

American Journal of Science, Engineering and Technology
2021; 6(2): 27-33
http://www.sciencepublishinggroup.com/j/ajset
doi: 10.11648/j.ajset.20210602.13
ISSN: 2578-8345 (Print); ISSN: 2578-8353 (Online)

A Software Verification Approach That Complies with
DO-178B Certification Rules on UAV’s Flight Control
Computer

Oğuzhan Demir*, İbrahim Seyfullah Babaarslan

Turkish Aerospace, Ankara, Turkey

Email address:

*Corresponding author

To cite this article:
Oğuzhan Demir, İbrahim Seyfullah Babaarslan. A Software Verification Approach That Complies with DO-178B Certification Rules on

UAV’s Flight Control Computer. American Journal of Science, Engineering and Technology. Vol. 6, No. 2, 2021, pp. 27-33.

doi: 10.11648/j.ajset.20210602.13

Received: June 12, 2020; Accepted: July 24, 2020; Published: June 9, 2021

Abstract: In this paper, the verification approach developed in accordance with the DO-178B certification requirements of
the software of the Unmanned Aerial Vehicle’s (UAV) Flight Control Computer (FCC) and the lessons learned from this
approach are presented. The software verification process is a process that is used to verify how the aircraft's flight control
computer behaves according to specified requirements and is used to verify that it does not produce unexpected results. The
paper will first describe the software architecture, and then the types of tests developed in accordance with the software
architecture. Then, test levels will be compared according to different testing parameters. Afterwards, the information
regarding the management of test cases will be reviewed in detail with their different scenarios. The traceability controls and
the importance of using traceability while writing the test cases and how to blend a traceability inside a test case will be
explained. The studies on structural coverage analysis will be covered in a different section. This whole process can be made
automated. To help automate the process, various tools are used. These tools also need to be tested, meaning they need to be
qualified. Section 8 talks about this. Finally, lessons learned from the DO-178B certification process will be presented at the
end of the paper.

Keywords: Do-178B, Software Verification, Software Testing, Unmanned Aerial Vehicle

1. Introduction

The level of development of software and complex
hardware that must be complied with according to STANAG
4671 applicable to Fixed Wing Military UAVs is given in
Table 1: STANAG 4671 Development Assurance Level
Targets [1]. According to the SAE-ARP-4761 safety analysis
that references the article “Guidelines and Methods for
Conducting the Safety Assessment Process on Civil Airborne
Systems and Equipment” in of related software and units, the
software is assigned a target development level [2]. Flight
Control Computer Software is in the “Catastrophic” category
according to the safety analysis and therefore needs to
demonstrate the highest level of Development DAL-B

(Assurance Level-B) compliance for UAVs [3]. DO-178B
standard describes the actions required in case an error
happens in the system. The levels explained in this standard
are classified regarding errors’ casualties. It can vary between
causing a loss of life and not affecting anything or anybody [4].

Table 1. STANAG 4671 Target Development Assurance Levels.

Setting a Development Assurance Level for
each and every System and Architecture

Necessary Development
Assurance Level

Level of
Importance

Catastrophic DAL B
Hazardous DAL C
Major DAL D
Minor DAL E
No Effect DAL E

The requirements needed for each level are stated in Table 2.

 American Journal of Science, Engineering and Technology 2021; 6(2): 27-33 28

Table 2. DO-178B Requirement Table According to the Importance Level.

DO-178 Feature Level A Level B Level C Level D
Independence Level High Mid Low Very Low
Software Plans Yes Yes Yes Yes
Software Standards Yes Yes Yes No
Structural Statement Coverage Yes Yes Yes No
Structural Decision Coverage Yes Yes No No
Modified Condition Decision Structural Coverage Yes No No No
Verifiable High Level Requirement Yes Yes Yes No
Verifiable Low Level Requirement / Code Yes Yes No No
High Level- Low Level and Low Level-Code Traceability Yes Yes Yes No
Low Level Requirement Test Coverage Yes Yes Yes No
Code Review Yes Yes Yes No
Configuration Management High High Mid Low
Software Quality Assurance Transition Criteria Yes Yes Yes No
Architecture, Algorithm Verification Yes Yes Yes No

As the criticality level of a software increases, so do the
detailed documentation, tests and analysis of the software [5].
As a result, the cost increases. A more controlled structure
has been established and higher quality products have
emerged with the involvement of independence and reviews
[19]. Although DO-178B Independence Level criterion is
requested as Medium according to the Table of Requirements
according to Critical Levels given in Table 2, this level is
provided as “High” for the UAV we developed [6]. Having
completely separate teams of developers and testers enabled
cross-validation of changes by both of those teams. The
criterion for software plans to be in process is provided by
the fact that the software plan documents of all processes in
the software development life cycle are present and
accessible to all. These are; plan for software Aspects of
Certification (PSAC), software quality assurance plan,
software configuration management plan, software
development plan and software verification plan. Software
requirements standard, software design standard, software
coding standard, etc. are examples to software standards. For
structural coverage analysis, “Structural Decision Coverage”
is used as the criterion which is sufficient for Level B. The
software includes verifiable high-level requirements and low-
level requirements associated with these requirements.
Traceability is established to bond high level requirements
with low level requirements and to bond low level
requirements with code. Test cases also include traceability
for the requirement that they verify [16]. After the codes are
developed, they are reviewed by a person other than the
developer according to the code development control table.
All software products (code, test, plan documents,
requirements, etc.) are kept in configuration management
tools [7]. To prevent unauthorized access, modify, read, etc.
for each product, authorizations are defined. Architecture and
algorithm verifications are provided by integrated and
partition based tests and code reviews.

The software architecture of the UAV Flight Control
Computer will be explained in this paper. Then the partition
based and integrated tests of aircraft software will be
mentioned. The comparison, use and the contribution of the
partition based and integrated test methods applied in the
software verification process will be given. Next, the method

of managing a test case that is developed or updated for the
first time will be described. We will see how the defect and
change requests are managed. Structural coverage analysis
studies which is one of the most important efficiency
parameters of software test case will be explained. We will
talk about the qualification process of the tools used to help
verify the software. Finally, the lessons gained from the DO-
178B certification process will be presented [8, 9].

2. Software Architecture

First, confirm that you have the correct template for your
paper size. This template has been tailored for output on the
A4 paper size. Flight Control Computer Software (FCCS) is
a software designed to work on real-time operating systems.
The software has partitions that are programmed to do
specific tasks and those partitions work on definite time
interval and on a specific address. The FCCS consists of the
Application Layer, where the functional functions are
managed, the Input / Output Layer, which enables
communication with other equipment / subsystems in the
Aircraft and the Control Station, and the Management Layer,
which monitors the health information and operational
performance of the layers. The illustration of the software
architecture is given in Figure 1.

Figure 1. Flight Control Computer Software Architecture.

Each layer is divided into different sub-layers according to
its function. In the Application Layer, codes are generated
using model based software development tool. Input / Output
and Management Layer is coded manually.

29 Oğuzhan Demir and İbrahim Seyfullah Babaarslan: A Software Verification Approach That Complies with
DO-178B Certification Rules on UAV’s Flight Control Computer

3. Methods

3.1. Tests

3.1.1. Partition-Based Tests

For each partition, there are software requirements that
describe the function of that partition. These software
requirements are written only in terms of the input and output
of that partition, ignoring the rest of the partitions. Partition-
based tests, just like their requirements, are based on just
checking the inputs and outputs of that partition, ignoring
partitions outside of that partition. For this reason, a test
partition is used in partition based tests. With the help of the
test partition, inputs are provided to the shared memory areas
of the tested partition, and the outputs generated by the tested
partition in response to these inputs are controlled [10]. The
partition-based test approach is shown in Figure 2.

Figure 2. Partition-Based Test Approach.

3.1.2. Integration Tests

In addition to the requirements written on the basis of the
partition, there are requirements written on an integrated
level that will allow all partitions to work together [11].
Together with the testing of these requirements, it is verified
that all partitions work together correctly and produce the
expected results. In integration tests, inputs are provided to
the software by using test and simulation tools, and the
outputs produced by the software are collected by the same
tools and passed / failed decisions are made. An automation
tool developed by the software verification team [17] is used
to provide input to the simulation tool to work with the
integrated software and to compare the outputs. The
integration test approach is shown in Figure 3.

Figure 3. Integration Test Approach.

3.1.3. Comparison Between Partition-Based Tests and

Integration Tests

In the developed test environments, the tests of the
partitions that provide modularity to the software
development environment and the integrated tests that verify

the functionality of all partitions working together are
performed. When a test case scenario development time is
compared, it is seen that the development time of integrated
level tests is less than that of partition based tests. This is due
to the fact that the requirements that can be explained in each
partition are explained at only a single level. Similarly, there
are fewer requirements and number of test steps in integrated
tests than partition-based tests, so updating time and effort is
shorter. Since partition based tests, simulation environments,
hardware cards in real environment, etc. are not affected by
external factors, it is more convenient to develop automated
test cases, therefore partition based tests usually run faster
than integrated tests.

Since partition-based tests are designed for a specific unit
under test, the error found directly focuses on the subunit
tested, other subunits associated with that unit, and on the
partition where the tests are run. This makes it easier to
analyze the error and to find out which part of the software
has it. In integrated tests, in case of an error, from which
partition is the error originated is hard to tell. It can also be
the simulation tool that causes the error. It is a process that
takes a long time to analyze whether environmental problems
cause this error. In this context, it can be said that partition-
based tests are better than integrated tests to focus on an
error.

Table 3. Advantages and Disadvantages of Different Tests.

Partition Based Tests
Advantages;
-Easy to automate
-Takes less time to run thanks to automation.
-Easy to find the source of a defect
Disadvantages;
- Takes more time to develop
- Verifies each partition, although it does not validate the intended
functions of each partition.
-Takes more time to update and to maintain
Integration Tests

Advantages;
- Takes less time to develop
- Helps figure out design errors because it is closer to the user requirement
level.
-Takes less time to update less effort to maintain
Disadvantages;
- Hard to automate
- Takes more time to run the test cases because of lesser automation.
- Takes deep analysis to find the source of a defect

Integrated tests are more successful in locating discernible
errors in partition-based design because they are closer to
user requirements. Our system includes both partition-based
tests of partition-based requirements that explain the
functionality of each partition, as well as integrated tests of
the integrated requirements, where all partitions work
together. With partition-based tests, the components that
make up the software are tested one by one and at the level of
detail and are free from hidden errors. In integrated tests, it is
checked that matured components work as expected as a
whole by passing through partition based tests. The findings
obtained from the tests are summarized in Table 3 to show

 American Journal of Science, Engineering and Technology 2021; 6(2): 27-33 30

the advantages and disadvantages of each approach.

3.2 Test Case Management

The requirements written by the software development
team at the integrated level that describe the behavior of a
partition or all software partitions working together are input
to the software testing process. The test case is developed
according to the requirement level and the developed test
cases are inputs to the peer review activity and are reviewed

according to the test case checklists [14]. After the comments
given to the relevant test case are re solved, the test case is
released and the change must be made with the software
change request at every subsequent update. The test report is
created by providing the released test case in the target
environment, and after the analysis of the report, software
change requests related to the code, requirement or test cases
are opened and the defect / request management tool is
followed [15]. The steps for managing a test case developed
for the first time are shown in Figure 4.

Figure 4. The steps for managing a test case developed for the first time.

The software change request is opened for the test cases
that need to be changed as a result of an update to the
software requirements and the defect / request management

tool enables the change to be checked by someone other than
the person who made the change. The steps involved in
managing a released test case are shown in Figure 5.

Figure 5. Managing a Released Test Case.

Figure 6. Change / Defect Life Cycle.

31 Oğuzhan Demir and İbrahim Seyfullah Babaarslan: A Software Verification Approach That Complies with
DO-178B Certification Rules on UAV’s Flight Control Computer

3.3. Change and Defect Management

As the system requirements change, the software
requirements and code that are written to the corresponding
system requirements also change [16, 20]. As software
requirements change, there arises a need to update software
test cases. When a change is required to any part of the
software (code, test case, requirement, etc.), a software
change request is created for that part. The software change
request is analyzed by the person who will make the change
after it is created and sent to the software configuration
control board (SCCB) or cancellation decision is taken. The
cancellation decision is usually made if the person that
requested a change opens an incorrect request or reopens a
previously opened request. The necessity of making changes
in the software configuration control board, what it is based
on and issues alike are evaluated and decided to accept, reject
or postpone the amendment. Decisions to be accepted,
rejected or postponed are made by the representatives of each
team in the SCCB by evaluating the cost, risk and effects of
the change on the project calendar. When the postponed
change request is due, it is analyzed again and sent to the
SCCB. A change request accepted in the SCCB is processed
by the responsible person and assigned to a person other than
the person who has performed this process for verification.
After checking that the change is made correctly, the process

is checked by the software quality assurance managers and
the request is closed. In order to control changes made to a
released product, the modification is only permitted if there is
an accepted change request on the product. This control is
provided by the integration of the configuration management
tool and the change / error management tool. If the change
request causes a change in the derived requirements, the
change is assigned to the safety team for safety assessment.
Figure 6 illustrates the situations in which the change or
defect has gone through its life cycle.

3.4. Traceability Control

An external traceability tool is used to check that all of the
software requirements are tested, to detect incorrect
traceability between test cases and software requirements, to
track the test case that is linked to the requirement that it
verifies and vice versa. Software requirements and tests are
added to this tool to establish desired traceability. In the
event that software requirements are not covered or incorrect
traceability is established, a software change request is
opened [12]. This is done to add a test case for the relevant
software requirement or to correct incorrect traceability. The
structure of the traceability control is shown in Figure 7.

Figure 7. Traceability Control.

3.5. Structural Coverage Analysis

One of the most important measures of the effectiveness of
software test cases is the results of structural coverage
analysis [13]. All software tests are run on the instrumented
version of the code with an external structural coverage
analysis tool. Decision coverage analysis is used for software
tests. The report produced by the external structural coverage
analysis tool is examined and the lines of code that are not
covered during the running of the software tests are
determined and these lines are analyzed. The illustration for
generating the structural coverage report is shown in Figure
8.

Figure 8. Structural Coverage Analysis.

 American Journal of Science, Engineering and Technology 2021; 6(2): 27-33 32

If the functionality of the uncovered lines is not specified
by the software requirements, this indicates a lack of
software requirements and a software change request is
opened for the software requirements. If the functionality of
the uncovered lines is specified in the software requirements
but there is no test to test these requirements, it indicates a
deficiency in the software tests causing a software change
request to be opened to test out the relevant requirement.
Parts that are never likely to run in the code are called dead
code, and a software change request is opened to the code for
removal. Tests, which are considered to be affected by the
removal of the relevant code piece, may be repeated. In
addition to these situations, inactive code, defensive code and
code that can be covered by analysis / inspection are also
interpreted and reported. Inactive code is the code that will
be activated when the software is configured to do so.
Defensive code is a code piece that prevents the system from
crashing, is written for protection and does not reflect the
actual functionality. The code that can be covered by analysis
/ inspection is the code that is tested by manual analysis
scenarios in software modules with complex algorithms.
Inactive code, defensive code and the code that can be
included in the analysis / inspection are reported together
with their reasons and left untouched. When there are no
lines of code that are not covered or unexplained after all
change requests have been resolved, the structural coverage
analysis ends for the software version in which it was
made.[18]

3.6. Tool Qualification

Although an error in the tools used for software
verification does not inject an error into the software, it may
prevent an error in the software from being found [6].
Therefore, it is necessary to check that any auxiliary tool
used for software verification is working correctly. This
process is called tool qualification. In this process, the
requirements of the tool to be used to verify the software are
written and tested. Errors are reported and fixes are made. At
the end of this process, it is ensured that the tool used to
verify the software works as expected and is considered by
the authority as a tool that can be used for software
verification.

4. Result

In this paper it is aimed to give an inside look of how a
Critical System that complies with DO-178B should be
verified. Different methods that are used in the verification
process are mentioned in the order of relevance and
application in the Methods section. These methods, if applied
in the suggested order, would give a strict development and
verification process that follows the specifications of a
standard, that is DO-178. These application of methods and
the development and verification process can be tightened or
relaxed given the severity of the aircraft, resulting in a
different standard compliance. Our aircraft is designed to fit

the DO-178B.
Not only the process of development and verification, but

also software development and verification team need to
follow each and every instruction without skipping any steps
in between. This would not guarantee but could drastically
reduce the risk of losing an aircraft, or even giving casualties.
Errors in software world are inevitable, but making them less
serious and reducing their number is possible.

5. Discussion and Conclusion

Although the Independence Level criterion on the Table of
Requirements according to DO-178B Critical Levels Table 2
is requested as “Medium” this level is provided as “High” for
our UAV, so that errors can be detected earlier and an
independent perspective can be provided while reviewing the
products of other individuals [22]. Thanks to the complete
separation of development and verification teams, cross-
validation of changes is achieved by both developers and
validators. The criterion for software plans to be in process is
provided by the fact that the software plan documents of all
processes in the software development life cycle are written
before the start of the development and are accessible to all.
These plans are; software certification liaison process plan
for managing the process between software certification
authority and project managers, software quality assurance
plan for how to check the compliance of software processes
according to plans, software configuration management plan
for how to manage each configuration part and software
development plan for how to develop software and lastly
software verification plan for software verification activities.
Thanks to these plans, it was possible for each newcomer
joining to the team to learn the workflow and a
standardization was provided to them on how each process
would proceed. Many of the software development,
configuration and verification standards have helped to
prevent a mistake, and a certain standardization has been
achieved. For structural coverage analysis, “Decision
Structural Coverage Criterion” is used as the criterion that
seems sufficient for Level B. This ensures that all software
requirements are covered by test cases and actions are taken
to correct any inconvenience. The software includes
verifiable high-level requirements and verifiable low-level
requirements associated with these requirements [21]. The
traceability of the higher level requirements with the lower
level requirements as well as the lower level requirements
with the code has been established, thus checking that the
expected functionality in the software flows to the lower
level requirements correctly. Traceability of lower-level
requirements was established through comments in the tests
to verify that each requirement was tested. After the codes
are developed, they are reviewed by a person other than the
developer according to the code development control table.
All software-related products (code, test, plan documents,
requirements, etc.) are stored in configuration management
tools for each product to prevent unauthorized access.
Authorization conditions are defined for each individual. The

33 Oğuzhan Demir and İbrahim Seyfullah Babaarslan: A Software Verification Approach That Complies with
DO-178B Certification Rules on UAV’s Flight Control Computer

transition criteria required for the initiation and completion of
a process are defined and applied in order to ensure the
continuation of the interconnected processes. Architecture
and algorithm verifications are provided by integrated and
partition-level tests and code reviews.

References
[1] NATO, STANAG 4671 Unmanned Aircraft Systems

Airworthiness Requirements (USAR) (2017).

[2] SAE, ARP 4761 - Guidelines and Methods for conducting the
Safety Assessment Process on Civil Airborne Systems and
Equipment (1996).

[3] RTCA, DO-178B, Software Considerations in Airborne
Systems ans Equipment Certification (1992).

[4] Software Testing Material Site,
https://www.softwaretestingmaterial.com/integrationtesting/#
What-is-Bottom-Up-Approach, last accessed 10/08/2019.

[5] Herrmann, D. S. (1999). Software safety and reliability:
Techniques, approaches, and standards of key industrial
sectors. Los Alamitos, CA: IEEE Computer Society.

[6] Alspaugh, T. A., S. R. Faulk, K. H. Britton, R. A. Parker, D.
L. Parnas, and J. E. Shore 1992 “Software requirements for
the A-7E aircraft,” Tech. Rep. NRL/FR/5546-92- 9194, Naval
Research Lab., Washington DC.

[7] Busser, R. D., M. R. Blackburn, A. M. Nauman 2001
Automated Model Analysis and Test Generation for Flight
Guidance Mode Logic, Digital Avionics System Conference.

[8] Hayhurst, Kelly J., C. Michael Holloway, Cheryl A. Dorsey,
John C. Knight, Nancy G. Leveson, G. Frank McCormick, and
Jeffery C. Yang 1998 Streamlining Software Aspects of
Certification: Technical Team Report on the First Industry
Workshop. NASA/TM-1998-207648, April.

[9] Johnson, Leslie A. (Schad) 1998 DO-178B,"Software
Considerations in Airborne Systems and Equipment
Certification" STSC Crosstalk, October.
http://www.stsc.hill.af.mil/crosstalk/1998/10/.

[10] Salmon, David 1993 Assemblers And Loaders, Ellis Horwood
Ltd (Ellis Horwood Series in Computers and Their

Applications) Market Cross House, Cooper Street, Chichester,
PO19 1EB, West Sussex, UK. ISBN 0130525642.

[11] Rierson, L. (2013). Developing Safety-Critical Software.
Abingdon, United Kingdom: Taylor & Francis.

[12] Patel, Parnasi & Bhatt, Chintan. (2019). Structural Coverage
Analysis Methods. 10.4018/978-1-5225-7455-2.ch002.

[13] H. D. Desai, "Test Case Management System (TCMS)," 1994
IEEE GLOBECOM. Communications: The Global Bridge,
San Francisco, CA, USA, 1994, pp. 1581-1585 vol. 3, doi:
10.1109/GLOCOM.1994.513041.

[14] Mandava, R. B., & Arcand, J. F. (2007). U.S. Patent No. 7,
203, 928. Washington, DC: U.S. Patent and Trademark Office.

[15] Defect Management Process: How to Manage a Defect
Effectively. (2020, April 16). Retrieved from
https://www.softwaretestinghelp.com/defect-management-
process/.

[16] Jacklin, Stephen & Lowry, Michael & Schumann, Johann &
Gupta, Pramod & Bosworth, John & Zavala, Eddie & Kelly,
John & Hayhurst, Kelly & Belcastro, Celeste & Belcastro,
Christine. (2004). Verification Validation and Certification
Challenges for Adaptive Flight-Critical Control System
Software. Collection of Technical Papers - AIAA Guidance,
Navigation, and Control Conference. 4. 10.2514/6.2004-5258.

[17] Escudero, César & Delmas, Rémi & Bochot, Thomas & David,
Matthieu & Wiels, Virginie. (2018). Automatic Generation of DO-
178 Test Procedures. 10.1007/978-3-319-77935-5_27.

[18] Cook, Stephen & Haverkamp, Glenn. (2020). Challenges and
Opportunities for Software Development and Verification on
Military Aircraft Systems. 10.2514/6.2020-0238.

[19] Jasim, Omar & Veres, Sandor. (2020). Verification Framework
for Control System Functionality of Unmanned Aerial
Vehicles.

[20] Seabridge, Allan & Moir, Ian. (2019). Verification of System
Requirements. 10.1002/9781119611479.ch7.

[21] O'Regan, Gerard. (2019). Verification of Safety-Critical
Systems. 10.1007/978-3-030-28494-7_13.

[22] Yu, Junchong. (2020). Test Verification. 10.1007/978-981-15-
2894-1_16.

