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Abstract: While tuberculosis is a curable disease, Mycobacterium tuberculosis (M. tb), its etiological agent, remains a major 
human pathogen. For thousands of years of human life, this pathogen leads to more human deaths than any other infectious 
agent. Relatively affordable new drugs for the treatment of this lethal disease need to be developed in light of global TB 
infections. The current study aims to screen a broad spectrum of bioactive compounds, along with standard anti-tubercular 
drugs against Topoisomerase II protein of Mtb. The Lipinski rule was employed for the initial screening of the phytochemicals 
based on their pharmacokinetic properties. The 75 shortlisted compounds were subjected to molecular docking analysis with 
the Topoisomerase II receptor, which revealed six molecules Glyceollin-I, Fumarine, Chelidonine, Alstonine, Tuberosin, and 
Asarinin, as potential inhibitors against the receptor. Furthermore, the toxicity profiles of these six compounds were evaluated, 
and Glyceollin-I, Alstonine, and Tuberosin were shown to be the safest as compared to the others. The MD simulation analyses 
of these compounds in complexation with the receptor confirmed that the receptor-Alstonine complex was the most stable. 
Thus, the findings of our study will contribute to a better understanding of the Mycobacterial Topoisomerase II protein target 
and pave the way for the development of a novel therapeutic candidate drug to treat this disease. 

Keywords: Bioactive Compounds, Molecular Docking, MD Simulations, Mycobacterium tuberculosis,  
Topoisomerase II Receptor 

 

1. Introduction 

Tuberculosis (TB) is a major communicable disease 
caused by infection by Mycobacterium tuberculosis (M. tb) 
bacteria. One-third of the global population is estimated to be 
infected with M. tb making it one of the top 10 causes of 
death worldwide. The inability of the BCG vaccine to 
provide complete protection against pulmonary TB in adults 
and the emergence of drug-resistant tuberculosis is the main 
reason for such a massive death toll. Therefore, there is a 
huge need for the development of newer or alternate 
therapies to circumvent the global risk [1]. 

Due to the emergence of drug-resistant strains of M. tb, the 
research on newer drug discovery remains at the forefront. 

Various approaches are being used for the discovery of anti-
tubercular candidates. Approaches like repurposing, target-
based screening, optimization of chemical scaffolds of the 
known drugs, targeting the pathogen virulence factors, signal 
mechanisms, and targets related to the establishment of 
mycobacterial dormancy in the host's macrophages seem to 
be promising. Currently available anti-TB drugs are mostly 
targeted at metabolic pathways and proteins, which are 
essential for the growth of M. tb [2-4]. 

The genome of M. tb comprises approximately 3950 genes 
and of which only about 10% (461 genes) are required for the 
growth and survival of the bacilli in vitro under aerobic 
growth conditions. Amongst these essential genes, 15 genes 
encode components of the DNA replication machinery, out 
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of which effective inhibitory agents are available only for a 
small number of essential proteins. DNA gyrase is the only 
clinically validated target of the fluoroquinolones used in the 
treatment of MDR-TB [5]. Previous studies have shown the 
success of fluoroquinolones and the existence of other 
exploitable ligand-binding pockets in gyrase suggesting the 
importance of new gyrase-specific inhibitors. In a study by 
Rahimi et al. 2016 [6], the antibiotic compound 
Simocyclinone D8 (SD8) was found to inhibit both gyrase 
DNA binding and supercoiling reaction, hence it acts as a 
competitive inhibitor for DNA binding sites. Using this 
mechanism of inhibition, structural similarity search and 
molecular docking studies were carried out to identify new 
molecules for DNA gyrase inhibition using SD8 structure. 
Another investigation in the past conducted by Setzer et al 
[7], involved screening of 561 known antibacterial 
phytochemicals listed in the Dictionary of Natural Products 
with the help of docking studies with six bacterial protein 
targets (peptide deformylase, DNA gyrase/topoisomerase IV, 
UDP-galactose mutase, protein tyrosine phosphatase, 
cytochrome P450 CYP121, and NAD+-dependent DNA 
ligase) of E. coli, out of which peptide deformylase (EcPDF), 
E. coli topoisomerase IV (EcTopoIV), and E. coli DNA 
ligase (EcLigA) were found to be most susceptible protein 
targets, based upon docking energies, for phytochemical 
ligands. Khan et al [8] also worked on the structural 
modifications in templates obtained from natural sources that 
contribute to better activity like cyclothialidines and 
haloemodin analogs to treat bacterial infections. Previously, 
studies have revealed that we can discover a novel scaffold of 
DNA gyrase inhibitors by combining multiple machine 
learning methods and target-based approaches [9]. 

The type II topoisomerase, DNA gyrase, functions in 
relieving torsional strain, during the process of chromosomal 
DNA replication by carrying out controlled alterations of the 
DNA topology to ensure processive synthesis. The presence 
and essentiality of gyrase in all bacteria and its absence from 
most eukaryotes (exceptions include plants and plasmodia) 
make it an ideal target for antibacterial agents. In the history 
of antibiotics, DNA gyrase has been proven as one of the 
most successful drug targets [5]. 

DNA topoisomerases are broadly classified as type I 
(which make transient single-stranded breaks in DNA) and 
type II (transient double-stranded breaks) depending on their 
mechanism of action. Every species has at least one enzyme 
from each type of DNA topoisomerases due to their 
functional importance. In organisms with additional 
topoisomerases, all the topoisomerases are not essential for 
the cell survival, but M. tb genome encodes for only a single 
type I (topo I; gene = Rv3646c) and a single type II 
topoisomerase [gyrase; genes = Rv0006 (gyrA) and Rv0005 
(gyrB)], which is responsible for the decatenation, relaxation, 
and supercoiling. Due to this, M. tb gyrase has been 
extensively exploited as a potential antibacterial target. The 
availability of extensive structural information on gyrase 
from several bacteria, including M. tb, enables in-silico 

methods to screen for gyrase-specific inhibitors [10]. 

Newer antimycobacterial drugs are required to efficiently 
treat drug-resistant forms of M. tb and eradicate the latent 
infection. Even today, traditional remedies continue to play 
an important role in modern medicine wherein approximately 
80% of the world's inhabitants rely on them as their primary 
health-care. The amalgamation of traditional medicine and 
modern science may provide newer and valuable, affordable, 
safe, novel, and effective therapies [11]. Therefore, the 
present study focuses on virtual screening approach to 
discover novel drug candidates against Topoisomerase II 
receptor. A list of bioactive compounds was screened based 
on their pharmacokinetic and pharmacological properties. 
Further, these druggable compounds were then docked with 
the receptor to identify the potential drug candidates. 
Moreover, for a comparative evaluation, certain standard 
anti-tubercular drugs were studied as controls. 

2. Materials and Method 

2.1. Data Retrieval 

The virtual screening was performed on the three-
dimensional structure of a topoisomerase II complex (5BTC) 
of Mtb, retrieved from the RCSB PDB data repository [12], a 
worldwide library for high-definition 3D structural data. A 
list of 302 natural antitubercular compounds from various 
classes of phytochemicals was retrieved from Dr. Duke's 
library [13], which is a comprehensive database for 
phytochemicals. The three-dimensional structure of 
respective ligands was retrieved from the PubChem database 
(https://pubchem.ncbi.nlm.nih.gov/). Further, the structures 
were converted to PDB format using PyMol, an open-source 
molecular visualization tool [14]. 

2.2. Pharmacokinetics, Bioavailability and Drug-Likeliness 

Prediction 

Theoretical prediction of pharmacokinetic properties of 
drug-like compounds from their molecular structures was 
carried out using SwissADME web-based tool 
(http://www.swissadme.ch/). Since high binding efficiency and 
low toxicity profile of a compound cannot be the only criterion 
to consider a lead molecule as a potential drug candidate, 
therefore, it is essential to have a pharmacokinetic profile that 
can aid in the discovery of new lead molecules. For 
preliminary screening, Lipinski’s rule of five parameters was 
employed. For a compound to qualify as a ligand, it should 
have a molecular mass of less than 500 Daltons, an octanol-
water partition coefficient (log P) that does not exceed 5, less 
than 10 H-bond donors, no more than 5 hydrogen bond donors 
(the total number of nitrogen–hydrogen and oxygen-hydrogen 
bonds). Any molecule violating the Lipinski rule of five was 
exempted from further analysis (Lipinski, 2004). Apart from 
pharmacokinetic properties, the SwissADME tool forecasts 
bioavailability radar based on several physicochemical 
properties. These properties assist in the detection of drug-
likeness and the molecule's suitability for oral use. The 
properties which assist in bioavailability radar are 
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Lipophilicity, Molecular size, Polarity, Insolubility, 
Instauration, and Flexibility. The range of each parameters is 
mentioned as LIPO, Lipophilicity: -0.7 < XLOGP3 < +5; SIZE, 
Molecular size: 150 g/mol < mol. wt. < 500 g/mol; POLAR, 
Polarity: 20 Å2 < TPSA <130 Å2; INSOLU, Insolubility: 0 < 
Log S (ESOL) < 6; INSATU, Instauration: 0.25 < Fraction 
Csp3 < 1; FLEX, Flexibility: 0 < Number of rotatable bonds < 
9. Any deviation from the mentioned parameters indicates that 
the ligand is unfit for oral consumption [15]. 

2.3. Molecular Docking 

The virtual screening process was initiated with the step of 
pre-processing of the receptor, which includes removal of 
ligands, heteroatoms, nucleic acid groups, and water 
molecules using Discovery Studio 2020. To the pre-
processed structure of the receptor (Figure 1), Kollman 
charges were added, followed by the addition of polar 
hydrogen atoms, and the final output was saved in PDBQT 
format. While the preparation of the ligand consists of a 
series of energy minimization steps that generate structure 
variation and optimization and the output was saved as 
PDBQT format using AutoDock Tools [16]. 

 

Figure 1. Pre-processed three-dimensional structure of the Topoisomerase 

II complex of the Mycobacterium tuberculosis. 

The selected ligand structures were docked with the 
receptor in AutoDock Vina [17]. The AutoDock Vina 
software performs the prediction of bound confirmation 
based on free binding energies, which was calculated based 
on the empirical force field. The grid box was set at 19.719, 
11.930, and 25.015 Å to dock the selected ligands against the 
target, and the box size was set at 40, 40, and 40 Å in x, y, 
and z directions, respectively. Discovery Studio Visualizer 
2020 was used to evaluate the interactions between the 
receptor-ligand complexes. 

2.4. Toxicity Prediction 

Toxicity is an important indication of the drug candidate’s 
behaviour, fate, and level of toxicity in the human body. 
ProTox II [18] tool was employed to calculate the likely 

toxicity profiles, toxicity class, and LD50 values of the 
shortlisted phytochemicals. Based on the LD50 value of 3700 
dataset compounds, it determines the toxicity of the 
compound and categorizes the query drug into six broad 
groups, with Class I being extremely toxic and Class VI 
being safest. 

2.5. Molecular Dynamic Simulation 

WEBGRO server (https://simlab.uams.edu) [19] was used 
to run MD simulations of the top three complexes. The 
topology files of the ligands were obtained using PRODRG 
server [20] (http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg) 
Each top complex was directly solvated in simple point 
charge (SPC) waters, followed by GROMOS96 43a1 force 
field, and then Na+ and Cl- ions were utilized to achieve a 
neutral system. To optimize energy minimization, the 
steepest descent algorithm was used. To sustain a constant 
temperature and volume, we used NVT dynamics. The 
simulation was performed in 1000 steps for 100 ns, with the 
temperature of the Noose-hover set to 300 K. 

3. Result and Discussion 

Previous studies have shown the success of 
fluoroquinolones and the existence of other exploitable ligand-
binding pockets in gyrase suggesting the importance of new 
gyrase-specific inhibitors. In a study by Rahimi et al. [6], they 
have used the simocyclinone D8 (SD8), which inhibits both 
gyrase DNA binding and supercoiling reaction, hence it acts as 
a competitive inhibitor for DNA binding sites. Using this 
mechanism of inhibition, structural similarity search and 
molecular docking studies were carried out to identify new 
molecules for DNA gyrase inhibition using SD8 structure. 

Setzer et al [7] have screened 561 known antibacterial 
phytochemicals listed in the Dictionary of Natural Products 
with the help of docking studies with six bacterial protein 
targets (peptide deformylase, DNA gyrase/topoisomerase IV, 
UDP-galactose mutase, protein tyrosine phosphatase, 
cytochrome P450 CYP121, and NAD+-dependent DNA 
ligase) of E. coli. E. coli peptide deformylase (EcPDF), E. 
coli topoisomerase IV (EcTopoIV), and E. coli DNA ligase 
(EcLigA) were found to be most susceptible protein targets, 
based upon docking energies, for phytochemical ligands. The 
researchers have also tried working on the structural 
modifications in templates obtained from natural sources that 
contribute to better activity like cyclothialidines and 
haloemodin analogues to treat bacterial infections [8]. 
Various research papers reveal that we can discover a novel 
scaffold of DNA gyrase inhibitors by combining multiple 
machine learning methods and target-based approaches [9]. 

3.1. Pharmacokinetics, Bioavailability and Drug-Likeliness 

Property Assessment of the Selected Phytochemicals 

The antagonistic activity of the ligands with a protein does not 
assure that a ligand is acceptable as a potential drug candidate; 
hence evaluating the pharmacokinetic properties such as ADME 
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(absorption, distribution, metabolism, and excretion) is 
considered one of the most effective screening techniques in 
drug development, since it helps ascertain the safety and 
efficacy of the ligands. The lack of information regarding 
pharmacokinetics and toxicity profiles can be the major reasons 
for the rejection of lead molecules in clinical trials. Lipinski's 
theoretical statements are considered a thumb-rule for evaluating 
its pharmacokinetics, drug-likeness, and assessing if a ligand 
with specific pharmacological and biological characteristics in 
the living organism can be converted into an orally administered 
drug [21]. Pharmacokinetic properties were evaluated and used 
for the initial screening of 302 bioactive compounds. 
Compounds with zero violation were considered best lead 
molecules, while others were eliminated from further analysis, 
culminating in 240 molecules. Lipophilicity, size, polarity, 
solubility, flexibility, and saturation were used to evaluate these 
compounds for their potential as oral drugs. An extensive study 
was carried out using the SwissADME tool, which provides a 
graphical illustration in the form of radar, which is based on 
various physicochemical properties. 165 molecules showed 
significant deviation from these parameters, implying that these 
ligands are unlikely to be considered orally bioavailable, while 
75 molecules were identified as orally bioavailable. 

3.2. Molecular Docking of the Selected Protein Ligand 

Complex 

The emergence of virtual screening methodologies has 
provided great momentum to the research focusing on drug 
discovery. It has become a powerful tool in pharmaceutical 
research since it aims to determine the conformation of 
ligands within the binding site with a considerable degree of 
precision [22]. In the current analysis, we studied interactions 
between Topoisomerase II and lead molecules using the 
AutoDock Vina tool, which helped screen 75 bioactive 
molecules along with the standard anti-tubercular drugs. The 
interaction between the receptor and ligand was 
demonstrated in the form of binding affinity. The graphical 
representation of the six best screened compounds along with 
standard drugs is depicted in pictorial form in Figure 2. 

 

Figure 2. Graphical representation of the binding energy of the top six 

phytochemicals and standard drugs. 

Table 1. Molecular docking data represented in terms of binding energy (∆G) 

in kcal/mole for Topoisomerase II receptor with the phytochemicals and 

standard drugs.(Center Alignment of data in table). 

Sr. No Ligand Binding Energy (∆G) (kcal/mol) 

1 Glyceollin-I -9.3 
2 Fumarine -9.3 
3 Chelidonine -9.2 
4 Alstonine -9.2 
5 Tuberosin -9.1 
6 Asarinin -8.9 
7 Moxifloxacin -8.1 
8 Levofloxacin -7.8 
9 Ciprofloxacin -7.7 
10 Gatifloxacin -7.4 

The binding energies of the 75 bioactive compounds 
ranged from -2.9 to -9.3 kcal/mol, whereas the four standard 
drug binding energies ranged from -7.4 to -8.1 kcal/mol. A 
threshold was set at -8.5 kcal/mol to determine the potential 
inhibitors, and only six molecules (Table 1), namely 
Glyceollin-I, Fumarine, Chelidonine, Alstonine, Tuberosin, 
and Asarinin, qualified that requirement. Thus, the selected 
phytochemicals performed better than the standard drugs. 
Moreover, amongst the four standard drugs, Moxifloxacin, 
which is currently recommended for the treatment of 
multidrug-resistant tuberculosis, showed the least binding 
energy of -8.1 kcal/mol. It interacted with the receptor by 
forming conventional H-bond, alkyl, and pi-alkyl bonds in 
Figure 3(A) shows 3D representation of the position of 
Moxifloxacin within the cavity of Topoisomerase II receptor, 
followed by the 3D interaction diagram of Moxifloxacin with 
Topoisomerase II receptor, (B) 2D interaction diagram of 
Moxifloxacin docked in the binding pockets of 
Topoisomerase II receptor visualized using Discovery Studio 
2020, (C) 3D structure of Moxifloxacin. The binding 
energies of Levofloxacin and Ciprofloxacin were -7.8 and -
7.7 kcal/mol, respectively. They also formed conventional H-
bond, carbon H-bond, pi-alkyl, and alkyl bonds with the 
receptor. Figure 4 shows (A) 3D representation of the 
position of Levofloxacin within the cavity of Topoisomerase 
II receptor, followed by the 3D interaction diagram of 
Levofloxacin with Topoisomerase II receptor, (B) 2D 
interaction diagram of Levofloxacin docked in the binding 
pockets of Topoisomerase II receptor visualized using 
Discovery Studio 2020, (C) 3D structure of Levofloxacin and 
figure 5 shows (A) 3D representation of the position of 
Ciprofloxacin within the cavity of Topoisomerase II receptor, 
followed by the 3D interaction diagram of Ciprofloxacin with 
Topoisomerase II receptor, (B) 2D interaction diagram of 
Ciprofloxacin docked in the binding pockets of 
Topoisomerase II receptor visualized using Discovery Studio 
2020, (C) 3D structure of Ciprofloxacin. In addition to this, 
an unfavorable donor-donor bond was observed between 
Ciprofloxacin and the receptor, indicating repulsive forces 
and inferring that the complex is unstable. Lastly, 
Gatifloxacin revealed binding energy of -7.4 kcal/mol, which 
is lowest than the rest of the standard drugs. There were three 
types of non-covalent interactions, and one covalent 
interaction was observed: conventional H-bond, carbon H-
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bond and pi-alkyl interactions between the drug and receptor 
as shown in Figure 6(A) 3D representation of the position of 
Gatifloxacin within the cavity of Topoisomerase II receptor, 
followed by the 3D interaction diagram of Gatifloxacin with 
Topoisomerase II receptor, (B) 2D interaction diagram of 
Gatifloxacin docked in the binding pockets of Topoisomerase 
II receptor visualized using Discovery Studio 2020, (C) 3D 
structure of Gatifloxacin. 

 

Figure 3. Docking Poses of Topoisomerase II with Moxifloxacin. 

 

Figure 4. Docking Poses of Topoisomerase II with Levofloxacin. 

 

Figure 5. Docking Poses of Topoisomerase II with Ciprofloxacin. 

Glyceollin-I is one of the most essential phytoalexins 
found in soybeans. It has been observed that Glyceollin-I acts 

as an antimicrobial drug candidate against Pseudomonas 

syringae through in silico approach. In the present study, 
Glyceollin-I exhibited the least binding energy of all the 
molecules, -9.3 kcal/mol. LYS 468 of the B chain formed a 
conventional H-bond, whereas the C chain residue SER 306 
formed a carbon H-bond with the ligand. ASP 304 of the C 
chain and ARG 471 of the B chain interacted with the ligand 
by forming pi-cation and pi anion bonds. A pi-alkyl bond 
was observed between LYS 430 of the B chain residue and 
the ligand. The C chain residues: SER 118, PRO 119, ASP 
122, SER 307, and the B chain residues: ARG 429, ASP 444, 
ARG 446, SER 469, and SER 473 were found to interact 
with the ligand via Van der Waals forces shown in Figure 7 
(A) 3D representation of the position of Glyceollin-I within 
the cavity of Topoisomerase II receptor, followed by the 3D 
interaction diagram of Glyceollin-I with Topoisomerase II 
receptor, and (B) 2D interaction diagram of Glyceollin-I 
docked in the binding pockets of Topoisomerase II receptor 
visualized using Discovery Studio 2020, (C) 3D structure of 
Glyceollin-I. 

 

Figure 6. Docking Poses of Topoisomerase II with Gatifloxacin. 

 

Figure 7. Docking Poses of Topoisomerase II with Glyceollin-I. 

Fumarine, also known as Protopine, belongs to the family 
of organic compounds known as protopine alkaloids [23]. 
UkrainTM, an anticancer drug formulated from the extract of 
the plant Chelidonium majus L. [24], contains Fumarine as 
one of its active compounds [25]. It has been reported to 
possess antimicrobial activity against Bacillus cereus, 
Staphylococcus aureus, Bacillus subtilis, Escherichia coli, 
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Pseudomonas aeruginosa, and Erwinia carotovora [26]. The 
binding energy of Fumarine was -9.3 kcal/mol, similar to that 
of Glyceollin-I. It formed two conventional H-bonds with 
ASP 308 of the C chain. The C chain residue HIS 280 and 
the B chain residue ALA 618 interacted with the ligand by 
forming alkyl and pi-alkyl bonds. The C chain residues GLY 
114, ASN 115, GLY 117, SER 118, PRO 119, SER 306, 
SER 307, GLY 311, LEU 312, and the B chain residues SER 
466, SER 469, and ASP 617 were found to interact with the 
ligand through Van der Waals forces as shown in Figure 8(A) 
3D representation of the position of Fumarine within the 
cavity of Topoisomerase II receptor, followed by the 3D 
interaction diagram of Fumarine with Topoisomerase II 
receptor,. and (B) 2D interaction diagram of Fumarine 
docked in the binding pockets of Topoisomerase II receptor 
visualized using Discovery Studio 2020, (C) 3D structure of 
Fumarine. 

 

Figure 8. Docking Poses of Topoisomerase II with Fumarine. 

 

Figure 9. Docking Poses of Topoisomerase II with Chelidonine. 

Chelidonine, an isoquinoline alkaloid, considered as the 
principal alkaloid part of Chelidonium majus. Chelidonine, 
like Fumarine, is one of the active ingredients in UkrainTM 

[25]. It has known to possess anti-tumour [27], anti-
inflammatory [28], anti-oxidant [29], and anti-microbial [30] 
properties. In our study, it revealed -9.2 kcal/mol binding 
energy. GLY 112 and GLY 117 of the A chain residues were 
seen to interact with the ligand through conventional H-
bonds. A pi-anion bond was observed between ASP 308 and 

the ligand. PRO 102 of the A chain and ALA 618 of the D 
chain formed alkyl and pi-alkyl bonds with the ligand. ALA 
100, TRP 103, ASP 111, GLY 114, ASN 115, PHE 116, SER 
118 of the A chain, and SER 469 of the D chain were 
observed to interact through Van der Waals forces with the 
ligand. In Figure 9(A) 3D representation of the position of 
Chelidonine within the cavity of Topoisomerase II receptor, 
followed by the 3D interaction diagram of Chelidonine with 
Topoisomerase II receptor, (B) 2D interaction diagram of 
Chelidonine docked in the binding pockets of Topoisomerase 
II receptor visualized using Discovery Studio 2020, (C) 3D 
structure of Chelidonine. Alstonine is an indole alkaloid [31]. 
It exhibited in vivo antimalarial activity in a preliminary 
study performed by Gandhi and Vinayak et al, [32]. 
Moreover, animal model studies have proven it as anxiolytic 
and antipsychotic properties [33]. It displayed -9.2 kcal/mol 
as its binding energy in our study. SER 466 and ALA 618 of 
the B chain residue formed conventional H-bonds with the 
ligand. TRP 103 of the C chain was seen to interact with the 
ligand via a Pi-Pi T shaped bond. Pi-alkyl and alkyl bonds 
were observed between PRO 102, PRO 119 residues, with 
the ligand. ASN 115 of the C chain interacted with the ligand 
via carbon H-bond. The remaining amino acid residues of the 
B and C chain: SER 469, ASP 617, PHE 116, GLY 117, SER 
118, ASP 122, HIS 280, SER 306, GLY 311, and LEU 312 
were found to interact through Van der Waals forces with the 
ligand as shown in Figure 10(A) 3D representation of the 
position of Alstonine within the cavity of Topoisomerase II 
receptor, followed by the 3D interaction diagram of 
Alstonine with Topoisomerase II receptor, (B) 2D interaction 
diagram of Alstonine docked in the binding pockets of 
Topoisomerase II receptor visualized using Discovery Studio 
2020, (C) 3D structure of Alstonine. 

 

Figure 10. Docking Poses of Topoisomerase II with Alstonine. 

Tuberosin belongs to the class of compounds referred to as 
pterocarpans [34]. It is one of Pueraria tuberose's active 
ingredients, and it has been shown to have antioxidant 
properties [35]. In this present study, it showed the binding 
energy of -9.1 kcal/mol. It formed three conventional H-
bonds with SER 118, ASP 122 of the A chain, and LYS 468 
of the D chain. It even formed alkyl bonds with PRO 119 of 
the A chain. The following A chain residues: GLY 120, HIS 
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280, ASP 304, SER 306, SER 307, ASP 308, GLY 311, LEU 
312, and the D chain residues: SER 469, ARG 471, and SER 
473 were observed to interact through Van der Waals forces 
with the ligand as shown in Figure 11(A) 3D representation 
of the position of Tuberosin within the cavity of 
Topoisomerase II receptor, followed by the 3D interaction 
diagram of Tuberosin with Topoisomerase II receptor, (B) 
2D interaction diagram of Tuberosin docked in the binding 
pockets of Topoisomerase II receptor visualized using 
Discovery Studio 2020, (C) 3D structure of Tuberosin. 

 

Figure 11. Docking Poses of Topoisomerase II with Tuberosin. 

 

Figure 12. Docking Poses of Topoisomerase II with Asarinin. 

Asarinin, a furofuran lignan, found in Asarum species 
[36]. It has been known that Asarinin is known to be potent 
against nontuberculous Mycobacterium strains (M. 

smegmatis, M. abscessus, M. chelonae, M. marinum, M. 

avium A5) in an in vitro study, with MIC values ranging 
from 35 to 140 µg/mL [37]. In this study, Asarinin 
manifested binding energy of -9.1 kcal/mol. A carbon H-
bond was observed between the ligand and the SER 307 
residue of the A chain. It also formed a pi-alkyl and alkyl 
bond with PRO 119 of the A chain, and ARG 471 of the D 
chain. TRP 103, SER 118, THR 230, HIS 280, ASP 304, 
SER 306, GLY 311, and LEU 312 of the A chain residues 
and LYS 468, SER 469, and SER 473 of the D chain 
residues interacted with the ligand through Van der Waals 
forces as shown in Figure 12(A) 3D representation of the 
position of Asarinin within the cavity of Topoisomerase II 
receptor, followed by the 3D interaction diagram of 
Asarinin with Topoisomerase II receptor, (B) 2D interaction 
diagram of Asarinin docked in the binding pockets of 
Topoisomerase II receptor visualized using Discovery 
Studio 2020, (C) 3D structure of Asarinin. 

3.3. Toxicity Prediction of the Shortlisted Phytochemicals 

Toxicity is thought to be responsible for approximately 
1/3rd of drug candidate attrition and is a major contributor to 
the high cost of drug production, particularly when found late 
in clinical trials or after marketing [38]. New compound 
toxicity testing is important for the drug discovery process. In 
silico approaches have many advantages, including the 
potential to analyse hypothetical compounds, their low cost, 
and the fact that such simulated tests are usually focused on 
human data, eliminating the issue of interspecies 
transferability [39]. ProTox-II is one of the computational 
tools that use a total of 33 models for the estimation of 
different toxicity endpoints such as acute toxicity, 
hepatotoxicity, carcinogenicity, mutagenicity, and so on. The 
toxicity profiles of both the control drugs and the shortlisted 
phytochemicals are shown in Table 2. 

Table 2. Toxicity results of Shortlisted phytochemicals and standard drugs. (Center Alignment of data in table). 

Drugs Toxicity Class LD50 value (mg/kg) Hepatotoxicity Carcinogenicity Mutagenicity 

Glyceollin-I 4 500 Inactive Inactive Inactive 
Fumarine 4 940 Inactive Active Active 
Chelidonine 4 460 Inactive Active Active 
Alstonine 3 215 Inactive Inactive Inactive 
Tuberosin 4 500 Inactive Inactive Inactive 
Asarinin 3 1500 Inactive Active Inactive 
Moxifloxacin 4 2000 Inactive Inactive Active 
Levofloxacin 4 1478 Inactive Inactive Active 
Ciprofloxacin 4 2000 Inactive Inactive Active 
Gatifloxacin 4 2000 Inactive Inactive Inactive 

 
From Table 2, it can be observed that all the control drugs 

belong to the class four toxicity. In the case of the LD50 
value, Moxifloxacin, Ciprofloxacin, and Gatifloxacin each 
had an LD50 of 2000mg/kg, while Levofloxacin had an 
LD50 of 1478mg/kg. In comparison, the toxicity profiles of 
the phytochemicals revealed that Glyceollin-I, Fumarine, 

Chelidonine and Tuberosin belong to the class four toxicity 
while Alstonine and Asarinin belong to class three toxicity 
indicating that they might be toxic. LD50 values of these 
phytochemicals ranged from 460mg/kg for Chelidonine to 
500mg/kg for Glyceollin-I and Tuberosin, and 940mg/kg for 
Fumarine. Asarinin has the highest LD50 value of 
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1500mg/kg, despite being classified as a type three toxicity. 
Hepatotoxicity was inactive for all the candidate drugs as 
well as the control drugs. Carcinogenicity was inactive in all 
the control drugs. In contrast, active carcinogenicity was 
found in the case of Fumarine, Asarinin, and Chelidonine. 
Mutagenicity was active in all the control drugs except 
Gatifloxacin. Likewise, Fumarine and Chelidonine were 
shown to be mutagenic as compared to other compounds. 
Despite the fact that fluoroquinolones have been predicted to 
be safe by the ProTox server, they have been associated with 
numerous adverse reactions, including minor neurotoxic 
reactions, musculoskeletal reactions, CNS, GI tract reactions, 
cardiovascular reactions, and many others [40, 41]. Therefore, 
the flavonoids Glyceollin-I and Tuberosin, and alkaloid 
Alstonine were safe and were evaluated further using MD 
simulation. 

3.4. Molecular Dynamic Simulation of Best Protein Ligand 

Complex 

MD simulation is one of the most valuable analyses in 
structure-based drug design as they provide a 
comprehensive understanding of the receptor-ligand 
complex's stability. The RMSD plots of the receptor and 

three complexes, receptor-Glyceollin-I, receptor-Tuberosin, 
and receptor- Alstonine complex, were evaluated in this 
analysis to investigate their stability profiles during 
simulations. The RMSD value of the receptor-Glyceollin-I 
complex was between 0.1 and 3.1 nm, with one sharp peak 
of up to 7nm at 35ns and another of 8.5 nm 55ns. 
Furthermore, the RMSD plot of Glyceollin-I complex 
revealed multiple fluctuations and failed to achieve stability 
during 100 ns simulation time. The RMSD value of the 
receptor-Tuberosin complex was in the 0.01–13.5nm range. 
In comparison with the RMSD plot of glyceollin-I complex, 
this system achieved stability after 70ns, however, the 
RMSD value is considerably high (up to 15nm). Therefore, 
this indicates that the receptor-Glyceollin-I and Tuberosin 
complex is unstable, making it inadequate for further in 

vitro and in vivo analysis. On the contrary, as shown in 

Figure 13, the RMSD value of the receptor- Alstonine 
complex was in the range of 0.2 – 0.8 nm. Even though the 
RMSD plot of the Alstonine complex displayed variations, 
it was able to achieve equilibration at 80ns. This indicates 
that the receptor-Alstonine complex was stable and hence 
can be considered for the development of a drug against the 
Topoisomerase II receptor of M. tb. 

 

Figure 13. RMSD plot of the Topoisomerase II receptor-Alstonine complex. 

4. Conclusion 

This study, which employs a bioinformatic method, lays 
the groundwork for discovering, testing, and developing a 
new tuberculosis treatment. Theoretical evaluations of 
binding affinities (kcal/mol) of several phytochemical ligands 
were conducted in order to evaluate their potency and find a 
potential lead molecule for developing a potential medication. 

In the present research, a virtual screening approach was 
used to ascertain a potential inhibitor against the 

topoisomerase II complex of Mtb. As a filtering tool, the 
Lipinski rule of five was used, which resulted in 240 
bioactive molecules. Using the Bioavailability Radar tool, 
these 240 molecules were further screened. Seventy-five 
molecules were found to be orally bioavailable, which were 
then further docked with the protein. Docking analysis 
revealed six molecules, namely Glyceollin-I, Fumarine, 
Chelidonine, Alstonine, Tuberosin, and Asarinin, as potential 
inhibitors against the receptor. Interestingly, these 
compounds outperformed the standard drugs, suggesting that 
they can be a viable alternative to these well-established 



39 Vikas Jha et al.:  Investigation of the Anti-tubercular Potential of Selected Phytochemicals Using Computational Approach   
 

standard drugs. Furthermore, the MD analysis of the safe 
ligands revealed Alstonine to be the most stable molecule. 
Thus, our research finding enhances the significance of this 
compound as an attractive drug candidate for the treatment of 
multidrug-resistant tuberculosis. Therefore, the selected 
molecule can be further validated with in vitro and in vivo 
studies. The study's findings suggest the relevance of these 
compounds as potential leads for treating Mycobacterium 

tuberculosis, which could help medicinal chemists and 
pharmaceutical professionals discover and synthesize more 
potent therapeutic options in the future. It also stimulates the 
study's in vitro and in vivo evaluation for proposed developed 
drugs in order to validate the computational results. 
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