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Abstract: In this paper, we investigate the relaxed and strict near-optimality conditions for mean-field singular FBSDEs,
where the coefficients depend on the state of the solution process as well as of its expected value. Moreover, the cost functional
is also of mean-field type. This makes the control problem time inconsistent in the sense that the Bellman’s optimality principle
does not hold. The purpose of this paper is to establish necessary and sufficient conditions of near-optimality for relaxed and
strict mean-field singular controls. For strict mean-field singular FBSDEs, whose wellposedness is ensured under the twice
continuously differentiable assumptions of coefficients. Then, the moment estimations of variational processes as well as first-
order and second-order adjoint processes are presented by using Burkholder-Davis-Gundy inequality. Further, by introducing
Hamiltonian function via Ekeland’s variational principle, the necessary near-optimality conditions are established. For relaxed
mean-field singular FBSDEs, we first give the definition of admissible set of relaxed singular controls, then use the mapping
defined by Dirac measure, we prove that the near-optimal problem of strict singular controls is a particular case of the near-
optimal problem of relaxed singular ones. Further, a well known chattering lemma is introduced. By virtue of this famous lemma
addition with the stability of trajectories with respect to the control variable and dominated convergence theorem, necessary as
well as sufficient near-optimality conditions for relaxed controls are established.

Keywords: Near-optimal Singular Control, Mean-field SDE, Relaxed and Strict Control, Adjoint Equation,
Ekeland’s Variational Principle

1. Introduction
We are interested in the mean-field singular stochastic

control problems of systems governed by the following

stochastic differential equation,

{
dx

(u,ξ)
t = b(t, x

(u,ξ)
t , Ex

(u,ξ)
t , ut)dt+ σ(t, x

(u,ξ)
t , Ex

(u,ξ)
t , ut)dWt +Gtdξt,

x
(u,ξ)
s = y,

(1)

where b, σ and G are given deterministic functions, (Wt)t≥0 is a standard Brownian motion defined on a filtered probability
space (Ω,F , {Ft}t≥0, P ).

The cost functional associated with (1) is given by

J(s, y, u, ξ) = E[g(x
(u,ξ)
T , Ex

(u,ξ)
T ) +

∫ T

s

l(t, x
(u,ξ)
t , Ex

(u,ξ)
t , ut)dt+

∫ T

s

ktdξt],
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with the value function

V (s, y) = inf
(u,ξ)∈U

J(s, y, u, ξ),

where U is the set of admissible controls.
Singular stochastic control problems have been studied

extensively. The key approachs are the dynamic programming
and the Pontryagin’s maximum principle. By using the second
approach, the first version of stochastic maximum principle
are obtained under the condition of linear dynamics, convex
cost functional and convex state constraints [9]. For nonlinear
singular SDEs with controlled diffusion coefficient, necessary
optimal conditions were established by [5]. And we refer the
reader to [3, 24] for more information.

As is well known, for the strict control problem, the optimal
solution may not exist even in the simplest situations. However
if the strict control domain U is embedded into a larger

space P (U), which is the space of probability measures on U
equipped with the topology of stable convergence of measures,
the existence of optimal solution can be ensured. For example,
in 1995, using compactification techniques, the existence of an
optimal singular control is derived [17]. And on the database
of the above result, a relaxed singular stochastic maximum
principle is established in the case of uncontrolled diffusion
coefficient [4]. For the controlled diffusion term, refer to [2].

It needs to be emphasized that, it is enough to find
near-optimal solutions with a more practical problem. For
the purpose of practical use, near-optimal control problems
of the forward stochastic differential equation were firstly
studied [28]. Furthermore, in 2012, necessary and sufficient
conditions of near-optimality for singular stochastic systems
with controlled diffusion coefficient were derived [16]. While
this paper mainly studies mean-field singular stochastic
systems. It is obtained as the mean-square limit of a system
of interacting particles

dxi,nt = b(t, xi,nt ,
1

n
Σnj=1x

i,n
t , ut)dt+ σ(t, xi,nt ,

1

n
Σnj=1x

i,n
t , ut)dW

i
t +Gtdξt,

when n → ∞, which is the classical McKean-Vlasov model
(see [20]). So it is meaningful to study the near-optimality of
the above system both from theoretical aspects and applicative
ones.

On the other hand, it is well known that the existence of
optimal strict control is ensured by the Filippov condition.
That is to say, without the Filippov condition, the optimal
strict control may not exist. To overcome this difficulty, the
technique can be refined to introduce a bigger class equipped
with a richer topological structure, which can ensure the
existence of the optimal solution. And call this class the
relaxed control set, whose elements are at time t probability
measures qt(da) defined on U . Using compactification
techniques, the first result of the existence of optimal relaxed
control was derived [15], and then a relaxed stochastic
maximum principle with controlled diffusion coefficient was
established [4]. More versions of relaxed stochastic maximum
principle refer to [1, 10, 11, 13, 18, 23, 25]. Further, notice
the fact that the cost functional J may be nonlinear with
respect to the expectation, makes the control problem time
inconsistent in the sense that Bellman’s optimality principle
does not hold. To solve this problem, by using Malliavin
calculus, a stochastic maximum principle of mean-field type
with convex control domain was obtained [21]. However,
when referring to non-convex control domain, in this paper,
we adopt the following specific method to study the problem.
Roughly speaking, a double perturbation of the optimal control
is adopted, the convex perturbation to the singular part and
the spike perturbation to the absolutely continuous part. Then
we introduce the first order adjoint equation, which is a
linear mean-field backward SDE, and the second order adjoint
equation, which remains the same as in [22]. By virtue
of Ekeland’s variational principle and some stabilities of

trajectories with respect to the control variable, necessary near-
optimal conditions are established. Furthermore, under some
additional assumptions, we prove that obtained necessary
conditions are also sufficient.

The paper is organized as follows: Some statements of
strict singular control problems are in Section 2. In Section
3, we give adjoint processes and some prior estimates. By
virtue of these estimates, necessary as well as sufficient
near-optimal conditions are established for strict mean-field
singular controls in Section 4. Finally, in Section 5 and
6, we state relaxed singular control problems and get the
corresponding results based on the obtained conclusions in
Section 4.

2. The Strict Mean-field Singular
Control Problem

Assume a filtered probability space (Ω,F , {Ft}t≥0, P )
satisfies the usual condition, on this space we define a Rd-
valued standard Brownian motion (Wt)t≥0, and the natural
filtration {Ft}t≥0 generated by (Wt)t≥0.

Let A1 be a nonempty compact subset of Rk, A2 =
([0,∞))m and U1 the class of measurable, Ft-adapted
processes valued in A1, U2 the class of measurable, Ft-
adapted processes ξ valued in A2 such that ξ is nondecreasing,
left continuous with right limits and ξs = 0.

For any given s ∈ [0, T ), a pair of Ft-adapted processes
(u, ξ) ∈ U1 × U2 is called admissible, if it satisfies
E[sups≤t≤T |ut|2 + |ξT |2] <∞. We denote by U = U1 × U2

the set of all admissible controls.
For any (u, ξ) ∈ U , we consider the following mean-field

stochastic control system,
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{
dx

(u,ξ)
t = b(t, x

(u,ξ)
t , Ex

(u,ξ)
t , ut)dt+ σ(t, x

(u,ξ)
t , Ex

(u,ξ)
t , ut)dWt +Gtdξt,

x
(u,ξ)
s = y,

(2)

where mappings b : [s, T ] × Rn × Rn × A1 → Rn; σ : [s, T ] × Rn × Rn × A1 → Mn×d(R); G : [s, T ] → Mn×m(R) are
given deterministic functions.

The cost functional to be minimized over U is given by

J(s, y, u, ξ) = E[g(x
(u,ξ)
T , Ex

(u,ξ)
T ) +

∫ T

s

l(t, x
(u,ξ)
t , Ex

(u,ξ)
t , ut)dt+

∫ T

s

ktdξt], (3)

where mappings l : [s, T ] × Rn × Rn × A1 → R, g :
Rn × Rn → R, k : [s, T ] → A2 are determinate functions,
and we define the value function by

V (s, y) = inf
(u,ξ)∈U

J(s, y, u, ξ). (4)

Throughout this paper, we make use of the following
notations:
fx : the gradient or Jacobian of a function f with respect to

x;
fxx : the Hessian of a scalar function f with respect to x;
| · | : the norm of an Euclidean space;
χA : the indicator function of a set A;
Mn×d(R) : the space of n× d real matrices;
C,Ci, i = 1, 2, · · · : multiplicative constants required in

the analysis.
Since the objective of this paper is to study near-optimality,

we give the precise definition as in [28].
Definition 1 Both a family of admissible pairs {(uε, ξε)}

parameterized by ε > 0 and any element (uε, ξε) in the family
are called near-optimal if

|J(s, y, uε, ξε)− V (s, y)| ≤ r(ε)

holds for sufficiently small ε > 0, where r is a function of
ε satisfying limε→0 r(ε) = 0. The estimate r(ε) is called an
error bound. If r(ε) = Cεδ for some δ > 0 independent of
the constant C, then (uε, ξε) is called near-optimal with order
εδ . Especially when r(ε) = ε, the admissible control (uε, ξε)
is called ε-optimal.

Next, we make some assumptions.
(A1) b, σ, l are linear growth with (x, x̃, u), they and their

first-order derivative are Lipschitz continuous in x, x̃.
(A2) g and its first-order derivative are linear growth in

(x, x̃, u) and Lipschitz continuous in x, x̃.
(A3) G and k are continuous and G is bounded.
Under above assumptions, ∀ (u, ξ) ∈ U , the system (2) and

the cost functional J are all with wellposedness. Furthermore,
∀ q > 0, there exists a constant C such that

E( sup
t∈[s,T ]

|x(u,ξ)
t |q) < C(q).

Now let us recall the definition of the Clarke generalized
gradient as well as Ekeland’s principle, which will be used in
the sequel.

Definition 2 ([12]) Let X be a convex set in Rd and let
η(·) : X → R be a locally Lipschitz function. The generalized
gradient of η at x̄ ∈ X , denoted by ∂xη(x̄), is a set defined by

∂xη(x̄) = {p ∈ Rd|pξ ≤ η0(x̄; ξ), for any ξ ∈ Rd},

where

η0(x̄; ξ) = lim sup
x∈X,x+hξ∈X,x→x̄,h→0+

η(x+ hξ)− η(x)

h
.

Lemma 3 ([14]) Let (S, d) be a complete metric space
and ρ(·) : S → R be lower-semicontinuous and bounded
from below. For a given ε > 0, suppose vε ∈ S satisfying
ρ(vε) ≤ infv∈S ρ(v) + ε. Then for any λ > 0, there exists a
vλ ∈ S such that

ρ(vλ) ≤ ρ(vε),

d(vλ, vε) ≤ λ,

ρ(vλ) ≤ ρ(v) +
ε

λ
d(v, vλ), ∀v ∈ S.

To apply Ekeland’s variational principle, we endow the
set U with an appropriate metric. More precisely, for any
(u, ξ), (v, η) ∈ U , we define

d1(u, v) = P ⊗ dt{(w, t) ∈ Ω× [s, T ] : u(w, t) 6= v(w, t)};

d2(ξ, η) = [E( sup
t∈[s,T ]

|ξt − ηt|2)]
1
2 ;

d((u, ξ), (v, η)) = d1(u, v) + d2(ξ, η);

where P ⊗ dt is the product measure of P with the Lebesgue
measure dt.

Remark 4 According to Lemma 4.5 of [4], (U , d) is a
complete metric space and the cost functional J is continuous
from U into R.

3. Adjoint Equations and Some Prior
Estimates

This section is devoted to give the first order adjoint
equation of mean-field type, and the second order adjoint
equation remaining the same as in [22], and some prior
estimates for later use.

Lemma 5 Let (A1), (A3) hold, for any (u, ξ), (v, η) ∈ U
and 0 < α < 1, β > 0 satisfying
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αβ < 1, we have

E( sup
t∈[s,T ]

|x(u,ξ)
t − x(v,η)

t |2β) ≤ Cdαβ((u, ξ), (v, η)),

where C > 0 is a constant, x(u,ξ)
t and x(v,η)

t are trajectories corresponding to (u, ξ) and (v, η) respectively.
Proof Let β ≥ 1. ∀ r ≥ s, via BDG inequality, we deduce

E sup
s≤t≤r

|x(u,ξ)
t − x(v,η)

t |2β

≤ C1E

∫ r

s

|b(t, x(u,ξ)
t , Ex

(u,ξ)
t , ut)− b(t, x(v,η)

t , Ex
(v,η)
t , vt)|2β

+|σ(t, x
(u,ξ)
t , Ex

(u,ξ)
t , ut)− σ(t, x

(v,η)
t , Ex

(v,η)
t , vt)|2βdt+ C1E|ξT − ηT |2β

≤ C2E

∫ r

s

|b(t, x(u,ξ)
t , Ex

(u,ξ)
t , ut)− b(t, x(v,η)

t , Ex
(v,η)
t , ut)|2β

+|b(t, x(v,η)
t , Ex

(v,η)
t , ut)− b(t, x(v,η)

t , Ex
(v,η)
t , vt)|2βχut 6=vtdt

+C2E

∫ r

s

|σ(t, x
(u,ξ)
t , Ex

(u,ξ)
t , ut)− σ(t, x

(v,η)
t , Ex

(v,η)
t , ut)|2β

+|σ(t, x
(v,η)
t , Ex

(v,η)
t , ut)− σ(t, x

(v,η)
t , Ex

(v,η)
t , vt)|2βχut 6=vtdt

+C2E|ξT − ηT |2β . (5)

Taking p = 1
αβ > 1, there exists a q > 1 such that 1

p + 1
q = 1. Noting (A1), the definition of d, d1 and d2, (5) becomes

E sup
s≤t≤r

|x(u,ξ)
t − x(v,η)

t |2β

≤ C3E

∫ r

s

sup
s≤t≤τ

|x(u,ξ)
t − x(v,η)

t |2βdτ

+C3{E
∫ r

s

[1 + |x(v,η)
t |+ |Ex(v,η)

t |+ |ut|+ |vt|]2βqdt}
1
q {E

∫ r

s

χut 6=vtdt}
1
p

+C3{E|ξT − ηT |4βp}
1
2p

≤ C4E

∫ r

s

sup
s≤t≤τ

|x(u,ξ)
t − x(v,η)

t |2βdτ + C4d
αβ
1 (u, v) + C4d

αβ
2 (ξ, η)

≤ C5E

∫ r

s

sup
s≤t≤τ

|x(u,ξ)
t − x(v,η)

t |2βdτ + C5d
αβ((u, ξ), (v, η)). (6)

By using Gronwall’s inequality to (6), the estimation follows.
For 0 < β < 1, we can get the following estimation by Cauchy-Schwartz inequality,

E sup
s≤t≤T

|x(u,ξ)
t − x(v,η)

t |2β ≤ {E sup
s≤t≤T

|x(u,ξ)
t − x(v,η)

t |2}β ≤ Cdαβ((u, ξ), (v, η)).

Thus, we complete the proof.

Define the Hamiltonian associated with the random variable X as follows:

H(t,X, u, p, q) = b(t,X,E[X], u)p+ σ(t,X,E[X], u)q − l(t,X,E[X], u), (7)

where (p, q) is the solution of (8).
Next, we introduce the following adjoint equations:{
−dp(u,ξ)

t = {b(u,ξ)x p
(u,ξ)
t + σ

(u,ξ)
x q

(u,ξ)
t − l(u,ξ)x + E[b

(u,ξ)
x̃ p

(u,ξ)
t ] + E[σ

(u,ξ)
x̃ q

(u,ξ)
t ]− El(u,ξ)x̃ }dt− q(u,ξ)

t dWt,

p
(u,ξ)
T = −g(u,ξ)

x (T )− Eg(u,ξ)
x̃ (T ),

(8)

and {
−dP (u,ξ)

t = {2b(u,ξ)x P
(u,ξ)
t + [σ

(u,ξ)
x ]2P

(u,ξ)
t + 2σ

(u,ξ)
x Q

(u,ξ)
t +H

(u,ξ)
xx }dt−Q(u,ξ)

t dWt,

P
(u,ξ)
T = −g(u,ξ)

xx (T ),
(9)
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where H
(u,ξ)
xx = b

(u,ξ)
xx p

(u,ξ)
t + σ

(u,ξ)
xx q

(u,ξ)
t − l

(u,ξ)
xx , ρ(u,ξ) = ρ(t, x

(u,ξ)
t , Ex

(u,ξ)
t , ut), ρ = b, σ, l, and

g(u,ξ)(T ) = g(x
(u,ξ)
T , Ex

(u,ξ)
T ).

Under assumptions (A1) and (A2), according to Theorem 3.1 of [8], (8) and (9) admit unique Ft-adapted solutions (p, q) and
(P,Q) respectively, such that

E[ sup
t∈[s,T ]

|pt|2 +

∫ T

s

|qt|2dt] <∞. (10)

E[ sup
t∈[s,T ]

|Pt|2 +

∫ T

s

|Qt|2dt] <∞. (11)

In the following lemma, the continuity associated with adjoint states with respect to the metric d is given.
Lemma 6 For any 0 < α < 1 and 1 < β < 2 satisfying (1 + α)β < 2, there exists a constant C > 0, such that for (u, ξ),

(v, η) ∈ U , the corresponding solutions of adjoint equations (8) and (9) satisfy

E

∫ T

s

|p(u,ξ)
t − p(v,η)

t |β + |q(u,ξ)
t − q(v,η)

t |βdt ≤ Cd
αβ
2 ((u, ξ), (v, η)),

and

E

∫ T

s

|P (u,ξ)
t − P (v,η)

t |β + |Q(u,ξ)
t −Q(v,η)

t |βdt ≤ Cd
αβ
2 ((u, ξ), (v, η)).

Proof First, we set p̄t = p
(u,ξ)
t − p(v,η)

t , q̄t = q
(u,ξ)
t − q(v,η)

t , then p̄t, q̄t satisfy the following backward SDE:{
−dp̄t = {b(u,ξ)x p̄t + σ

(u,ξ)
x q̄t + E[b

(u,ξ)
x̃ p̄t] + E[σ

(u,ξ)
x̃ q̄t] + h̄t}dt− q̄tdWt,

p̄T = −g(u,ξ)
x (T ) + g

(v,η)
x (T )− Eg(u,ξ)

x̃ (T ) + Eg
(v,η)
x̃ (T ),

where

h̄t = (b(u,ξ)x − b(v,η)
x )p

(v,η)
t + (σ(u,ξ)

x − σ(v,η)
x )q

(v,η)
t

+E[(b
(u,ξ)
x̃ − b(v,η)

x̃ )p
(v,η)
t ] + E[(σ

(u,ξ)
x̃ − σ(v,η)

x̃ )q
(v,η)
t ]

−l(u,ξ)x + l(v,η)
x − El(u,ξ)x̃ + El

(v,η)
x̃ .

Assume ψ is the following SDEs’ solution:{
dψt = [b

(u,ξ)
x ψt + b

(u,ξ)
x̃ Eψt + |p̄t|β−1sgn(p̄t)]dt+ [σ

(u,ξ)
x ψt + σ

(u,ξ)
x̃ Eψt + |q̄t|β−1sgn(q̄t)]dWt,

ψs = 0,
(12)

By using Hölder’s inequality and (10), we have

E

∫ T

s

||p̄t|β−1sgn(p̄t)|2 + ||q̄t|β−1sgn(q̄t)|2dt <∞.

Noting (A1), the existence and uniqueness of the solution of (12) are ensured.
On the other hand, since 1 < β < 2, there exists γ > 2, such that 1

β + 1
γ = 1. From (12), we can get

E sup
t∈[s,T ]

|ψt|γ ≤ C1E

∫ T

s

|p̄t|βγ−γ + |q̄t|βγ−γdt

= C1E

∫ T

s

|p̄t|β + |q̄t|βdt.

Noting (10), we have E supt∈[s,T ] |ψt|γ <∞.
Applying Itô’s formula to p̄tψt and taking expectations, we get

E

∫ T

s

p̄t|p̄t|β−1sgn(p̄t) + q̄t|q̄t|β−1sgn(q̄t)dt
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= E[p̄TψT ] + E

∫ T

s

ψth̄tdt

≤ {E|p̄T |β}
1
β {E|ψT |γ}

1
γ + {E

∫ T

s

|h̄t|βdt}
1
β {E

∫ T

s

|ψt|γdt}
1
γ

≤ C2{E
∫ T

s

|p̄t|β + |q̄t|βdt}
1
γ {[E|p̄T |β ]

1
β + [E

∫ T

s

|h̄t|βdt]
1
β }. (13)

The left side of (13) equals to

E

∫ T

s

|p̄t|β + |q̄t|βdt. (14)

Furthermore, noting αβ
2 < 1− β

2 < 1, (A2) and Lemma 5, we have

E|p̄T |β = E| − g(u,ξ)
x (T ) + g(v,η)

x (T )− Eg(u,ξ)
x̃ (T ) + Eg

(v,η)
x̃ (T )|β

≤ C3E|x(u,ξ)
T − x(v,η)

T |β

≤ C4d
αβ
2 ((u, ξ), (v, η)). (15)

and

E

∫ T

s

|b(u,ξ)x − b(v,η)
x |β |p(v,η)

t |βdt+ E

∫ T

s

|E[(b
(u,ξ)
x̃ − b(v,η)

x̃ )p
(v,η)
t ]|βdt

≤ C5E

∫ T

s

|bx(t, x
(u,ξ)
t , Ex

(u,ξ)
t , ut)− bx(t, x

(v,η)
t , Ex

(v,η)
t , ut)|β |p(v,η)

t |β

+|bx(t, x
(v,η)
t , Ex

(v,η)
t , ut)− bx(t, x

(v,η)
t , Ex

(v,η)
t , vt)|βχut 6=vt |p

(v,η)
t |βdt

+C5E

∫ T

s

|bx̃(t, x
(u,ξ)
t , Ex

(u,ξ)
t , ut)− bx̃(t, x

(v,η)
t , Ex

(v,η)
t , ut)|β |p(v,η)

t |β

+|bx̃(t, x
(v,η)
t , Ex

(v,η)
t , ut)− bx̃(t, x

(v,η)
t , Ex

(v,η)
t , vt)|βχut 6=vt |p

(v,η)
t |βdt

≤ C6E

∫ T

s

|x(u,ξ)
t − x(v,η)

t |β |p(v,η)
t |β + χut 6=vt |p

(v,η)
t |βdt

≤ C7{E
∫ T

s

|x(u,ξ)
t − x(v,η)

t |
2β

2−β dt}
2−β
2 {E

∫ T

s

|p(v,η)
t |2dt}

β
2

+C7{E
∫ T

s

|p(v,η)
t |2dt}

β
2 {E

∫ T

s

χut 6=vtdt}
2−β
2

≤ C8{d
αβ
2−β ((u, ξ), (v, η))}

2−β
2 + C8d

2−β
2 ((u, ξ), (v, η))

≤ C9d
αβ
2 ((u, ξ), (v, η)). (16)

Using the similar procedure to σ, we can get

E

∫ T

s

|σ(u,ξ)
x − σ(v,η)

x |β |q(v,η)
t |βdt+ E

∫ T

s

|E[(σ
(u,ξ)
x̃ − σ(v,η)

x̃ )q
(v,η)
t ]|βdt

≤ C10d
αβ
2 ((u, ξ), (v, η)). (17)

and

E

∫ T

s

|l(u,ξ)x − l(v,η)
x |β + |E(l

(u,ξ)
x̃ − l(v,η)

x̃ )|βdt ≤ C11d
αβ
2 ((u, ξ), (v, η)) (18)

Combining (16)-(18), we can obtain

E

∫ T

s

|h̄t|βdt ≤ C12d
αβ
2 ((u, ξ), (v, η)) (19)

The desired result follows from (13), (14), (15) and (19).
Similarly, we can prove the second inequality.
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4. Necessary and Sufficient Near-optimality Conditions for Strict Controls

In this section, we give the main result of this paper. First, we define theH-function as follows:

H(t,X, u) = H(t,X, u, p, q + Pσ(t, xt, Ext, ut))−
1

2
σ2(t,X,E[X], u)P. (20)

Theorem 7 For any δ ∈ (0, 1
3 ] and any ε-optimal singular control (uε, ξε), there exists a constant C = C(δ) > 0 such that for

each ε > 0,

E

∫ T

s

H(t, x
(uε,ξε)
t , uεt )dt ≥ sup

v∈U1
E

∫ T

s

H(t, x
(uε,ξε)
t , vt)dt− Cεδ,

and

−Cεδ ≤ E
∫ T

s

(kt +GTt p
(uε,ξε)
t )d(ηt − ξεt ).

Proof According to Remark 4, via Ekeland’s variational principle with λ = ε
2
3 , there exists an admissible pair (ūε, ξ̄ε), such

that ∀ (u, ξ) ∈ U ,
d((uε, ξε), (ūε, ξ̄ε)) ≤ ε 2

3 ,

and

Jε(s, y, ūε, ξ̄ε) ≤ Jε(s, y, u, ξ), (21)

where Jε(s, y, u, ξ) = J(s, y, u, ξ) + ε
1
3 d((u, ξ), (ūε, ξ̄ε)). It means that the control pair (ūε, ξ̄ε) is optimal for the system (2)

with the new cost functional Jε. Next, we use a double perturbation of the control (ūε, ξ̄ε) to derive the variational inequality.
More precisely, for τ ∈ [s, T ), v ∈ U1, η ∈ U2 and sufficiently small θ > 0, we define

(uθt , ξ
θ
t ) =

{
(v, ξ̄εt + θ(ηt − ξ̄εt )), t ∈ [τ, τ + θ],

(ūεt , ξ̄
ε
t + θ(ηt − ξ̄εt )), otherwise,

Since Jε(s, y, ūε, ξ̄ε) ≤ Jε(s, y, uθ, ξ̄ε) and d((ūε, ξ̄ε), (uθ, ξ̄ε)) ≤ θ, we have

−θε 1
3 ≤ J(s, y, uθ, ξ̄ε)− J(s, y, ūε, ξ̄ε). (22)

We can see that the right side of (22) is independent of the singular part, by [7], (22) becomes

−θε 1
3 ≤ −E

∫ τ+θ

τ

[b(t, x
(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , v)− b(t, x(ūε,ξ̄ε)

t , Ex
(ūε,ξ̄ε)
t , ūεt )]p

(ūε,ξ̄ε)
t

+[σ(t, x
(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , v)− σ(t, x

(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , ūεt )]q

(ūε,ξ̄ε)
t

−l(t, x(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , v) + l(t, x

(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , ūεt )

+
1

2
P

(ūε,ξ̄ε)
t [σ(t, x

(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , v)− σ(t, x

(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , ūεt )]

2dt+ o(θ). (23)

Dividing (23) by θ and sending θ → 0, we derive

−ε 1
3 ≤ −E{[b(τ, x(ūε,ξ̄ε)

τ , Ex(ūε,ξ̄ε)
τ , v)− b(τ, x(ūε,ξ̄ε)

τ , Ex(ūε,ξ̄ε)
τ , ūετ )]p(ūε,ξ̄ε)

τ

+[σ(τ, x(ūε,ξ̄ε)
τ , Ex(ūε,ξ̄ε)

τ , v)− σ(τ, x(ūε,ξ̄ε)
τ , Ex(ūε,ξ̄ε)

τ , ūετ )]q(ūε,ξ̄ε)
τ

−l(τ, x(ūε,ξ̄ε)
τ , Ex(ūε,ξ̄ε)

τ , v) + l(τ, x(ūε,ξ̄ε)
τ , Ex(ūε,ξ̄ε)

τ , ūετ )

+
1

2
P (ūε,ξ̄ε)
τ [σ(τ, x(ūε,ξ̄ε)

τ , Ex(ūε,ξ̄ε)
τ , v)− σ(τ, x(ūε,ξ̄ε)

τ , Ex(ūε,ξ̄ε)
τ , ūετ )]2}. (24)

Furthermore, we give some estimations of the following difference by using similar methods as in [28],

Cεδ ≥ E

∫ T

s

[b(t, x
(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , ūεt )− b(t, x

(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , v)]p

(ūε,ξ̄ε)
t

−[b(t, x
(uε,ξε)
t , Ex

(uε,ξε)
t , uεt )− b(t, x

(uε,ξε)
t , Ex

(uε,ξε)
t , v)]p

(uε,ξε)
t dt, (25)
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Cεδ ≥ E

∫ T

s

[σ(t, x
(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , ūεt )− σ(t, x

(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , v)]q

(ūε,ξ̄ε)
t

−[σ(t, x
(uε,ξε)
t , Ex

(uε,ξε)
t , uεt )− σ(t, x

(uε,ξε)
t , Ex

(uε,ξε)
t , v)]q

(uε,ξε)
t dt, (26)

Cεδ ≥ E

∫ T

s

l(t, x
(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , v)− l(t, x(ūε,ξ̄ε)

t , Ex
(ūε,ξ̄ε)
t , ūεt )

−l(t, x(uε,ξε)
t , Ex

(uε,ξε)
t , v) + l(t, x

(uε,ξε)
t , Ex

(uε,ξε)
t , uεt )dt, (27)

and

Cεδ ≥ E

∫ T

s

−1

2
P

(ūε,ξ̄ε)
t [σ(t, x

(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , v)− σ(t, x

(ūε,ξ̄ε)
t , Ex

(ūε,ξ̄ε)
t , ūεt )]

2

+
1

2
P

(uε,ξε)
t [σ(t, x

(uε,ξε)
t , Ex

(uε,ξε)
t , v)− σ(t, x

(uε,ξε)
t , Ex

(uε,ξε)
t , uεt )]

2dt. (28)

Combining (24)-(28) together, we obtain

E

∫ T

s

H(t, x
(uε,ξε)
t , uεt , p

(uε,ξε)
t , q

(uε,ξε)
t )−H(t, x

(uε,ξε)
t , v, p

(uε,ξε)
t , q

(uε,ξε)
t )

−1

2
P

(uε,ξε)
t [σ(t, x

(uε,ξε)
t , Ex

(uε,ξε)
t , v)− σ(t, x

(uε,ξε)
t , Ex

(uε,ξε)
t , uεt )]

2dt ≤ Cεδ. (29)

Noting the Hamiltonian (20), the first variational inequality immediately follows from (29).
Furthermore, from (21) we have

Jε(s, y, ūε, ξ̄ε) ≤ Jε(s, y, ūε, ξθ),

Further, we can deduce

J(s, y, ūε, ξθ)− J(s, y, ūε, ξ̄ε) ≥ −Cθεδ. (30)

Finally, according to Lemma 5 of [18], we have

lim
θ→0

J(s, y, ūε, ξθ)− J(s, y, ūε, ξ̄ε)

θ
= E

∫ T

s

(kt +GTt p
(ūε,ξ̄ε)
t )d(ηt − ξ̄εt ). (31)

Combining (30) and (31) together, we get

−Cεδ ≤ E
∫ T

s

(kt +GTt p
(ūε,ξ̄ε)
t )d(ηt − ξ̄εt ). (32)

Moreover,

E

∫ T

s

(kt +GTt p
(ūε,ξ̄ε)
t )d(ηt − ξ̄εt )− E

∫ T

s

(kt +GTt p
(uε,ξε)
t )d(ηt − ξεt )

= E

∫ T

s

(kt +GTt p
(ūε,ξ̄ε)
t )d(ξεt − ξ̄εt ) + E

∫ T

s

GTt (p
(ūε,ξ̄ε)
t − p(uε,ξε)

t )d(ηt − ξεt ).

Noting (A3), (10) and Lemma 6, by using Cauchy-Schwartz inequality to the above equality, we can finally get

Cεδ ≥ E
∫ T

s

(kt +GTt p
(ūε,ξ̄ε)
t )d(ηt − ξ̄εt )− E

∫ T

s

(kt +GTt p
(uε,ξε)
t )d(ηt − ξεt ). (33)

This completes the proof by combining (32) and (33).
Remarks 8 (1) If ε = 0, it is just the necessary condition of

exact optimality of singular mean-field SDE.
(2) If G = k = 0, we can obtain the necessary near-

optimality conditions for mean-field stochastic systems with
controlled diffusion coefficient.

(3) If ε = 0 and G = k = 0, the maximum principle for

mean-field SDEs in [7] is presented.
In the following theorem, we prove that under some

additional assumptions, necessary conditions obtained above
are also sufficient.

(A4) b, σ, l are differentiable in u, and there exists a constant
C > 0 such that for ρ = b, σ, l,
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|ρ(t, x, x̃, u1)− ρ(t, x, x̃, u2)|+ |ρu(t, x, x̃, u1)− ρu(t, x, x̃, u2)| ≤ C|u1 − u2|.

Theorem 9 Assume the Hamiltonian H(t, ·, ·, p(uε,ξε)
t , q

(uε,ξε)
t ) is concave for a.e. t ∈ [s, T ], P -a.s. and g(·, ·) is convex. Let

(p
(uε,ξε)
t , q

(uε,ξε)
t ) be the solution of the adjoint equation (8) controlled by (uε, ξε). If for any (u, ξ) ∈ U and some ε > 0,

E

∫ T

s

H(t, x
(uε,ξε)
t , uεt )dt ≥ sup

u∈U1
E

∫ T

s

H(t, x
(uε,ξε)
t , ut)dt− ε (34)

and

E

∫ T

s

ktd(ξt − ξεt ) ≥ −Cε
1
2 (35)

hold, then we have

J(s, y, uε, ξε) ≤ inf
(u,ξ)∈U

J(s, y, u, ξ) + Cε
1
2 ,

with C > 0 a constant independent of ε.
Proof First, we rewrite the cost functional J as

J(s, y, u, ξ) = J1(s, y, u) + J2(s, y, ξ), (36)

where

J1(s, y, u) = E[g(x
(u,ξ)
T , Ex

(u,ξ)
T ) +

∫ T

s

l(t, x
(u,ξ)
t , Ex

(u,ξ)
t , ut)dt],

and

J2(s, y, ξ) = E

∫ T

s

ktdξt.

Fix ε > 0, for any (u, ξ), (v, η) ∈ U , a new metric d̃ on U is defined by:

d̃((u, ξ), (v, η)) = d̃1(u, v) + d2(ξ, η),

where

d̃1(u, v) = E

∫ T

s

λεt |ut − vt|dt,

and
λεt = 1 + |p(uε,ξε)

t |+ |q(uε,ξε)
t |+ |P (uε,ξε)

t |+ |P (uε,ξε)
t ||x(uε,ξε)

t |.

It is easy to see that d̃1 is a complete metric on (U1, d̃1), Hence (U , d̃) is also a complete metric space as the product of two
complete spaces under the metric d̃.

A functional J̄ on U1 is defined by

J̄(u) = E

∫ T

s

H(t, x
(uε,ξε)
t , ut)dt.

Noting (A4), we can easily check that J̄ is continuous on U1 with respect to d̃1. Further, with the help of (34) as well as
Ekeland’s variational principle, there exists a ūε ∈ U1 such that

d̃1(ūε, uε) ≤ ε 1
2 ,

and

E

∫ T

s

H̃(t, x
(uε,ξε)
t , ūεt )dt = max

u∈U1
E

∫ T

s

H̃(t, x
(uε,ξε)
t , ut)dt,

where
H̃(t, x, u) = H(t, x, u)− ε 1

2λεt |u− ūε|.
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The integral-form maximum condition implies a pointwise maximum condition, that is, for a.e. t ∈ [s, T ] and P -a.s.,

H̃(t, x
(uε,ξε)
t , ūεt ) = max

u∈U1
H̃(t, x

(uε,ξε)
t , ut).

Then, by Lemma 2.3 of [26], we have

0 ∈ ∂uH̃(t, x
(uε,ξε)
t , ūεt ).

While

∂uH̃(t, x
(uε,ξε)
t , ūεt ) ⊆ ∂uH(t, x

(uε,ξε)
t , ūεt ) + [−ε 1

2λεt , ε
1
2λεt ].

Furthermore,H is differentiable in u, so there exists a βεt ∈ [−ε 1
2λεt , ε

1
2λεt ], such that

βεt = −Hu(t, x
(uε,ξε)
t , ūεt ),

i.e.

Hu(t, x
(uε,ξε)
t , ūεt , p

(uε,ξε)
t , q

(uε,ξε)
t )

= −βεt − σu(t, x
(uε,ξε)
t , Ex

(uε,ξε)
t , ūεt )P

(uε,ξε)
t σ(t, x

(uε,ξε)
t , Ex

(uε,ξε)
t , uεt )

+ σu(t, x
(uε,ξε)
t , Ex

(uε,ξε)
t , ūεt )P

(uε,ξε)
t σ(t, x

(uε,ξε)
t , Ex

(uε,ξε)
t , ūεt ).

Applying the similar method as in [28] for the rest of the proof, we can finally obtain

J1(s, y, uε) ≤ inf
u∈U1

J1(s, y, u) + Cε
1
2 . (37)

From (35), we have

J2(s, y, ξε) ≤ J2(s, y, ξ) + Cε
1
2 . (38)

Combining (36), (37) and (38), we can arrive at the conclusion.
Remark 10 Under the assumption of Theorem 9, a sufficient condition for an admissible control (uε, ξε) to be ε-optimal is

E[

∫ T

s

H(t, x
(uε,ξε)
t , uεt )dt−

∫ T

s

ktdξ
ε
t ] ≥ sup

(u,ξ)∈U
{E

∫ T

s

H(t, x
(uε,ξε)
t , ut)dt−

∫ T

s

ktdξt} − C1ε,

where C1 > 0 is a constant only depending on C.

5. The Relaxed Mean-field Singular
Control Problem

In this section, relaxed singular control problems are
studied. First, we give the definition of admissible set of
relaxed singular controls.

Definition 11 An admissible relaxed singular control is a
pair (q, η) of progresses such that
(i)q is a P (A1)-valued process, progressively measurable with
respect to (Ft)t and such that for each t, I(0,t]q is Ft-
measurable and E[supt∈[s,T ] |qt|2] <∞.
(ii) η ∈ U2.

We denote byR = R1×U2 the set of all admissible relaxed
singular controls.

For any (q, η) ∈ R, we consider the following stochastic
system:

{
dx

(q,η)
t =

∫
A1
b(t, x

(q,η)
t , Ex

(q,η)
t , a)qt(da)dt+

∫
A1
σ(t, x

(q,η)
t , Ex

(q,η)
t , a)qt(da)dWt +Gtdηt,

x
(q,η)
s = y.

(39)

The cost functional associated with (39) is given by

J (q, η) = E[g(x
(q,η)
T , Ex

(q,η)
T ) +

∫ T

s

∫
A1

l(t, x
(q,η)
t , Ex

(q,η)
t , a)qt(da)dt+

∫ T

s

ktdηt], (40)

and the value function by

V(s, y) = inf
(q,η)∈R

J (s, y, q, η). (41)
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A relaxed singular control (q̄, η̄) is called ε-optimal if it satisfies

|J (s, y, q̄, η̄)− V(s, y)| ≤ ε.

Remark 12 If we put ρ̄(t, x
(q,η)
t , Ex

(q,η)
t , qt) =

∫
A1
ρ(t, x

(q,η)
t , Ex

(q,η)
t , a)qt(da), where ρ = b, σ, l, then (5.1) becomes{

dx
(q,η)
t = b̄(t, x

(q,η)
t , Ex

(q,η)
t , qt)dt+ σ̄(t, x

(q,η)
t , Ex

(q,η)
t , qt)dWt +Gtdηt,

x
(q,η)
s = y,

(42)

with the cost functional given by

J (q, η) = E[g(x
(q,η)
T , Ex

(q,η)
T ) +

∫ T

s

l̄(t, x
(q,η)
t , Ex

(q,η)
t , qt)dt+

∫ T

s

ktdηt]. (43)

It is clear that P (A1) is compact and convex, furthermore,
the coefficients of (42)and (43) check the same assumptions as
those of (2) and (3). Therefore, for every (q, η) ∈ R, (42)
admits a unique solution and the cost functional J is well
defined fromR into R.

Remark 13 The set of strict singular controls U is embedded

into the set of relaxed singular controlsR by the mapping

f : u ∈ U 7→ fu(dt, da) = dtδut(da) ∈ R,

where δu is the Dirac measure concentrated at a single point u.
Furthermore, if qt = δut , then for each t ∈ [s, T ], we have

∫
A1

ρ(t, x
(q,η)
t , Ex

(q,η)
t , a)qt(da) =

∫
A1

ρ(t, x
(q,η)
t , Ex

(q,η)
t , a)δut(da) = ρ(t, x

(q,η)
t , Ex

(q,η)
t , ut),

where ρ = b, σ, l.

In this case x(q,η)
t = x

(u,η)
t , Ex(q,η)

t = Ex
(u,η)
t , J (q, η) =

J(u, η), then we get a strict singular control problem. That
is to say, the problem of strict singular controls is a particular
case of the problem of relaxed singular ones.

Before we draw the desired conclusions, we make
another assumption and introduce the well known chattering
lemma, which will play an important role in the following
demonstration.

(A5) b, σ, l are bounded.
Lemma 14 ([19]) Let (qt) be a predictable process with

values in the space of probability measures on A1. Then there
exists a sequence of predictable processes (un) with values in
A1 such that the sequence of random measures (δunt (da)dt)

converges weakly to qt(da), P -a.s.

Lemma 15 Let (A1)-(A3), (A5) hold, for any (q, η) ∈ R,
there exists a sequence (un, η)n≥1 ⊂ U such that

lim
n→∞

E( sup
t∈[s,T ]

|x(un,η)
t − x(q,η)

t |2) = 0,

and
lim
n→∞

J(un, η) = J (q, η),

where x(un,η)
t , x(q,η)

t are trajectories associated with (un, η)
and (q, η) respectively.

Proof By using (A1) and Burkholder-Davis-Gundy
inequality, from (2) and (39), we have

E( sup
t∈[s,T ]

|x(un,η)
t − x(q,η)

t |2)

≤ C1E

∫ T

s

|b(t, x(un,η)
t , Ex

(un,η)
t , unt )− b(t, x(q,η)

t , Ex
(q,η)
t , unt )|2dt

+C1E

∫ T

s

|
∫
A1

b(t, x
(q,η)
t , Ex

(q,η)
t , a)δunt (da)−

∫
A1

b(t, x
(q,η)
t , Ex

(q,η)
t , a)qt(da)|2dt

+C1E

∫ T

s

|σ(t, x
(un,η)
t , Ex

(un,η)
t , unt )− σ(t, x

(q,η)
t , Ex

(q,η)
t , unt )|2dt

+C1E

∫ T

s

|
∫
A1

σ(t, x
(q,η)
t , Ex

(q,η)
t , a)δunt (da)−

∫
A1

σ(t, x
(q,η)
t , Ex

(q,η)
t , a)qt(da)|2dt

≤ C2E

∫ T

s

|x(un,η)
t − x(q,η)

t |2dt+ C2α
n
t , (44)
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where

αnt = E

∫ T

s

|
∫
A1

b(t, x
(q,η)
t , Ex

(q,η)
t , a)δunt (da)−

∫
A1

b(t, x
(q,η)
t , Ex

(q,η)
t , a)qt(da)|2dt

+E

∫ T

s

|
∫
A1

σ(t, x
(q,η)
t , Ex

(q,η)
t , a)δunt (da)−

∫
A1

σ(t, x
(q,η)
t , Ex

(q,η)
t , a)qt(da)|2dt.

Noting (A5), by using Lemma 14 and dominated convergence theorem, we obtain

lim
n→∞

αnt = 0. (45)

From (44) and (45), the conclusion is drawn by using Gronwall’s inequality to (44).
On the other hand, noting (A1) and (A2), we have

|J(un, η)− J (q, η)|
≤ E|g(x

(un,η)
T , Ex

(un,η)
T )− g(x

(q,η)
T , Ex

(q,η)
T )|

+E

∫ T

s

|l(t, x(un,η)
t , Ex

(un,η)
t , unt )− l(t, x(q,η)

t , Ex
(q,η)
t , unt )|dt

+E

∫ T

s

|
∫
A1

l(t, x
(q,η)
t , Ex

(q,η)
t , a)δunt (da)−

∫
A1

l(t, x
(q,η)
t , Ex

(q,η)
t , a)qt(da)|dt

≤ C3E|x(un,η)
T − x(q,η)

T |+ C3E

∫ T

s

|x(un,η)
t − x(q,η)

t |dt+ C3β
n
t , (46)

where

βnt = E

∫ T

s

|
∫
A1

l(t, x
(q,η)
t , Ex

(q,η)
t , a)δunt (da)−

∫
A1

l(t, x
(q,η)
t , Ex

(q,η)
t , a)qt(da)|dt.

By using (A5), Lemma 14 and dominated convergence theorem, we also obtain that

lim
n→∞

βnt = 0.

By virtue of Cauchy-Schwartz inequality to (46), noting the first drawn conclusion, we can easily get the second result.
Remark 16 Assume that (µε, ηε) is the ε-optimal control pair, according to Lemma 15, there exist (un,ε, ηε) ∈ U and a

positive sequence (εn) with limn→∞ εn = 0, such that

J(un,ε, ηε) ≤ J (µε, ηε) + εn ≤ inf
(un,η)∈U

J(un, η) + εn.

and it is easy to see that (un,ε, ηε) is an ε-optimal control pair.

Next, we give adjoint equations corresponding to (un,ε, ηε) and (µε, ηε) respectively.

{
−dpn,εt = {bn,εx pn,εt + σn,εx qn,εt − ln,εx + E[bn,εx̃ pn,εt ] + E[σn,εx̃ qn,εt ]− Eln,εx̃ }dt− q

n,ε
t dWt,

pn,εT = −gn,εx (T )− Egn,εx̃ (T ),
(47)

{
−dPn,εt = {2bn,εx Pn,εt + [σn,εx ]2Pn,εt + 2σn,εx Qn,εt +Hn,ε

xx }dt−Q
n,ε
t dWt,

Pn,εT = −gn,εxx (T ),
(48)

and {
−dpµ,εt = {bµ,εx pµ,εt + σµ,εx qµ,εt − lµ,εx + E[bµ,εx̃ pµ,εt ] + E[σµ,εx̃ qµ,εt ]− Elµ,εx̃ }dt− q

µ,ε
t dWt,

pµ,εT = −gµ,εx (T )− Egµ,εx̃ (T ),
(49)

{
−dPµ,εt = {2bµ,εx Pµ,εt + [σµ,εx ]2Pµ,εt + 2σµ,εx Qµ,εt +Hµ,ε

xx }dt−Q
µ,ε
t dWt,

Pµ,εT = −gµ,εxx (T ),
(50)
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where
ρn,ε = ρ(t, xn,εt , Exn,εt , un,εt ), gn,ε(T ) = g(xn,εT , Exn,εT )

and
ρµ,ε =

∫
A1

ρ(t, xµ,εt , Exµ,εt , a)µεt (da), gµ,ε(T ) = g(xµ,εT , Exµ,εT ),

H(t, xµ,εt , µεt , p
µ,ε
t , qµ,εt ) =

∫
A1

H(t, xµ,εt , a, pµ,εt , qµ,εt )µεt (da),

xn,εt := x
(un,ε,ηε)
t , xµ,εt := x

(µε,ηε)
t , ρ = b, σ, l.

Lemma 17 Let (pn,εt , qn,εt ) and (pµ,εt , qµ,εt ) be solutions of (47) and (49), (Pn,εt , Qn,εt ) and (Pµ,εt , Qµ,εt ) be solutions of (48)
and (50)respectively, we have

lim
n→∞

( sup
t∈[s,T ]

E|pn,εt − p
µ,ε
t |2 + E

∫ T

s

|qn,εt − qµ,εt |2dt) = 0,

and

lim
n→∞

( sup
t∈[s,T ]

E|Pn,εt − Pµ,εt |2 + E

∫ T

s

|Qn,εt −Q
µ,ε
t |2dt) = 0.

Proof Applying Itô’s formula to (pµ,εt − p
n,ε
t )2 on [s, T ], we have

E|pµ,εs − pn,εs |2 + E

∫ T

s

|qµ,εt − qn,εt |2dt

= E|gµ,εx (T ) + Egµ,εx̃ (T )− gn,εx (T )− Egn,εx̃ (T )|2 + 2E

∫ T

s

(pµ,εt − p
n,ε
t )(Iµ,εt − In,εt )dt,

where

Iµ,εt = bµ,εx pµ,εt + σµ,εx qµ,εt − lµ,εx + E[bµ,εx̃ pµ,εt ] + E[σµ,εx̃ qµ,εt ]− Elµ,εx̃ ,

and

In,εt = bn,εx pn,εt + σn,εx qn,εt − ln,εx + E[bn,εx̃ pn,εt ] + E[σn,εx̃ qn,εt ]− Eln,εx̃ .

By using Young’s inequality |ab| ≤ ε
2 |a|

2 + 1
2ε |b|

2, we obtain

E|pµ,εs − pn,εs |2 + E

∫ T

s

|qµ,εt − qn,εt |2dt

≤ E|gµ,εx (T ) + Egµ,εx̃ (T )− gn,εx (T )− Egn,εx̃ (T )|2 + E

∫ T

s

1

ε
|pµ,εt − p

n,ε
t |2dt+ εE

∫ T

s

|Iµ,εt − In,εt |2dt

≤ (
1

ε
+ 24C1ε)E

∫ T

s

|pµ,εt − p
n,ε
t |2dt+ 24C1εE

∫ T

s

|qµ,εt − qn,εt |2dt+ εφnt ,

where

φnt =
1

ε
E|gµ,εx (T ) + Egµ,εx̃ (T )− gn,εx (T )− Egn,εx̃ (T )|2

+12E

∫ T

s

|(bµ,εx − bn,εx )pn,εt |2dt+ 12E

∫ T

s

|(bµ,εx̃ − b
n,ε
x̃ )pn,εt |2dt

+12E

∫ T

s

|(σµ,εx − σn,εx )qn,εt |2dt+ 12E

∫ T

s

|(σµ,εx̃ − σn,εx̃ )qn,εt |2dt

+6E

∫ T

s

|lµ,εx − ln,εx |2dt+ 6E

∫ T

s

|lµ,εx̃ − ln,εx̃ |
2dt.



26 Ruijing Li: Near-optimality Conditions for Relaxed and Strict Mean-field Singular FBSDEs

Taking ε = 1
48C1

, we get

E|pµ,εs − pn,εs |2 +
1

2
E

∫ T

s

|qµ,εt − qn,εt |2dt ≤ C2E

∫ T

s

|pµ,εt − p
n,ε
t |2dt+ C2φ

n
t . (51)

Noting (A1), (A2), (A5), we have

E

∫ T

s

|(bµ,εx − bn,εx )pn,εt |2dt

≤ C3E

∫ T

s

|
∫
A1

bx(t, xµ,εt , Exµ,εt , a)µεt (da)−
∫
A1

bx(t, xµ,εt , Exµ,εt , a)δunt (da)|2|pn,εt |2dt

+C3E

∫ T

s

|
∫
A1

bx(t, xµ,εt , Exµ,εt , a)δunt (da)−
∫
A1

bx(t, xn,εt , Exn,εt , a)δunt (da)|2|pn,εt |2dt

≤ C4E

∫ T

s

|
∫
A1

bx(t, xµ,εt , Exµ,εt , a)µεt (da)−
∫
A1

bx(t, xµ,εt , Exµ,εt , a)δunt (da)|2|pn,εt |2dt

+C4E

∫ T

s

|xµ,εt − x
n,ε
t |2|p

n,ε
t |2dt.

By using Lemma 14 and Lemma 15 to the right side of the above inequality, we obtain

lim
n→∞

E

∫ T

s

|(bµ,εx − bn,εx )pn,εt |2dt = 0.

Using the same procedure, we can also get

lim
n→∞

E

∫ T

s

|(bµ,εx̃ − b
n,ε
x̃ )pn,εt |2dt = 0,

lim
n→∞

E

∫ T

s

|(σµ,εx − σn,εx )qn,εt |2dt = 0,

lim
n→∞

E

∫ T

s

|(σµ,εx̃ − σn,εx̃ )qn,εt |2dt = 0,

lim
n→∞

E

∫ T

s

|lµ,εx − ln,εx |2dt = 0,

lim
n→∞

E

∫ T

s

|lµ,εx̃ − ln,εx̃ |
2dt = 0.

On the other hand, since

E|gµ,εx (T ) + Egµ,εx̃ (T )− gn,εx (T )− Egn,εx̃ (T )|2 ≤ C5E|xµ,εT − x
n,ε
T |

2,

it follows that

lim
n→∞

E|gµ,εx (T ) + Egµ,εx̃ (T )− gn,εx (T )− Egn,εx̃ (T )|2 = 0.

Through above arguments, we obtain

lim
n→∞

φnt = 0.

Then the first result follows by using Gronwall’s inequality
to (51).

Similarly, we can prove the second equality.

6. Necessary and Sufficient
Near-optimality Conditions for
Relaxed Controls

In this section, we study the mean-field problem of relaxed
singular controls. Necessary as well as sufficient conditions of
near-optimality are established.

Theorem 18 For any δ ∈ (0, 1
3 ] and any ε-optimal relaxed

singular control (µεt , η
ε), there exists a constant C = C(δ) >
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0 such that for each ε > 0

E

∫ T

s

H(t, xµ,εt , µεt )dt ≥ sup
ν∈R1

E

∫ T

s

H(t, xµ,εt , νt)dt−Cεδ,

and

−Cεδ ≤ E
∫ T

s

(kt +GTt p
µ,ε
t )d(ηt − ηεt ),

where

H(t, xµ,εt , µεt ) =

∫
A1

H(t, xµ,εt , a)µεt (da).

Proof For the ε-optimal control pair (µεt , η
ε), according to

Lemma 14, there exists a strict control pair (un,εt , ηε) such that
δun,εt (da)dt converges weakly to µεt (da)dt, and from Remark
16, we know that (un,εt , ηε) is also ε-optimal. So by virtue of
Theorem 7, we have

E

∫ T

s

H(t, xn,εt , un,εt )dt ≥ sup
v∈U1

E

∫ T

s

H(t, xn,εt , vt)dt−Cεδ,

and

−Cεδ ≤ E
∫ T

s

(kt +GTt p
n,ε
t )d(ηt − ηεt ).

Taking limits on both sides to above two inequalities, by
Fatou’s Lemma, Lemma 15 and 17, we can get the final results.

Theorem 19 Assume the Hamiltonian H(t, ·, ·, pt, qt) is
concave for a.s. t ∈ [s, T ], P -a.s. and g(·, ·) is convex.
Let (pµ,εt , qµ,εt ) be the solution of the adjoint equation (49)
controlled by (µε, ηε). If for some ε > 0 and any (ν, η) ∈ R,

E

∫ T

s

H(t, xµ,εt , µεt )dt ≥ sup
ν∈R1

E

∫ T

s

H(t, xµ,εt , νt)dt− ε

and

E

∫ T

s

ktd(ηt − ηεt ) ≥ −Cε
1
2

hold, then we have

J (s, y, µε, ηε) ≤ inf
(ν,η)∈R

J (s, y, ν, η) + Cε
1
2 ,

Proof By applying the same arguments as in the proof of
Theorem 9, the conclusion is drawn.
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