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Abstract: Kaplan-Meier estimate or proportional hazards regression is commonly used directly to estimate the effect of 

treatment on survival time in randomized clinical studies. However, such methods usually lead to biased estimate of treatment 

effect in non-randomized or observational studies because the treated and untreated groups cannot be compared directly due to 

potential systematical difference in baseline characteristics. Researchers have developed various methods for adjusting biased 

estimates by balancing out confounding covariates such as matching or stratification on propensity score, inverse probability 

treatment weighting. However, very few studies have compared the performance of these methods. In this paper, we conducted 

an intensive case study to compare the performance of various bias correction methods for non-randomized studies and applied 

these methods to the right-heart catheterization (RHC) study to investigate the impact of RHC on the survival time of critically 

ill patients in the intensive care unit. Our findings suggest that, after bias adjustment procedures, RHC was associated with 

increased mortality. The inverse probability treatment weighting outperforms other bias adjustment methods in terms of bias, 

mean-squared error of the hazard ratio estimators, type I error and power. In general, a combination of these bias adjustment 

methods could be applied to make the estimation of the treatment effect more efficient. 

Keywords: Confounder, Right Heart Catheterization, Propensity Score, Proportional Hazards Model,  

Kaplan-Meier Estimate, Non-randomized Study 

 

1. Introduction 

In randomized clinical studies, the effect of treatment on 

patients’ survival time can be estimated by comparing treated 

and untreated subjects directly. In this case, Kaplan-Meier 

estimate or proportional hazards regression is used directly to 

estimate the effect of treatment on survival time. However, it 

is not easy to materialize a randomized study in daily life. 

There is an increasing number of nonrandomized studies in 

recent years. In an observational (or nonrandomized) study, 

the treated and untreated groups cannot be compared directly 

because they may systematically differ at baseline 

characteristics. For example, the patients’ health condition 

and medical history are essential factors when doctors make 

a diagnosis. The treatment assignment to a patient is 

dependent on covariates like age, gender, health condition, 

and medical history, etc. As a result, the effect of medical 

treatment on patients’ survival time may be confounded by 

their baseline covariates. Therefore, systematic differences in 

baseline characteristics between the treated and untreated 

groups must be considered in assessing the impact of 

treatment on survival time in observational studies. 

The propensity score plays an important role in balancing the 

treated and untreated subjects to make them comparable. 

Rosenbaum and Rubin proposed that propensity score is the 

conditional probability assignment to a particular treatment 

given a vector of observed covariates [1-2]. They indicated that 

adjustment for the scalar propensity score contributes to control 

all confounders and eliminate bias due to observed covariates. 

Propensity Score is a scalar function of the covariates that 

includes the information required to achieve the balance of 

distribution of baseline covariates. The most common methods 

based on propensity score are matching, stratification, regression 

adjustment, and probability weighting [3-4]. With the 
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application of the propensity score, the treated and untreated 

patients who have similar propensity scores will have a similar 

distribution of observed background covariates. Therefore, the 

effect of treatment will be unrelated to confounders, as a result 

of which, treated and the untreated subject is comparable like 

what we could attain in randomized studies. 

The dataset that motivated this paper pertains to day 1 of 

hospitalization and the treatment variable “swang1” is 

whether or not a patient received a Right Heart 

Catheterization (RHC), also called the Swan-Ganz catheter, 

on the first day in which the patient qualified for the 

SUPPORT study [5]. RHC is a test used to see how well your 

heart is pumping (how much blood it pumps per minute) and 

to measure the pressures in the heart and lungs. In an RHC, 

the doctor guides a special catheter (a small, hollow tube) to 

the right side of the heart then passes the tube into the 

pulmonary artery. The doctor observes blood flow through 

the heart and measures the pressures inside the heart and 

lungs. A sensitivity analysis provided some evidence that 

patients receiving RHC had decreased survival time. But the 

sensitivity analysis indicated that any unmeasured 

confounder would have to be somewhat strong to explain 

away the results. Our goal is to estimate the effect of RHC 

treatment on the patients’ survival time after reducing the 

confounding bias. However, systematic differences in 

patients in the two groups may exist, and these differences 

could lead to a biased estimate of treatment effect; which is 

known as the causal effect in a nonrandomized study. 

The RHC dataset includes the treatment variable “swang1”. 

Denote the “treatment 0” as not receiving RHC and “treatment 

1” receiving RHC. The observed time and censored indicator of 

each patient could be indicated from the variable “dthdte”, 

which means “date of death”, and variable “lstctdte” which 

represents “date of last contact”. The patients with “NA” in 

“date of death” are recognized as censored and otherwise, they 

are uncensored. The observed time of each censored patient in 

the study is determined by the “date of last contact” and the 

observed time of each uncensored patient in the study is 

determined by the “date of death”. Besides, there are 50 

covariates included in the dataset with information of 5735 

patients: “age”, “sex”, “race”, “edu”(years of education), 

“income”, “ninsclas”(medical insurance), “cat1”(primary 

disease category), “das2d3pc”(Duke activity status index), 

“dnr1”(DNR status on day1), “ca”(cancer), “surv2md1”(Support 

model estimate of the prob. of surviving 2 months), 

“aps1”(APACHE score), “scoma1”(Glasgow Coma Score), 

“ wtkilo1”(weight), “temp1”(temperature), “meanbp1”(mean 

blood pressure), “resp1”(respiratory rate), “hrt1”(heart rate), 

“pafi1” (PaO2/FIO2 ratio), “paco21” (PaCo2), “ph1”(PH), 

“wblc1”(WBC), “hema1”(hematocrit), “sod1”(sodium), 

“pot1”(potassium), “crea1”(creatinine), “bili1”(bilirubin), 

“alb1”(albumin), and categories of admission diagnosis: “resp”, 

“card”, “neuro”, “gastr”, “renal”, “meta”, “hema”, “seps”, 

“trauma”, “ortho”; categories of comorbidities illness: 

“cardiohx”, “chfhx”, “dementhx”, “psychhx”, “chrpulhx”, 

“renalhx”, “liverhx”, “gibledhx”, “malighx”, “immunhx”, 

“transhx”, “amihx”. 

As mentioned before, the distributions of baseline 

covariates between treatment 0 and treatment 1 subjects are 

quite different. What’s more, as we will see in the matching 

methods, the distributions of the propensity score in the two 

treatment groups are different, which reveals the systematic 

difference in the two studies and the problem of confounding. 

The remainder of the article focus on the application and 

comparison of the following three methods. Section 2 

introduce matching on propensity score method. Section 3 

introduce stratification on propensity score method. Section 4 

introduce inverse probability treatment weighting method. 

We apply each method to the Right Heart Catheterization 

study to compare the survival time of RHC treated group and 

control group. The article concludes with a discussion on the 

choice of methods under different scenarios in Section 5. 

2. Matching on Propensity Score 

The propensity score is presented in both randomized trials 

and observational studies. In randomized trials, the true 

propensity score is known and defined by the study design. In 

observational studies, true propensity scores are generally not 

known but can be estimated through the data [6]. The 

propensity score is the conditional probability assignment to a 

particular treatment given a vector of observed covariates [1]: 

����� = ���	� = 1|��� 

Where the dependent variable is binary, 	�=1 is associated 

with the RHC treatment and 	�=0 is corresponding to control. 

��, i=0, 1 are observed values of the vector of covariates [6]. 

Propensity scores are generally calculated using one of two 

methods: Logistic regression or Classification and 

Regression Tree Analysis [6]. In practice, the propensity 

score is most often estimated using a logistic regression 

model, in which treatment status is regressed on observed 

baseline characteristics [7]. The estimated propensity score is 

the predicted probability of treatment derived from the fitted 

regression model [8]. 
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Where the parameters α, β are estimated by maximum 

likelihood logistic regression. 

Matching is a commonly used method to select “matched” 

pairs on background covariates that we believe need to be 

controlled. Even though it seems difficult to find patients 

who are similar on all important covariates, especially when 

there are plenty of covariates of interest, propensity score 

matching solves this problem by allowing us to control for as 

many covariates as we want simultaneously by matching a 

single scalar variable [9]. Rosenbaum and Rubin introduced 

three techniques for constructing a matched sample: (i) 

nearest available matching on the estimated propensity score; 

(ii) Mahalanobis metric matching including the propensity 

score; and (iii) nearest available Mahalanobis metric 

matching within calipers defined by the propensity score. 
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Therefore, once the propensity scores are estimated by the 

logistic regression method, we apply the nearest available 

matching approach to reduce the confounding bias in the 

RHC study. In this method, the absolute difference between 

the estimated propensity scores for the control and treated 

groups is minimized [6]. Given randomly ordered control and 

treated subjects, the first treated subject is selected along with 

a control subject with a propensity score closest in value to it 

[10]. Generally, if a treated subject and a control subject have 

the same propensity score, the observed covariates are 

automatically controlled for [6]. Therefore, any differences 

between the treatment and control groups will be accounted 

for and will not be a result of the observed covariates. 

To confirm the effect of the propensity score matching 

method on reducing systematic difference, it is necessary to 

compare the covariates between treatment 0 and treatment 1 

before and after matching. Our goal is to reduce the difference in 

the mean of individual covariate between treatment 0 and 

treatment 1 after matching method. To decide whether there is a 

significant difference in the mean of individual covariate 

between treatment 0 and treatment 1, visualizations like box 

plots, bar plots are carried out first and then a two-sample t-test 

is applied to compare the results statistically. 

Since there are 50 covariates in the dataset makes it too 

complicated to conclude the changes that matching influenced, 

and according to the variable description, not all of the 

covariates are useful in the model. There may be some errors in 

analyzing the results of matching without any variable selection. 

The Lasso method has been tried first for variable selection in 

the Cox model. LASSO can be computed via R Package glmnet 

[11]. But the final results showed that there are still 42 covariates 

remaining in the model whose coefficient is larger than zero. It 

is not convenient to implement a comparison among all of the 

42 covariates. Then we can try to use the stepwise package 

which provides the final model with 28 covariates. Apparently, it 

is not the perfect result even though it provides a much simpler 

model. We can do further selection from the final 28 covariates. 

According to the Cox matching adjusted model with the 

selected covariates, table 1 comparing the P-value results of 

the Cox match adjusted model with full covariates and the 28 

covariates from the variable selection. The majority of the 28 

covariates in the stepwise final model have smaller P-value, 

which means the corresponding covariates are more 

significant in this model. Meanwhile, the P-value of some 

covariates increases relatively. Therefore, those covariates 

whose P-value becomes smaller while are less than 0.05 

before and after variable selection are reasonable to represent 

the most significant ones. It is more convenient to 

concentrate on these 9 covariates and compare the mean of 

them after the matching method. 

In order to confirm the effects of matching, first of all, we 

draw the boxplots and bar plots of these covariates chosen 

from stepwise before and after matching. Here we use the 

boxplot of “surv2md1”, “das2d3pc” and the results of 

propensity score and bar plots of “hema”, “chfhx”, “meta”, 

“chrpulhx”, “psychhx”, “dnr1Yes”, “renal”. Although plots 

are showing the approximate equivalence between treatment 

0 and 1, in favor of unbiased estimate of treatment effect 

before matching, it is not statistically significant at the 0.05 

level of significance. As a result, it is not enough to conclude 

the effect of matching only by the plots of covariates. Further 

statistical steps are necessary. To be specific, a two-sample t-

test is applied here to test whether the difference of a 

covariate’s mean in treatment 0 and treatment 1 is zero. 

Table 1. Comparison of the P-value results of the Cox match adjusted model 

with full covariates and the 28 covariates from the variable selection. 

Stepwise final model:   

covariates 
before variable 

selection 

after variable 

selection 

swang1 0.004955 0.00599 

surv2md1 1.92E-08 < 2e-16 

hemaYes 1.81E-13 3.74E-15 

das2d3pc 0.002177 0.000423 

ninsclasMedicare 0.124848 0.011959 

ninsclasMedicare & Medicaid 0.053879 0.208157 

ninsclasNo insurance 0.026792 0.037224 

ninsclasPrivate 0.515965 0.973867 

ninsclasPrivate & Medicare 0.285651 0.805867 

gastrYes 2.87E-06 8.14E-06 

chfhx 1.58E-03 0.00012 

metaYes 2.75E-04 0.000165 

chrpulhx 0.000105 0.0000127 

transhx 0.28426 0.000258 

psychhx 3.52E-03 0.002359 

dnr1Yes 1.08E-03 0.000182 

renalYes 0.000866 0.000335 

hrt1 4.77E-05 0.000196 

liverhx 0.804028 0.045018 

cardYes 0.000171 0.000259 

respYes 0.00042 0.000468 

neuroYes 0.001887 0.001994 

pafi1 0.109493 0.009555 

bili1 0.002447 0.02724 

sod1 0.021681 0.025196 

meanbp1 0.035547 0.104889 

dementhx 0.041714 0.052488 

cardiohx 0.062822 0.140563 

Table 2 indicates the mean and standard deviation of 

covariates in subsets under treat 0 and treat 1 before 

matching. Among the 9 significant covariates, there are 8 

covariates with P-value less than 0.05, which is sufficient 

evidence to reject the null hypothesis and conclude that the 

confounding bias exists. Similarly, the visualization and two-

sample t-test are conducted for relevant data after matching. 

It can be seen from the box plot of the PS’s before and after 

matching that the unbalance has been reduced a lot after 

matching. Also, the test statistics and P-value in table 3 

revealed that the differences between covariates under 

treatment 0 and 1 decreases, since most covariates’ P-value 

are larger than 0.05. Even though the P-value of “survmd1” 

and “dnr1” is still less than 0.05, the significance becomes 

less with the P-value increasing much more. 

Since the systematic differences between the patients in 

treatment 0 group and treatment 1 group have been greatly 

reduced, the effect of treatment on survival time could be 

compared directly. Figure 3 is the comparison plot of the 

Kaplan-Meier estimates before and after matching. The log-
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rank test statistic is 19.35 with P-value 1.00e-05 before 

matching, and 23.65 with P-value 1.20E-06 after matching. 

In other words, the result of the treatment effect (P-value 

1.00e-05) is not accurate statistically without matching 

adjustment. The results provided evidence that the difference 

of survival functions between the two groups is more 

significant at significance level 0.05 after propensity score 

matching and the patients who received RHC had lower 

survival time than those who did not receive RHC. 

 

Figure 1. Comparison for covariates before matching. 
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Figure 2. Comparison for covariates after matching. 
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Table 2. The mean and standard deviation of covariates before matching. 

before matching treatment 1 (N=2184) treatment 0 (N=3551) Comparison 

covariates Mean SD Mean SD Test statistics P-value 

surv2md1 0.57 0.2 0.61 0.19 7.3275 2.67E-13 

hemaYes 0.05 0.22 0.07 0.25 2.2391 0.02519 

das2d3pc 20.7 5.03 20.37 5.48 -2.2784 0.02274 

chfhx 0.19 0.4 0.17 0.37 -2.5732 0.0101 

metaYes 0.04 0.2 0.05 0.21 1.0255 0.3052 

chrpulhx 0.14 0.35 0.22 0.41 6.9412 4.32E-12 

psychhx 0.05 0.21 0.08 0.27 5.1115 3.30E-07 

dnr1Yes 0.07 0.26 0.14 0.35 8.0912 7.15E-16 

renalYes 0.07 0.25 0.04 0.2 -4.3965 1.12E-05 

PS 0.43 0.13 0.35 0.14 -22.637 < 2.2e-16 

Table 3. The mean and standard deviation of covariates after matching. 

after matching treatment 1 (N=2184) treatment 0 (N=2184) Comparison 

covariates Mean SD Mean SD Test statistics P-value 

surv2md1 0.57 0.2 0.62 0.19 5.325 1.09E-07 

hemaYes 0.05 0.22 0.08 0.27 2.2329 0.02564 

das2d3pc 20.7 5.03 20.15 5.39 -2.3187 0.02048 

chfhx 0.19 0.4 0.17 0.38 -1.3622 0.1732 

metaYes 0.04 0.2 0.05 0.22 0.78292 0.4337 

chrpulhx 0.14 0.35 0.14 0.35 -0.055431 0.9558 

psychhx 0.05 0.21 0.06 0.24 1.4305 0.1527 

dnr1Yes 0.07 0.26 0.13 0.34 4.8859 1.09E-06 

renalYes 0.07 0.25 0.06 0.24 -0.67794 0.4979 

PS 0.43 0.13 0.43 0.13 0.27235 0.7854 

 

 

 

Figure 3. Comparison plot of the Kaplan-Meier estimates before and after 

matching. 

3. Stratification on Propensity Score 

Stratification on propensity score can also ameliorate the 

confounding effects of covariates. Each observation for the 

subject is classified into a propensity quantile based on the 

propensity score [12]. According to Rosenbaum and Rubin’s 

results, creating five strata based on a continuous variable 

like the propensity quantile with the stratum boundaries 

determined by its distribution in the exposed and the 

comparison group combined eliminates approximately 90% 

of measured confounding [13]. Therefore, the patients can be 

assigned to five strata using the propensity score quantile as 

the cut-off. Within each stratum, the treated patients and 

untreated patients will have roughly similar propensity score 

values, also a similar distribution of the measured baseline 

covariates. The effect of the treatment can be estimated by 

comparing the outcomes directly between subjects with 

treatment 0 and subjects with treatment 1 in one stratum if 

the propensity score has been estimated correctly [7]. 

To confirm that the systematic difference has been reduced 

after stratification, it is necessary to compare the covariates’ 

mean under treatment 0 and treatment 1 before and after 

stratification. The same problem occurs here as with 

matching when there are 50 covariates in the dataset, which 

is too complex to conclude whether the stratification makes a 

difference. Variable selection will be operated again as 

before. Similarly, the Lasso method has been tried for 

variable selection but there are 32 covariates left in the final 

result with coefficients larger than zero. Therefore, I still 

apply stepwise here aiming to obtain a simpler model and 

then 28 covariates are selected from the stepwise function 

with stratification. A further selection is similar as before. 

According to the Cox stratification adjusted model with 

the selected covariates, table 4 comparing the P-value results 

of the Cox stratification adjusted model with full covariates 

and the 28 covariates from the variable selection. The 

majority of the 28 covariates in the stepwise final model have 

smaller P-value, which means the corresponding covariates 

are more significant in this model. Meanwhile, the P-value of 

some covariates increases relatively. So, those covariates 



38 Yi Xu and Yeqian Liu:  Bias Adjustment Methods for Analysis of a Non-randomized Controlled Trials of Right   

Heart Catheterization for Patients in ICU 

whose P-value becomes smaller while are less than 0.05 

before and after variable selection are chosen to represent the 

most significant ones. It is reasonable to concentrate on these 

8 covariates and compare the mean of them after the 

stratification. 

Table 4. Comparison of the P-value results of the Cox stratification adjusted 

model with full covariates and the 28 covariates from the variable selection. 

Stepwise final model (stratification)  

covariates 
before variable 

selection 

after variable 

selection 

swang1 1.87E-05 2.23E-06 

surv2md1 2.25E-15 < 2e-16 

hemaYes < 2e-16 < 2e-16 

das2d3pc 1.37E-04 2.71E-06 

ninsclasMedicare 1.11E-02 8.61E-03 

ninsclasMedicare & Medicaid 0.498918 0.681657 

ninsclasNo insurance 3.71E-03 4.88E-04 

ninsclasPrivate 0.385573 0.928321 

ninsclasPrivate & Medicare 0.414613 0.375537 

dnr1Yes 1.89E-06 7.78E-08 

bili1 3.92E-06 1.03E-05 

metaYes 2.52E-07 8.61E-07 

chfhx 3.21E-04 2.06E-06 

psychhx 1.34E-04 7.06E-05 

hrt1 0.000138 0.000312 

traumaYes 0.051076 0.004354 

gastrYes 0.0000523 0.013768 

transhx 0.051076 0.001106 

neuroYes 2.82E-08 0.000635 

sod1 5.28E-03 2.36E-03 

sexMale 0.111296 0.027512 

amihx 0.011171 0.013947 

age 0.001246 0.003172 

meanbp1 0.078033 0.035246 

renalYes 0.589645 0.028471 

alb1 0.136271 0.086081 

dementhx 0.017683 0.041219 

gibledhx 0.186017 0.061819 

chrpulhx 0.022417 0.073299 

To confirm the effects of stratification, a two-sample t-test 

is applied here to test whether the difference of a covariate’s 

mean in treatment 0 and treatment 1 is zero, which is related 

to test whether the systematic difference in covariates has 

been reduced. Table 5 shows the mean and standard deviation 

of corresponding covariates in subsets under treatment 0 and 

treatment 1 before stratification. All of the 8 covariates’ P-

value is less than 0.05. That is sufficient evidence to reject 

the null hypothesis and conclude that the confounding bias 

exists and the stratification adjustment is necessary when 

evaluating the effect of treatment on survival time. Similarly, 

the two-sample t-test is conducted for relevant data after 

stratification. It can be seen from the test statistics and P-

value in table 6 that the systematic differences between 

covariates under treatment 0 and treatment 1 decreases, since 

most covariates’ P-value increased and the significance of the 

difference in mean between treatment 0 and treatment 1 

decreased. Even though the P-value of the covariates is still 

less than 0.05, the significance becomes less with the P-value 

increasing. The reason for the zero P-value is that the 

stratified two-sample t-test function defines the extreme P-

value as zero. 

To compare the mean of selected covariates in the subject 

of treatment 0 and subject of treatment 1 more accurately and 

sufficiently, table 7 and 8 indicate the mean of each covariate 

in each stratification group and use two-sample t-test 

respectively to test whether there is a significant difference in 

the mean of covariates between treatment 0 and treatment 1 

after stratification. Apparently, most of the P-values are 

larger than 0.05 which concludes to fail to reject the null 

hypothesis and illustrates that the systematic difference and 

confounding bias are reduced. 

Since systematic differences between the patients in 

treatment 0 group and treatment 1 group have been greatly 

reduced, the effect of treatment on survival time is 

comparable. Figures 4 and 5 is the Cox proportional hazard 

regression model for treatment 0 and treatment 1 after 

stratification. It is obvious that the balance of the covariates 

is better achieved after stratification. Figure 6 are the 

comparison plots of the Kaplan-Meier estimates between 

treatment 0 and 1 in each stratification group. As we can see 

from the five plots, the survival time of patients after RHC 

treatment is relatively decreased, which leads to the same 

conclusion as propensity score matching. 

 

Figure 4. Cox proportional hazard regression model for treatment 0 after 

stratification. 

 

Figure 5. Cox proportional hazard regression model for treatment 1 after 

stratification. 



 Biomedical Statistics and Informatics 2021; 6(2): 32-41 39 

 

 

 

Figure 6. Comparison of the Kaplan-Meier estimates in each stratification group. 

Table 5. The mean and standard deviation of covariates before stratification. 

before stratification treatment 1 (N=2184) treatment 0 (N=3551) Comparison 

covariates Mean SD Mean SD Test statistics P-value 

surv2md1 0.57 0.2 0.61 0.19 7.3275 2.67E-13 

hemaYes 0.05 0.22 0.07 0.25 2.2391 0.02519 

das2d3pc 20.7 5.03 20.37 5.48 -2.2784 0.02274 

dnr1Yes 0.07 0.26 0.14 0.35 8.0912 7.15E-16 

chfhx 0.19 0.4 0.17 0.37 -2.5732 0.0101 

psychhx 0.05 0.21 0.08 0.27 5.1115 3.30E-07 

sod1 137.04 7.68 136.33 7.6 3.3864 0.000713 

PS 0.43 0.13 0.35 0.14 -22.637 < 2.2e-16 
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Table 6. The mean and standard deviation of covariates after stratification. 

after stratification treatment 1 (N=2184) treatment 0 (N=3551) Comparison 

covariates Mean SD Mean SD Test statistics P-value 

surv2md1 0.57 0.2 0.61 0.19 0.03874876 0 

hemaYes 0.05 0.22 0.07 0.25 0.01464931 0.02702 

das2d3pc 20.7 5.03 20.37 5.48 -0.3293159 0.02354 

dnr1Yes 0.07 0.26 0.14 0.35 0.0695531 0 

chfhx 0.19 0.4 0.17 0.37 -0.02675702 0.01164 

psychhx 0.05 0.21 0.08 0.27 0.03475315 0 

sod1 137.04 7.68 136.33 7.6 0.7042972 0.00052 

PS 0.43 0.13 0.35 0.14 -0.08168341 0 

Table 7. The mean of covariates in each stratification group. 

after stratification Mean N (%) PS surv2md1 hemaYes das2d3pc dnr1Yes chfhx psychhx sod1 

Group 1 
treat 0 938 (26.4%) 0.173 0.586 0.018 19.809 0.172 0.143 0.071 137.280 

treat 1 209 (9.6%) 0.191 0.448 0.048 20.056 0.105 0.158 0.053 136.785 

Group 2 
treat 0 783 (22.1%) 0.317 0.611 0.061 19.531 0.193 0.147 0.110 136.718 

treat 1 364 (16.7%) 0.320 0.563 0.044 19.983 0.088 0.173 0.060 136.217 

Group 3 
treat 0 707 (19.9%) 0.382 0.603 0.103 20.769 0.105 0.154 0.086 136.992 

treat 1 440 (20.1%) 0.383 0.567 0.061 21.075 0.064 0.136 0.048 136.925 

Group 4 
treat 0 658 (18.5%) 0.445 0.633 0.131 21.669 0.096 0.246 0.065 136.766 

treat 1 489 (22.4%) 0.450 0.600 0.090 21.284 0.057 0.264 0.041 135.370 

Group 5 
treat 0 465 (13.1%) 0.576 0.613 0.032 20.481 0.108 0.163 0.062 137.538 

treat 1 682 (31.2%) 0.583 0.586 0.026 20.622 0.066 0.205 0.038 136.565 

Table 8. Comparison of the mean of covariates in each stratification group. 

after stratification  N (%) PS surv2md1 hemaYes das2d3pc dnr1Yes chfhx psychhx sod1 

Group 1 
Test statistics 938 (26.4%) -4.5104 8.0084 -2.5682 -0.6369 2.3736 -0.55698 0.97569 0.96355 

P-value 209 (9.6%) 7.14E-06 2.84E-15 0.01035 0.5243 0.01778 0.5776 0.3294 0.3355 

Group 2 
Test statistics 783 (22.1%) -1.6964 4.3185 1.191 -1.4198 4.554 -1.1405 2.672 0.97937 

P-value 364 (16.7%) 0.09008 1.71E-05 0.2339 0.1559 5.83E-06 0.2543 0.007646 0.3276 

Group 3 
Test statistics 707 (19.9%) -0.67512 3.1893 2.4497 -0.94883 2.3777 0.82698 2.4687 0.14676 

P-value 440 (20.1%) 0.500 0.001 0.014 0.343 0.018 0.408 0.014 0.883 

Group 4 
Test statistics 658 (18.5%) -3.1341 2.6375 2.1539 1.1147 2.3888 -0.67711 1.7983 3.2663 

P-value 489 (22.4%) 0.002 0.008 0.031 0.265 0.017 0.499 0.072 0.001 

Group 5 
Test statistics 465 (13.1%) -2.412 2.7371 0.58299 -0.45618 2.5111 -1.7803 1.8879 1.8697 

P-value 682 (31.2%) 0.016 0.006 0.560 0.648 0.012 0.075 0.059 0.062 

 

4. Inverse Probability of Treatment 

Weighting 

Kaplan Meier estimator is widely used in clinical studies to 

compare survival time between different treatment groups. 

However, if certain covariates corresponding to low survival 

rates are more strongly represented in one group than another, 

which is considered as over-represented, the survival estimated 

by the Kaplan-Meier method form one group would appear to 

be worse than survival estimated from the other group. 

Another approach reducing confounding effects was proposed 

by Xie and Liu in 2005 [14]. They developed the Adjusted 

Kaplan Meier estimator (AKME) using the inverse probability 

of treatment weighting (IPTW). The estimated propensity 

score, the probability of being treated in a certain group 

conditioning on a set of covariates, is used to construct the 

weights for subjects. A weight is assigned to each individual as 

the inverse of the propensity score. For example, a subject with 

a higher propensity score, which is considered as over-

represented, is assigned with a lower weight. On the other 

hand, subjects with a lower propensity score, considered as 

under-represented, will be given a higher weight [15]. They 

also proposed a weighted log-rank test for statistical 

comparison of the survival functions of the two groups. 

As with the matching and stratification, we apply the 

IPTW method to the Right Heart Catheterization study. The 

propensity score of each patient is estimated using logistic 

regression in the same way. Then the Kaplan-Meier 

estimators of both the treatment group and control group are 

adjusted with the weight as the inverse of the propensity 

score. If the propensity score is estimated correctly, the 

sampling bias will be removed after weighting adjustment. 

Figure 7 shows the Kaplan-Meier estimator on the survival 

function of the two groups before and after weighting 

adjustment. We can see from the plot that the survival curve 

of the subject with treatment 1 is lower than the subject with 

treatment 0. It becomes more obvious after adjustment. We 

also perform the log-rank test for statistical comparison of 

the survival functions. Table 9 shows the comparison of the 

hazard ratio estimate with or without IPTW procedure. The 

log-rank test statistic without weighting is 19.35 with P-value 

1.00E-05, while the weighted log-rank test statistic is 75.45 

with a P-value less than 2.00e-16. We conclude that the 

difference in survival functions between the two groups is 
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more significant at significance level 0.05 after weighting 

with the inverse of the propensity score. Moreover, the plot 

shows that the survival time of subjects with treatment 1, 

who received the RHC, tends to be lower than the survival 

time of those not receiving RHC. 

 

Figure 7. The Kaplan-Meier estimator on survival function before and after 

weighting adjustment. 

Table 9. Comparison of the hazard ratio estimate before and after IPTW 

procedure. 

 before IPTW after IPTW 

hazard ratio 1.159 1.18284 

95% CI (1.085, 1.237) (1.139, 1.229) 

Log-rank 19.35 75.45 

P-val 1.00E-05 <2e-16 

5. Discussions and Conclusions 

In this paper, we discussed three bias adjustment methods 

for causal inference in non-randomized clinical trials. 

According to the application results from three bias 

adjustment methods on the Right Heart Catheterization study, 

we conclude from the Cox proportional-hazards regression 

that patients receiving RHC had decreased survival time. 

Moreover, the difference in survival time between the two 

groups becomes more significant at significance level 0.05 

after reducing the confounding bias. 

Matching on propensity score is a good method for 

removing the bias between the treated group and the control 

group on the background covariates. It is preferred when the 

sample size of the control group is much large than the 

sample size of the treatment group. Stratification is preferred 

when the sample size is large enough since the estimation 

would be unreliable if there are not enough patients in each 

stratum. The IPTW method showed better performance in 

general. One may consider matching or stratification when 

the control group variance is much larger than the variance of 

the treatment group. Overall, a combination of the methods 

could be applied to make the estimation of the treatment 

effect more efficient. 
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