 

where 

σ11 = (�}
��)�, σ12 = (�}

��)�, 

σ21 = (��
��)�, σ22 = (��

��)�. 

For the linearized problem to exist we must have | σ11| + | 

σ12| > 0, and / or |σ21| + | σ22| > 0. If λ1, λ2 are the eigenvalues 

of the 2 × 2 matrix with elements σij, i, i = 1, 2, we have λ2 − 

T λ + D = 0, where T = λ1 + λ2 = σ11 + σ22, and D = λ1λ2 = 

σ11σ22 − σ12σ21. Now from the Poincar´e -Bendixson theorem 

we can state the following: 

(a) If the solution remains in a compact region K 

(enclosing the fixed point), as t → +∞, then if the 

eigenvalues of the matrix of the linearized problem are 

both negative or both have negative real parts then the 

solution tends to the fixed point as t → +∞. 

(b) If the solution remains in a compact region K (closed 

and bounded) and at least one eigenvalue is 

nonnegative then the solution tends to a limit cycle. 

(c) If the solution does not remain in a compact region 

then it finally escapes to infinity. The proof of the 

above corollary is a natural conclusion of the Poincar´e 

–Bendixson 

theorem and the remark that the linearized problem -when it 

exists - is the most appropriate description of the behavior of 

the solution as t → +∞. What we actually want now to prove 

is that the case of reactions in solution belongs to the case (a) 

of the corollary which means that we have a limiting 

behavior tending to constant values, excluding the cases (b) 

and (c), i.e., this of limit cycle or tending to infinity. Since we 

are doing dynamics, it should be appropriate (actually for 

writting shorter expressions) to convert the chemical symbols 

to other symbols that are common in dynamics, ie., [A] → x, 

[B] → y, [AB] → z, and [P] → w. Then, Eqs. (76)-(78) 

become: 

x˙ = y˙ = −kdxy + k−dz,                       (87) 

z˙ = +kdxy − (k−d + kr)z,                     (88) 

w˙ = +kr z,                                (89) 

where 

y = x + δ0, x + z + w = σ0,                   (90) 

with δ0, σ0 > 0. 

Setting Eqs. (87)- (89) equal to zero in order to get the 

fixed points and using Eqs. (90) in addition, we have 

kdxr yr − (k−d + kr)zr = 0, 

−kdxr yr + k−dzr = 0, 

kr zr = 0, 

where the subscript r stand for the word ’root’. From these 

and Eqs. (90) we get xr = 0, zr = 0, yr = δ0 > 0, and wr = σ0 > 

0. We choose x and z as the independent variables and 

together with Eqs. (90) we make the substitution x = xr +ξ1 = 

0+ξ1, and z = zr +ξ2 = 0+ξ2 

retaining only the linear terms in Eqs. (87) and (88) getting 

��1 = −kdξ1(ξ1 + δ0) + k−dξ2,                   (91) 

��2 = +kdδ0ξ1 − (k−d + kr)ξ2.                   (92) 

The linear equations are 

ξ˙1 = −kdδ0ξ1 + k−dξ2,                        (93) 

ξ˙2 = +kdδ0ξ1 − (k−d + kr)ξ2.                  (94) 

It is now easy to deduce that the eigenvalues of the linearized 

problem are given by the following quadratic equation: 
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�+ + λ[k-d + kr + kdδ0] + krkdδ0= 0. 

Since k−d, kd, kr, and δ0 are all positive, the solutions of the 

quadratic equation are either both negative or have both 

negative real parts. 

Furthermore, both variables x and z ’live’ in the region K 

= [0, σ0] × [0, σ0] which is both closed and bounded, i.e., it is 

compact. Therefore we are in the case (a) of the corollary and 

the conditions of the ’usual’ chemistry have been proved. 

6. The Michaelis-Menten Mechanism 

and More [14] 

Another set of chemical reactions which has a linearized 

problem and it is actually two- dimensional and therefore 

tractable is the Michaelis-Menten mechanism 

                  (95) 

where E stands for the concentration of the enzyme, S for the 

substrate, ES for the intermediate complex and P for 

products. The equations describing the above process are the 

following: 

	V
VZ [��] = +k1[E][S] − (k−1+ k2)[ES],        (96) 

	V
VZ [�] = −k1[E][S] + (k−1+ k2)[ES],        (97) 

	V
VZ [�] = −k1[E][S] + k−1[ES],             (98) 

	V
VZ [5] = k2[ES].                      (99) 

One can easily produce the following: 

[ES] + [E] = σ1 = constant > 0,           (100) 

[ES] + [S] + [P] = σ2 = constant > 0,      (101) 

where σ1 = [ES]0 + [E]0 and σ2 = [ES]0 + [S]0 + [P]0 = [S]0, 

assuming that the initial values of the intermediate complex 

and the products are zero. Equating Eqs. (96) to (99) to zero, 

in order to find the fixed points, we have that [ES]r = 0 and 

[E]r [S]r = 0. From Eq. (100) we have that [ES]0 + [E]0 = [E]0 

= σ1 = [ES]r + [E]r = [E]r, which implies [E]r = σ1 = [E]0 and 

this means that at the end of the whole process we get the 

same quantities of enzyme as it was in the beginning of the 

reaction. 

Furthermore, we find [S]r = 0 and [P]r = [S]0 which means 

that the final concentration of products equals the initial 

concentration of the substrate, which is another result 

expected to happen. 

The above analysis is ’illegal’ unless it is proved that the 

Eqs. (96) and (97) fall into the case (a) of the corollary. 

Using methods analogous to these of the previous section one 

can prove that all concentrations are greater than or equal to 

zero. Then using Eqs. (100) and (101) one can prove that 

they remain in a compact region K. 

Sustituting [S] = x, [P] = y, [E] = z, [ES] = w, and finding 

xr = 0, yr = σ2, zr = σ1, 

wr = 0 and posing x(t = 0) = x0 > 0, y(t = 0) = 0, z(t = 0) = 

z0 > 0, w(t = 0) = 0, we get: 

*�  = −k1(σ1 − σ2 + x + y)x + k−1 (σ2 − x − y),       (102) 

��  = +k2(σ2 − x − y),                    (103) 

with x(t = 0) = x0 > 0 and y(t = 0) = 0, xr = 0 and yr = σ2. 

Making the new substitution 

x = xr + ξ1 = 0 + ξ1 = ξ1 and y = yr + ξ2 = σ2 + ξ1 we get the 

linearized problem 

��1 = −(k1σ1 + k−1)ξ1 − k−1ξ2, 

��2 = −k2ξ1 − k2ξ2, 

the eigenvalues of which are given by 

�+ + λ(k1σ1 + k−1+ k2) + k1σ1k2 = 0. 

which are either both negative (real) or have both negative 

real parts (complex). 

A final remark concerns other systems of reactions, which 

need more effort to come to the same conclusions. Such a 

system is the reaction of I2 and H2 to form HI. The usual 

mechanism proposed is the following: 

�+ �.→ 	2I,			2I	 + 	�+
�0→ 2HI,                  (104) 

One can proceed by writting the equations for the four 

species I2, I, H2, and HI and it is to derive that there exist two 

constraints reducing the degrees of freedom from four to two. 

Therefore the problem belongs into the usual one, of the 

differential equations on the plane. However the progress 

with this problem is difficult since (a) the search for the fixed 

point gives two distinct cases, and (b) there is no linearized 

problem but instead of it the behavior at infinity is governed 

by quadratic equations, which are not easy to handle in an 

analytical manner. 

7. Conclusions [12, 13] 

In conclusion a system of reactions involving m species 

(reactants and products) and n reactions (m > n) has n 

degrees of freedom, i.e., so many as they are the single and 

the double arrows of the reaction equation. In any case of n 

reactions and m species one can probably find m − n 

constants (integrals of “motion”-constraints) and reduce the 

number of independent equations from m to n. 

For instance in the case of paragraph II we have m = 4, n = 

1 from which we get 

m − n = 3 (three independent constraints) 

�(�)=��	
�   =  

�(�)=)�	
)   =  

Q(�)=��	

   =  

V(�)=��	
�               (105) 

and the same holds for paragraph III. For paragraph IV we 

have m = 3 [S,G,F] and n = 1 for which m − n = 2 
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(constraints (51) and (52)). For paragraph V, m = 4 

[A,B,AB,P] and n = 2. Therefore m − n = 2 [Eqs.(79) and 

(81)] In paragraph VI, m = 4 [E,S,ES,P] and n = 2 implies m 

− n = 2 [constraints (100),(101)]. 

From the above paragraph and the accepted opinions about 

chaos, we understand that the existence of chaos is 

impossible unless the species that are involved in the 

chemical process take part in a system of at least three 

reactions (n ≥ 3). But even in this case, chemical chaos may 

not appear since the rate constants (i.e., the k’s) and/or the 

initial values of the reactants and/or products (final or 

intermediate) may not fall into a chaotic region of the full 

model. However, this is not the case for oscillations that may 

well appear for n ≥ 2, since nothing prohibits in principle 

their appearence. 
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