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Abstract: Many diabetic mellitus patients envision a non-invasive method of blood glucose measurement since they require 

periodic monitoring of their blood glucose levels to ensure that it is stable and within the normal range. In this study, we detected 

glucose concentration using commercial light emitting diodes (LEDs) with a wavelength of 700–1600 nm. Light of long 

wavelengths (e.g. NIR) infiltrate human skin and reach the blood vessel lining, thereby aiding in the non-invasive measurement of 

blood glucose concentration. To demonstrate this, the concentration of glucose solutions was measured using red and NIR-LEDs in 

a non-invasive manner. The sensitivity of glucose detection was greater when light of wavelength below 1000 nm was used, owing 

to the absorption of wavelengths above 1000 nm by water. Furthermore, we controlled the input current of the red and NIR-LEDs 

to confirm the light intensity deviation with increasing glucose concentrations and suggested the optimum wavelength of light 

using this in-vitro system. Among various LEDs, the 700 nm LED showed higher light intensity deviation with change in injection 

current compared to LEDs with the other wavelengths. In particular, compared to other LEDs, a stark difference was observed in the 

light intensity of the 700 nm LED while measuring glucose concentrations in the range of 50–100 mg/dl. 
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1. Introduction 

Currently, diabetes mellitus is one of the significant public 

health issues affecting more than 400 million people 

worldwide. Moreover, this number is expected to rise by 

approximately 55% within the next 25 years [1]. Diabetes 

mellitus is a type of metabolic disease in which the blood 

glucose (blood sugar) level increases dramatically from the 

standard base value, leading to a condition known as 

hyperglycaemia [2, 3]. It occurs primarily due to lifestyle 

changes such as the consumption of unhealthy food, smoking, 

drinking, and stress [4, 5]. These lifestyle changes increase 

the blood sugar level due to inadequate insulin production in 

blood cells or improper cellular response to the insulin 

produced. Diabetes can lead to significant health 

complications such as cardiovascular diseases, kidney 

damage, stroke, amputation of arms or legs, and blindness [6]. 

Therefore, it is essential to monitor the blood glucose level 

periodically and ensure that it is stable and within the normal 

range. 

Diabetic patients usually use a glucose meter to measure 

the blood glucose level. This is an invasive detection method 

involving the pricking of fingers using a lancet to obtain a 

few drops of blood [7-10], which is placed on a stripe and 

inserted into the glucose meter. Inside the glucose meter, a 

series of chemical reactions occur, resulting in the formation 

of potassium ferrocyanide, which interacts with the metals on 

the electrode and causes the flow of electric current between 

the electrodes. The more the concentration of glucose in the 

blood, the more the amount of potassium ferrocyanide 

produced and more the current flow between the electrodes. 

The strength of this current determines the blood glucose 

level [7-10]. However, these devices are expensive and 

involve an invasive procedure. 

Recently, specific non-invasive techniques have been 
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introduced to measure blood glucose levels. These serve as an 

excellent alternative to the glucose meter, which involves 

removing a few drops of blood. These techniques possess 

specific optical, transdermal, and thermal properties, which aid 

in non-invasive blood glucose concentration [11-15]. Some of 

the key advantages of these non-invasive measurement 

methods include relief from pain, comfort, and the lack of 

infection due to the absence of finger pricking. Specific 

non-invasive methods of glucose measurement, such as 

infrared (IR) spectroscopy, have been popular for several years. 

However, the establishment of a method producing further 

reliable results has not been achieved yet. Furthermore, these 

systems still have a more significant volume and the full 

bandwidth of the IR spectrum. Moreover, it can be easily 

absorbed by water and other organic human tissue components 

such as hemoglobin, fat, protein, and lactic acid. 

In this study, we determined the concentrations of various 

glucose solutions using commercial red and near-IR 

(NIR)-light-emitting diodes (LEDs) in the wavelength of 

700–1600 nm. The LEDs have a narrow bandwidth, portable, 

and overcome the limitations of other light sources [16, 17]. 

For glucose detection, we used red, and NIR-LEDs of 

wavelengths below 1000 nm since light above 1000 nm 

wavelength is absorbed by water. Furthermore, we controlled 

the input current of the red and NIR-LEDs to confirm the 

light intensity deviation with increasing glucose 

concentrations and suggested the optimum wavelength of 

light using this in-vitro system. 

2. Experimental Procedures 

Glucose solutions of various concentrations, including 30, 

50, 110, 150, 250, and 400 mg/dl were prepared by dissolving 

pure D–(+)–glucose (C6Hq12O6; Sigma Aldrich) in deionized 

(DI) water. The amount of light absorbed by the solution was 

measured using a non-invasive system comprising of red and 

NIR-LEDs, glucose solution in a cuvette, a power source, and 

a spectrophotometer. The wavelengths of the red and 

NIR-LEDs (purchased from Thorlabs) used in the 

experiments include 700, 730 (red), 780, 851, 870, 910, 940, 

1200, 1300, 1450, 1550, and 1600 nm (NIR). Keithley 2400 

served as the power source that provided the current for the 

red and NIR-LEDs. The amount of light transmitted through 

the glucose solutions was measured by a spectrophotometer 

(Ocean optics flame wave 2000 and BWSpec). 

3. Results and Discussion 

According to American Diabetes Association, the 

preprandial blood glucose level of normal, healthy individuals 

must be between 80 and 130 mg/dl, that is, 4-6 mmol/l, and the 

postprandial blood glucose level must be less than 180 mg/dl, 

that is, 10 mmol/l [18]. We prepared six glucose (dextrose 

monohydrate) solutions of concentrations 30, 50, 110, 150, 

250, and 400 mg/dl, using equation (1). 

X mg/dl=X mg of glucose + 100 ml of DI water   (1) 

The concentrations of the glucose solutions were also 

confirmed using a commercial digital measurement system 

that is used for detecting blood glucose levels. We transferred 

2.2 ml of each glucose solution into a cuvette and measured 

the change in light intensity caused by each of these solutions. 

 

Figure 1. Actual glucose concentrations and glucose meter measurement of 

glucose concentrations. 

Figure 1 shows the various glucose concentrations used in 

the experiment and the actual concentration of the solutions 

obtained using a glucose meter. We found that the glucose 

concentrations used in the experiment were similar to that of 

the glucose meter reading. The output light intensity of the red 

and NIR LEDs after passage through the different glucose 

solutions was recorded to determine the correlation between 

the measured value and the expected glucose concentration. 

 

Figure 2. (a) Schematic representation of the non-invasive measurement 

system. (b)-(d) Images of the non-invasive measurement system. 

A schematic representation of the non-invasive system is 

shown in Figure 2 (a). The cuvette was surrounded by the 

block and put in the fixed site in the block to prevent the other 

scattered light. Scattered light can be in any direction/angle 

(from backscattering to forward scattering), and is affected by 

material structure and energy of incident light. In addition, to 

block any interference between the LED light and the cuvette 

wall, we placed a dark slit with a micro-hole in front of the 

cuvette. 

A normal optical measurement system has several issues. 
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First is the absorption of light by water [19, 20], and the other 

is the absorption of light by other biological materials such as 

hemoglobin and nutrients [21, 22]. The total blood volume in 

our body consists of approximately 60% plasma that includes 

water (90%), proteins (7%), inorganic salts (0.5%), lipids 

(0.4-0.7%), and only 0.07-0.01% of glucose [23]. Furthermore, 

some major optical parameters such as wavelength and power 

of the incident light affect the interaction between the light and 

the glucose solution in the cuvette [24]. 

As light enters the glucose solution, it interacts with glucose 

particles and is absorbed, transmitted, or scattered. When a 

material absorbs light, the light or photon's energy is used up 

as a result of the interaction between the light and the material. 

The scattering of light by the particles in a solution is referred 

to as Rayleigh scattering. Rayleigh scattering can be caused by 

sufficiently small particles of any shape [24]. 

Additionally, the absorption of light by these particles 

strongly depends on the wavelength of light transmitted. 

When the light of a particular wavelength strikes particles in 

solution, the bond between the component atoms vibrate and 

absorb specific wavelengths. Besides, the amount of light 

absorbed by a substance is directly proportional to the 

effective path length [25]. In glucose solutions, the absorbance 

depends on the amount of glucose in water. The remaining 

light is transmitted. Therefore, the concentration of glucose 

solution can be determined by analyzing the wavelength or 

intensity of transmitted light. 

 

Figure 3. EL intensity in the absence of glucose solution, with water, and glucose solutions of different concentrations when an LED light of (a) 1200 nm, (b) 

1300 nm, (c) 1450 nm, (d) 1550 nm, and (e) 1600 nm wavelengths were injected. 

Figures 2 (b)-(d) show the non-invasive measurement system 

consisting of red and NIR-LEDs, with and without a cuvette. 

Figure 3 shows that when wavelengths greater than 1000 nm 

was used to measure the concentration of the glucose solutions, 

the light was almost entirely absorbed by the water in the 

solution. These graphs show the light intensities detected by the 

spectrophotometer without a non-invasive system, with water 

in the cuvette, and glucose solutions in the cuvette. The 

wavelengths between 1200 and 1600 nm were almost entirely 

absorbed by water. Therefore, we used red and NIR-LEDs of 

wavelength below 1000 nm. 

The maximum intensity was set close to 65,000 values in the 

spectrophotometer, and the injection current to reference current 

ratio was divided into four categories, as shown in Table 1. 

Table 1. Four categories of injection current to reference current ratio (%) at various LED wavelengths. 

LED Wavelength (nm) 
Current I (mA) @ Injection Current/Reference Current*(%) 

I (mA)@25% I (mA)@50% I (mA)@75% I (mA)@100% 

700 3 6 9 12 

730 2 3 4 5 

780 0.5 0.8 1.1 1.4 

851 2 5 8 10 

870 3 5 7 9 

910 1 2 3 4 

940 6 12 18 24 

*Reference current: the applied current with LED intensity near the 65,000 value 
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The peak intensity of light transmitted through water (blank) and glucose solutions of 30, 50, 100, 150, 250, and 400 mg/dl 

were measured at various wavelengths of red and NIR-LEDs by changing the injection current, as shown in Figure 4. 

 

Figure 4. EL peak intensities obtained by passing LED light of different wavelengths through as glucose solutions of various concentrations and water. The LED 

wavelengths used in the experiments: (a) 700 nm, (b) 730 nm, (c) 780 nm, (d) 851 nm, (e) 870 nm, (f) 910 nm, and (g) 940 nm. 

 

Figure 5. EL intensities of LED light of different wavelengths when passed though glucose solutions of various concentrations and water. The LED wavelengths 

used in the experiments were: (a) 700 nm, (b) 730 nm, (c) 780 nm, (d) 851 nm, (e) 870 nm, (f) 910 nm, and (g) 940 nm. 
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Figure 6. Plot of the deviation of EL intensity (Imax.-Imin.) of the glucose 

solutions versus IInjection current/IReference current ratio. 

As the injection current increased, all wavelengths of the 

two LEDs showed higher light peak intensity and similar peak 

positions. In particular, when the injection current to reference 

current ratio was above 50%, light wavelengths of 700, 780, 

870, and 940 nm showed a relatively large deviation in light 

intensity compared to other wavelengths of 730, 851, and 910 

nm. Graphs of the whole light intensity versus injection 

current are shown in Figure 5. 

The range of glucose solutions between 50-110 mg/dl and 

110-150 mg/dl are significant for the patient of diabetic 

Mellitus, as mentioned above. The 700 nm wavelength of light 

showed the abrupt change in those ranges when the injection 

current was increased. Moreover, the light detection results 

show a similar tendency in the 700 nm wavelength of LEDs 

than other wavelengths in all injection currents. 

Figure 6 shows a graphical representation of the deviation in 

electroluminescence (EL) intensity (Imax.-Imin.) of the glucose 

solutions versus IInjection current/IReference current ratio. The red and 

NIR-LED wavelengths of 700, 780, 870, and 940 nm show a 

linear increase in light intensity. In particular, the 700 and 940 nm 

wavelengths show a radical increase in the light intensity 

deviation curve compared to other wavelengths. Generally, the 

780 and 940 nm wavelengths have been used to detect glucose 

concentration, since these wavelengths match the absorption 

wavelengths of the chemical bonds in glucose [26]. The 700 nm 

wavelength has not been well known due to the need to fabricate 

a high-efficiency light source. However, this wavelength is not 

absorbed by water or other organic contaminants such as 

hemoglobin, fat, and protein [16, 27]. Moreover, the linear 

increase in light intensity aids in the precise detection of glucose 

concentration by blending with other wavelengths. Therefore, we 

have suggested the 700 nm red LED as a probable candidate for 

detecting blood glucose levels. 

4. Conclusions 

We measured the intensity of light transmitted through 

glucose solutions of various concentrations using red and 

NIR-LEDs and a light detector to measure the amount of 

injection current. We found that wavelengths beyond 1000 nm 

were almost entirely absorbed by water. Red and NIR-LEDs 

of different wavelengths less than 1000 nm were used as the 

light source, and the amount of light transmitted light through 

glucose solutions of different concentrations was measured 

using a spectrophotometer. Through these measurements, we 

can found that the 700 nm wavelength of the red LED is a 

probable candidate for blood glucose level detection detect 

compared to other LED wavelengths of LEDs, as shown by 

the deviation in EL intensities and maximum and minimum 

intensity in the presence of injection current. The 700 nm 

wavelength is not absorbed by water and other organic 

contaminants such as hemoglobin, fat, and protein. Therefore, 

to aid in the precise detection of glucose concentration, the 

light source of the non-invasive measurement system can be 

combined with an LED of 700 nm wavelength or other 

wavelengths below 1000 nm. Although, the requirements 

have yet to be met, and there is still a long way to go for these 

novel approaches to replace the current finger-prick glucose 

meters, we believe that this work provides a more advanced 

detection system to monitor the blood glucose level of 

diabetics in a non-invasive manner. 
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