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Abstract: Hydroclimatology assessment is conventionally based on area data for identification of change patterns and 

trends. In this paper, monthly averages, maximum seasonal and maximum annual hydro- climatology data series from 

Lwamunda forest catchment area in central Uganda have been analyzed in order to determine the appropriate probability 

distribution models for the underlying climatology (i.e. rainfall, soil moisture content, evapotranspiration and temperature). A 

total of 7 probability distributions were considered and three goodnessof- fit tests were used to evaluate the best-fit probability 

distribution model for each hydro-climatology data series. They were Lilliefors (D), Anderson-Darling (AD), and Cramer-Von 

Mises (W2). A ranking metric based on the test statistic from the three GoF tests was used to select the most appropriate 

probability distribution model capable of reproducing the statistics of the hydroclimatological data series. The best fit 

probability distribution was selected based on the minimum sum of the three test statistic. Results showed that different best fit 

probability distribution models were identified for the different data series depending on location and on temporal scales which 

corroborate with those reported in literature. With the exception of soil moisture content for annual and seasonal maximum 

series who have the same best fit model. The same applied to evapotranspiration seasonal maximum and near surface 

temperature seasonal maximum as well as monthly near surface temperatures have the same best fit model. The soil moisture 

content data series was best fit by the Weibull probability distribution, rainfall series was best fit by Chi square and Gamma 

probability distributions. The evapotranspiration data series was best fit by Logistic and Extreme value maximum (Gumbel) 

probability distributions. Finally for near surface temperature it was best fitted by Logistic and Gumbel probability 

distributions. The contribution of this study lies in the use of hydroclimatological data series including soil moisture content 

from the area that had forest cover change to analyzeits impact on water resources patterns. The contribution is important for 

agricultural planning and forest managers’ simulation of forest degradation impacts. 
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1. Introduction 

The interaction between hydrological and climatological 

factors in tropical areas among others, determines the 

magnitude and quality of water resources available for both 

humans and other living creatures. In particular forests and 

water bodies are crucial in influencing the hydrological circle 

within the tropics. Management of these resources that are 

increasingly becoming scarce is a key factor for their 

sustainable use. However, with increasing pressure from 

population growth and climate change and its variability, 

management of these resources becomes a challenge. Any 

change in their use indirectly constrains their availability on 

temporal and spatial scales. Climate variability and land 

cover change like forest cover change are consistently 

associated with changes in water balance accompanied with 

changes in other hydrological systems, such as the changing 

patterns of rainfall, drainage density and spring flow 
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reduction, increasing evapotranspiration, changes in soil 

moisture and surface run off. With changes in hydrological 

cycle and systems, subsequently impact on the quantity and 

quality of regional water resources on land. 

Advances in the interactions of land surface-atmospheric 

components have shown an increasing interest in how human 

induced land use/cover changes influence climatic variables 

such as rainfall [1, 2], temperature and evapotranspiration. 

Identifying and understanding such interactions’ 

consequences is however complicated by the difficulties of 

delineating causing factors from compounding factors [38]. 

Since there is difficulty with determining cause and effect in 

a complex interacting systems with disparate characteristic 

time scale in a robust way. One of such interactions is how 

land cover changes influence soil moisture content and in 

turn how soil moisture content impact on overlying boundary 

layer evolution which carries with it longer time-scale 

variability in the region [1]. With land cover change, 

investigations of the interaction between land cover and 

atmosphere on statistical measures of climate states need to 

focus both on immediate interactions and the feedbacks that 

operate at longer time scales. In this current work interactions 

considered are based on local experience of the change in 

forest cover into various land uses and how subsequently 

sparks changes in soil water content, stream outflow, 

evapotranspiration, rainfall and temperature. Thus it’s 

important to understand the feedbacks and interactions 

between land cover changes and its impact on water 

resources patterns and dynamics. 

Many regions on the African continent have suffered from 

climate change and variability for decades. Where semiarid 

regions of the Northern Hemisphere have exhibited inter-

annual and inter seasonal rainfall fluctuations, indicative of 

land atmospheric feedback mechanism [3, 37]. The African 

continent is expected to become warmer in this century larger 

than the global trends. Seasonal variability of climatic 

parameters could adversely affect amount of rainfall, water 

resources and output from agriculture [4, 5]. There is 

expected increase in climate variability in the coming 

decades as rainfall is projected to reduce and temperatures to 

increase. Therefore, it’s crucial for purposes of planning and 

management of water resources to properly assess and 

improve understanding of how past changes in climate events 

affect people’s livelihood and access to water. 

According to Mubiru [6], human activities like deforestation 

that trigger land use and land cover changes do influence climate 

and other drivers of land use change, at varying levels. Rainfall 

patterns in most parts of African continent exhibit high degree of 

inter-annual and intra-seasonal variability over spatial and 

temporal scales [41]. The amount and pattern of rainfall are 

considered to be key drivers to water resources changes and 

fluctuation in agricultural productivity. According to Lazaro [7], 

long term records of rainfall usually provide information about 

rainfall patterns of variability and rainfall patterns are often 

inferred from computation of probability distribution functions 

such that normal distribution function is mostly used in rainfall 

analysis. Although commonly used in rainfall analysis, there are 

other instances where rainfall distributions were found to be 

neither normal norsymmetrical [36], Jackson [8], annual rainfall 

was found to be skewed in semiarid areas and not in tropics. In 

Uganda rainfall is analyzed according to four seasons over most 

parts of the country, the seasons are DJF, MAM, JJA and SON 

[9, 10, 41]. These seasons contribute a mean annual rainfall 

approximately 1,200mm [11], whileNEMA [12] estimates 

varying rainfall between 500mm and 2800mm, averaging more 

than 1180mm yr
-1
. Seasonal patterns tend to be bimodal near 

equator and uni-modal systems as we move away from equator 

[13, 14]. However, most of rainfall studies do not tell us much 

about the magnitude of change and their distribution with 

confidence [15]. 

Studies on temperature trends predict variability and increase 

[16, 17]. Climate trends studies in the country indicates that the 

period between 1975 and 2009, temperature increased by more 

than 0.8% yr
-1
 while rainfall reduced by 8% between 1900 and 

2009. Near surface temperature increased around 21°C in 

general and monthly minimum temperature will range 15°C 

(July) to 30°C in (Feb). Uganda experienced positive trends in 

both minimum and maximum temperatures over the period 

1960-2008 [11] and usually the increase in near surface 

temperature have impact on ground water systems [18]. 

Projected increase in temperature by 2°C - 2.5°C in about 50-80 

years to come [10], will have disastrous effects on agriculture 

production on which many rural people depend [19], on fish 

stocks and fish based livelihoods [20]. Higher temperatures are 

also expected to have effects on per capita productivity in 

warmer countries like Uganda although such predictability is not 

conclusive if temperature distribution pattern is not known. In 

general the projected changes in near surface temperature and 

rainfall implies that the country will experience observable 

hydroclimatological regime shifts in rainfall and temperature [6, 

21, 16, 10], where the biggest impact will be on water resources. 

Forest cover loss during the 20
th

 century was confirmed to 

increase evapotranspiration and decrease water yield 

significantly [22, 42]. It’s also important to note that forests 

regulate water storage beneath it and increases travel time for 

water to reach streams [22], this implies that forest cover loss 

would do the reverse which can only be accepted or refuted 

by empirical findings. The interaction feedbacks do 

hypothesize soil moisture content –rainfall feedback 

previously identified in other studies [39] as having a 

significant role in affecting the partitioning of water and 

energy balance at the surface through influence on 

evapotranspiration efficiency, albedo and thermal inertia [1]. 

This needs to be understood further under conditions of land 

cover change. Soil moisture content has a more local effect 

on climate through seasonal mean evapotranspiration and 

temperature. Such feedbacks will be better understood if 

there is more information on their distributions in a given 

area. In addition forest cover loss disrupts the hydrological 

cycle of a drainage basin by changing the balance between 

rainfall, evaporation and soil moisture content dynamics [23]. 

Studies on climate change in Uganda have focused on 

temperature and rainfall variability and few in other areas 

incorporating potential evaporation. Little is known about 



67 Ausi Abubakar Ssentongo et al.:  Hydro-climatology Characterization of Degraded Lwamunda   

Forest Catchment Based on Probability Distributions 

evapotranspiration inclusion in climate studies in the region 

and its probable distribution. In addition soil moisture 

content as a component used in drought monitoring and 

analysis has not been incorporated much in 

hydrometeorology and hydro-climatological studies in the 

region. In the East African region over the last 50 years, 

drought had been frequent and steadily increased [24]. It 

impacts on agricultural production, infrastructure, health, and 

household welfare through impacts on crop and livestock 

prices [25] is not much documented in empirical work. 

Uganda is projected to be water stressed by 2025 [10], this 

implies that for effective adaptation to climate variability, 

probability distributions of rainfall, evapotranspiration and 

soil moisture content are crucial as input decision tools in 

proper management of water resources. 

While there are advances in modeling land-surface processes 

and atmospheric interactions under controlled conditions using 

catchment data, it can also be studied through direct analysis of 

model equations using observational data derived from satellite 

sensors and also fitting distributions. Therefore, assessing the 

nature of probability distribution models capable of reproducing 

statistical moments of hydro-climatological observations that 

could contribute towards generating long term series of rainfall, 

evapotranspiration and soil moisture content that is important for 

modeling water resource is crucial. The main objective of this 

study is to characterize hydroclimatological data series 

hypothesized on land surface-atmospheric feedback over a small 

area in rural Uganda by use of probability distribution functions. 

Thus studying land surface processes and atmospheric 

interactions through direct analysis of model equations and 

fitting probability distributions based on observational data 

derived from satellite sensors is a valuable contribution to the 

extant body of knowledge in earth interactions. 

2. Study Area 

The area is characterized by a dense network of water streams 

which draw water from forest catchment in the region and 

replenished by rainfall. Thus the area has no water body with 

tributary streams. The population distribution in the five sub-

counties is less than 50,000, with agriculture as the main 

industry, albeit with spatially significant urbanization and ever 

changing land use patterns. The documented climate parameters 

with the highest space-time variation over the region are rainfall 

and temperature which determines the spatial patterns of natural 

resources and land use activities. The study region includes two 

districts with particular focus on five sub-counties that fall under 

the zone 4 of agro-ecological zoning by the National Biomass 

Study of (2003). It’s a zone of moist lowland and medium 

altitude areas covering most of Southern and Western Uganda in 

the Districts of Mpigi, Butambala, Masaka, Kabarole, Hoima, 

Kabale, Kisoro, Nebbi and Mbale (NBS, 2003). It lies between 

32° 10’ 0”E & 32° 25’ 0” E, and 0° 8’ 0” N & 0° 24’ 0”N. 

Rainfall ranges from 750 mm to 2000mm, with a bimodal 

pattern of March-May (MAM) and September-November 

(SON). The minimum temperatures rangebetween 15-17.5°C 

minimum and maximum 17.5-20°C (Figure 1 below). The study 

area consists of all the 13 land cover classes (NBS, 1995) out of 

them five stratification make up the forest sector in Uganda. 

Land cover change in this area is uni-directional from forest to 

farm land, grassland, light vegetation and bare soil [26]. The uni-

directional land cover change with no major lake in the study 

area implied having significant impacts on water resources in the 

region. 

 

Figure 1. Location of the study area in Uganda. 
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Its biomass range 80–180 tones/ha of area covered with 

green during the period before 1990, with many forests both 

privately and publicly owned (central reserve forests). 

However, with the ever increasing population most of the 

green area has reduced, and many forests have been degraded 

and cleared to a level of 30-80 tones/ha in 2003 and since 

then decline in forest cover continued. Basalirwa’s [27] 

classification of major systems that control the space-time 

characteristics of rainfall in Uganda includes among others 

the complex topographic features that are comprised of 

forests. These features introduce significant modifications 

over the region coupled with convection processes that 

generate a climatic pattern which is complex and changes 

rapidly over short distances [3]. 

 

Figure 2. Location of rivers in the study area. 

3. Area Data 

Observational data of monthly averages, seasonal and 

annual time series for rainfall, soil moisture content, evapo-

transpiration and temperature were used. Monthly observed 

data of the selected variables with continuous time series 

from 1980 to 2010 were used for this study. The average 

record length is 31 years covering the early years when forest 

cover started to decline and the later years when management 

of forests had started to improve. The goal is to find whether 

the trend at the start could mirror the trend at the end of 

series. In this paper extreme hydro-climatological data series 

were considered. The annual mean maximum rainfall, soil 

moisture content, evapo-transpiration and temperatures were 

derived from the monthly data series for the period 1980 to 

2010 (see table 1 below). Then seasonal mean maximum for 

the selected variables were derived. The data set was 

obtained from global land data assimilation system (GLDAS) 

under NOAH_M 2.0 as well as from CLSM025_V.2 and 

MERRA-2 Model. Data set of 1° was used for rainfall, 

evapo-transpiration and temperature 0.5. For soil moisture 

content the depth considered ranged between 10cm to 

100cm. 

Table 1. Characteristics of the study variables. 

Data set 
Actual time 

series 

Transformed 

time series 

Period of 

series 

Rainfall 
Monthly 

averages 

Seasonal maxima 

Annual maxima 
1980-2010 

Soil moisture 
Monthly 

averages 

Seasonal maxima 

Annual maxima 
1980-2010 

Evapotranspiration 
Monthly 

averages 

Seasonal maxima 

Annual maxima 
1980-2010 

Temperature 
Monthly 

averages 

Seasonal maxima 

Annual maxima 
1980-2010 

4. Methodology and Data Analysis 

The probability distributions presented in table 2 below 

were evaluated for the best-fit probability distribution model 

suitable for hydro-climatology dataset for the study region. 

Data analysis followed a step wise procedure. First, was for 

estimating the basic statistical descriptors for the data set for 

each time series used in the study. Secondly, was the 

description of the probability distribution functions used in 

their theoretical form. Explored each series by using a 

histogram with a density estimate, this was meant to provide 
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insights on skewness, behavior in the tail, presence of multi-

modal behavior and data outliers. For each hydro-

climatology series different probability distributions were 

fitted and the maximum likelihood estimator was used to 

estimate the corresponding parameters. Thirdly, this step 

involved testing the goodness of fit; this is measuring the 

compatibility of each hydro-climatological data series with 

the theoretical probability distribution. It was done by using 

the Lilliefors (D), Anderson- Darling (AD) and Cramer –von 

Mises (CM) GoF tests at a significant level of α = 0.05. In all 

tests, the null hypothesis was H0; that the hydro-

climatological data set comes from a population with a 

specified distribution, and the H1 when the dataset does not 

follow a specified distribution. Fourth, for each of the hydro-

climatological data set the best-fit probability distribution 

model selected, the decision criteria used to report the 

outcome of statistical hypothesis in this study is the P-Value. 

Thus accepting or rejection of a hypothesis was determined 

by comparing the P-value to the chosen level of significance 

(α). The P-value rule: Reject the null hypothesis when the P-

value is less than or equal to, the level of significance (α), 

that is if P-value ≤ α reject H0, if P-value > α, then do not 

reject H0. 

The theoretical probability distributions evaluated in this 

study are shown in table 2 for the hydro-climatological 

datasets. Choosing the best probability distributions was 

based on ranking of distributions that had the minimum sum 

of the test statistic, a method used by [28]. In this case the 

sum of the test statistic from the three GoFs was computed 

for each probability distribution model. Thenthe resulting 

sums of GoFs for each probability distribution model were 

sorted in ascending order from which the highest ranked 

distribution taken was one with the minimum sum of the test 

statistic. 

Table 2. Description of Probability Distribution Functions used. 

Name of distribution Probability Density Function Parameters 

Normal ���� = 	 �
√	
�� exp �

��
	 �

���
� �

	�  µ=Mean, σ= Standard Deviation 

Exponential ���� = 	 �� ℯ
��
� �  λ > 0  

Gamma ���� = 	 �
� !�"�#"��ℯ$%  

α = shape parameter (α > 0� β =	scale parameter (β > 0� 
Γ = Gamma function 

Weibull ���� = 	 "� �
$
��
"�� exp )−�$��

"+  α = shape parameter (α > 0� β =	scale parameter (β > 0� 

Logistic ƒ(x) = 
,
�	-�.
/

01�2	,�
-�.
/ 3

� ; -∞<µ<∞ = the mean 
µ>0 is scale parameter, σ>0 

Gumbel (Extreme value) ƒ(x) = 
�
5 − 6

-�.
7 6�,

-�.
7

 
∞< x <∞µ = location parameter, 

And β=scale parameter 

Chi Square ƒ�x� = #�9����

Γ�:	�2�
9
��
ℯ��#�/	 υ(x >0): degrees of freedom; 

γ: noncentering parameter 

 
In addition two model selection criteria were used to select 

the probability distribution model that best fits the datasets, 

these are Akaike Information Criteria (AIC) and Bayes 

Information Criteria (BIC), and thus the distribution with the 

least values was selected. Finally from the three best ranked 

probability distribution models, the corresponding probability 

distribution model parameters are used to generate surrogate 

data series {G}i=1, 2, 3,……., N. The residuals {R}j = 1, 2, 3 

computed from the specification below are assessed. 

Rj = | ∑ �>? − @?�|BCD�                           (1) 

Finally a distribution with minimum {R} is considered to 

be the best-fit probability distribution model for the hydro-

climatology series. 

5. Results and Discussion 

5.1. Descriptive Analysis of the Hydro-climatological Data 

and Temporal Variability 

The hydro-climatological datasets used in this study were 

categorized into monthly averages, seasonal and annual 

maxima data series as presented in table 1. Statistical 

moments characterizing each of the datasets are presented in 

table 3. Soil moisture content time series has moderate 

variation with monthly time series having more variation 

than seasonal i.e. with 17.36 and 10.58 standard deviation 

compared to other time series. Soil moisture content in 

general has large kurtosis values in all scales with more in 

monthly Soil moisture content indicative of high probability 

of dryness in hot months based on the negative skewness. 

The negative skewness demonstrates that in general soil 

moisture content for temporal scales is substantially 

asymmetrical with a long tail to the left, suggesting temporal 

variability in the variable for the observed data in the period 

when forest cover loss was detected. 

The statistical moments in rainfall time series demonstrate 

temporal variability. Monthly and annual maxima rainfall 

time series exhibit the highest and lowest standard deviation 

indicative of dependence of the temporal resolution. The 

monthly rainfall time series has the highest variation i.e. has 

the highest standard deviation, with the lowest mean value 

and highest positive skewness indicating that monthly time 

series is substantially asymmetrical with a long tail to the 

right. Whereas both monthly and seasonal maxima rainfall 

time series are positively skewed, the annual maxima is 

negatively skewed demonstrating that for the study period on 

annual basis rainfall trends showed a decreasing trend at 

varying scale. The largest kurtosis value in monthly rainfall 
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time series demonstrates that there is high probability of 

extreme rainfall values in the monthly datasets compared to 

annual rainfall. 

The temporal variability in evapotranspiration time series 

in the study area is not highly pronounced based on the first 

and second moments in table 3. The time series exhibit 

variability in monthly dataset, though with minimum 

variation in seasonal and annual maxima. The positive 

skewness at all time scales of the series considered indicates 

that evapotranspiration time series is substantially asymmetry 

with a long tail to the right. 

Furthermore, the annual evapotranspiration maxima 

exhibit high positive kurtosis suggesting that the series is 

leptokurtic. This also imply that evapotranspiration time 

series is dependent on the time scale of observation with the 

probability of extreme values being present in annual series 

but changes slightly with a decrease in time scales. 

The statistical moments in near surface temperature time 

series shows a non variation in time series with slight 

changes in annual temperature levels. No substantial changes 

are observed basing on the first and second moments. The 

temperature series exhibit positive skewness at all the time 

scale of the series implying a substantial asymmetrical with a 

long tail to the right. The monthly near surface temperature 

exhibit high positive kurtosis suggesting that there is high 

probability of observing extreme temperature values in 

monthly data as well as seasonal and annual. The implication 

of this is that the probability of getting high temperatures was 

high throughout the period, may be due to carbon-dioxide 

release from forest cover decline. 

Table 3. Summary statistics of Lwamunda Catchment hydro-climatological 

data. 

StatisticalParameters 

Data set Min/Max Mean Std. Dev Skewness Kurtosis 

Soil Moisture Content 

Annual 161.8/187.9 177.4 6.17 -0.77 3.27 

Seasonal 139/188 168.94 10.58 -0.68 3.12 

Monthly 64.13/187.9 153.76 17.36 -0.79 4.63 

Rainfall 

Annual 152.8/258.5 211.1 26.62 -0.09 2.42 

Seasonal 110/259 170.66 35.08 0.26 2.23 

Monthly 26.15/258.5 108.07 54.66 0.63 2.53 

Evapotranspiration 

Annual 98.75/144.4 115.51 9.5 0.77 4.25 

Seasonal 94/131 108.3 8.19 0.519 2.82 

Monthly 60.14/144.4 95.17 13.35 0.12 2.98 

Temperature 

Annual 296.69/298.93 297.73 0.61 0.11 2.34 

Seasonal 295.3/298.9 296.7 0.88 0.68 2.62 

Monthly 294.42/298.9 296.10 0.88 0.70 306 

5.2. Assessment of the Probability Distribution and 

Goodness of Fit 

The following five probability distributions namely, 

normal, log normal, gamma, Weibull and exponential 

distribution were used to select the best fit probability 

distribution for annual maxima, seasonal maxima and 

monthly average of the hydro-climatological dataset for the 

study area. The description of the probability distribution 

functions are presented in Table 2. The goodness-of-fit tests, 

namely, Kolmogorov-Smirnov test which is the same as 

Lilliefors, Anderson-Darling test and Cramer-von Mises test 

were used at α (0.05) level of significance for the selection of 

the best fit distribution. For each dataset since it was 

continuous seven probability distributions were fitted, 

namely; Normal, Chi square, Gamma, Logistic, Extreme 

value maximum (Gumbel), Exponential and Weibull. The 

best fitted distribution is selected based on the minimum 

error produced, which is evaluated by the tests mentioned 

above. Tables 4-14 list the summary of the distribution 

parameters and the statistic for the GoF tests along with the 

associated probability values. 

5.2.1. Probability Distribution and Goodness of Fit for 

Annual Maxima Soil Moisture Content 

For the annual maxima soil moisture contenttime series, the 

probability distributions that had a better capability to reproduce 

the empirical cumulative distributions based on the GoF tests 

and with minimum sum of test statistic were Weibull, logistic 

using the AD and CvM tests; normal using Lilliefors (D) see 

(table 4). On the other hand, for the annual maximum rain fall, 

the most probable distribution functions that could reproduce the 

annual rainfall cumulative distributions were different which 

include chi square, gamma, and logistic using AD and CvM tests 

(see table 5). The differing probability distribution functions are 

explained by the changes in drivers and underlying 

compounding factors for rainfall. With regard to annual 

maximum evapotranspiration, the probability distributions 

capable of reproducing an empirical cumulative distribution are; 

logistic, gamma, and Gumbel (Extreme value maximum) using 

AD and CvM tests; also normal using the Lilliefors (D) (see 

table 6). 

Table 4. Probability distributions and goodness of fit results for annual 

maxima soil moisture content. (NaN: not a number). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Normal 0.117 >0.1 0.59 0.109 0.09 0.146 

Chi square NaN NaN 5.13 <0.005 0.94 <0.005 

Gamma NaN NaN 0.65 0.25 0.97 0.25 

Logistic NaN NaN 0.49 0.25 0.06 0.25 

Gumbel NaN NaN 1.51 <0.01 0.23 <0.01 

Exponential NaN NaN 27.43 0.000 1.12 0.000 

Weibull NaN NaN 0.24 >0.25 0.034 >0.25 

Furthermore with regard to near surface temperature data 

set the probability distributions selected for being capable of 

reproducing annual near surface temperature empirical 

cumulative distributions include logistic, Gumbel (Extreme 

value maximum) using AD and CvM tests while the normal 

probability distribution is fitted using the Lilliefors (D). The 

gamma distribution is also capable of reproducing the 

empirical cumulative distribution for the near surface 

temperature in the area where increased forest cover loss is 
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reported (see table 7). 

Table 5. Probability distributions and goodness of fit results for annual 

maxima rainfall. (NaN: not a number). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Normal 0.093 >0.1 0.24 0.75 0.04 0.73 

Chi square NaN NaN 1.15 0.25 0.12 0.25  

Gamma NaN NaN 0.25 >0.25 0.03 >0.25. 

Logistic NaN NaN 0.27 >0.25 0.04 >0.25 

Gumbel NaN NaN 0.48 0.25 0.06 0.25 

Exponential NaN NaN 26.14 0.000 0.81 0.000 

Weibull NaN NaN 0.38 >0.25 0.06 >0.25 

5.2.2. Probability Distribution and Goodness of Fit for 

Monthly AverageHydro-climatological Data 

The monthly average (extreme value) hydroclimatological 

data for soil moisture content, rainfall, evapotranspiration and 

temperature with the fitted probability distributions functions are 

summarized in tables 8-10. Goodness of fit tests is used to rank 

each distribution according to the minimum sum of test statistic. 

Tables 8 – 10 provide a summary of the test statistic, table 8 

illustrates that the monthly average soil moisture content time 

series is best fitted by normal distribution based on Lilliefors (D) 

and the Weibull distribution base on AD and CVM tests. In 

addition to the above since the study used monthly average time 

series the rainfall monthly average could not be fitted with any 

probability distributions. 

Table 6. Probability distributions and goodness of fit results for annual 

maxima evapotranspiration. (NaN: not a number). 

Distribution 
Llliefors (D) 

Anderson-Darling 

(AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Normal 0.13 >0.1 0.48 0.21 0.08 0.17 

Chi square NaN NaN 1.95 <0.005 0.33 <0.005 

Gamma NaN NaN 0.40 >0.25 0.07 >0.25 

Logistic NaN NaN 0.33 >0.25 0.05 >0.25 

Gumbel NaN NaN 0.46 >0.25 0.09 0.25 

Exponential NaN NaN 25.05 0.00 0.60 0.04 

Weibull NaN NaN 1.23 <0.01 0.19 <0.01 

Table 7. Probability distributions and goodness of fit results for annual 

maxima near surface temperature. (NaN: not anumber). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Normal 0.10 >0.1 0.33 0.502 0.049 0.507 

Chi square NaN NaN 11.29 <0.005 2.40 <0.005 

Gamma NaN NaN 13.08 < 1 2.85 <1 

Logistic NaN NaN 0.35 > 0.25 0.05 > 0.25 

Gumbel NaN NaN 0.55 0.25 0.06 > 0.25 

Exponential  NaN NaN 24.65 0.000 0.50 0.000 

Weibull NaN Nan 0.65 0.05 0.11 0.05 

For monthly average evapotranspiration time series in 

table 9 depict that logistic, Gamma and Chi-square are the 

best to reproduce a better empirical cumulative distributions 

according to AD and CVMGoF tests. Table 10 provide 

summary of the temperature time series data that is best fit by 

Gumbel (Extreme value- maximum) and Gamma according 

to AD and CVM goodness of fit tests. 

Table 8. Probability distributions and goodness of fit results for Monthly 

average soil moisture content. (NaN: not a number). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Normal 0.043 0.083 1.64 0.003 0.198 0.0057 

Chi square NaN NaN 2.87 <0.005 0.38 0.005 

Gamma NaN NaN 3.07 < 0.005 0.39 < 0.005 

Logistic NaN NaN 1.47 < 0.005 0.17 < 0.005 

Gumbel NaN NaN 15.94 < 0.01 2.34 < 0.01 

Exponential  NaN NaN 114.2 0.000 23.8 0.000 

Weibull NaN NaN 0.65 0.1 0.105 0.1 

Table 9. Distributions and goodness of fit results for monthly average 

Evapotranspiration. (NaN: not a number). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Normal 0.03 > 0.1 0.25 0.75 0.03 0.84 

Chi square NaN NaN 0.61 > 0.25 0.09 >0.25 

Gamma NaN NaN 0.59 0.25 0.08 0.25 

Logistic NaN NaN 0.49 0.25 0.05 > 0.25 

Gumbel NaN NaN 4.05 < 0.01 0.64 < 0.01 

Exponential NaN NaN 65.4 0.000 12.7 0.000 

Weibull NaN NaN 1.85 < 0.01 0.25 < 0.01 

In general the probability distributions for monthly 

average time series have been fitted by different probability 

distributions models. 

Table 10. Distributions and goodness of fit results for monthly average near 

surface temperature. (NaN: not a numer). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Normal 0.09 0.000 4.13 0.000 0.68 0.000 

Chi square NaN NaN 132.04 < 0.005 28.08 0.005 

Gamma NaN NaN 151.04 < 1 32.8 < 1 

Logistic NaN NaN 3.45 < 0.005 0.42 < 0.005 

Gumbel NaN NaN 0.53 0.25 0.09 0.25 

Exponential NaN NaN 39.29 0.000 7.06 0.000 

Weibull NaN NaN 13.15 <0.01 2.11 < 0.01 

5.3. Probability Distributions and Goodness of Fit Seasonal 

Hydroclimatological Data 

The seasonal maximum soil moisture content, rain fall, 

evapotranspiration and near surface temperature time series 

were fitted with different probability distribution functions 

based on goodness of fit tests and the minimum sum of the 

test statistic to select the best fit model to the data. Tables 11-

14 provide a summary of the test statistic and selected best fit 

probability distributions. Table 11 illustrates that the seasonal 

time series of soil moisture content best fit by the Weibull 
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and considered to be a best fit model to the seasonal 

maximum soil moisture content based on AD and CVM GoF 

tests. Thus it’s capable of reproducing a better empirical 

cumulative distribution. 

For the seasonal rain fall time series normal distribution is 

considered to be the best fit model based on Lilliefors (D), 

AD and CVM GoF tests. In addition the Gamma and Logistic 

distributions are also fitted to the time series data of seasonal 

rain fall thus capable of producing the empirical cumulative 

distribution intrinsic in the seasonal data see (table 12). 

As for seasonal evapotranspiration Gamma and Gumbel 

(Extreme value –maximum) are distribution models that best 

fit the time series based on AD and CVM GoF tests. 

Table 11. Distributions and goodness of fit results for Seasonal maxima soil 

moisture content. (NaN: not a number). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Normal 0.112 0.003 1.025 0.01 0.15 0.017 

Chi square  NaN NaN 6.33 < 0.005 1.07 <0.005 

Gamma NaN NaN 1.27 <0.005 0.19 <0.005 

Logistic NaN NaN 0.76 0.05 0.08 0.05 

Gumbel NaN NaN 3.96 <0.01 0.59 <0.01 

Exponential  NaN NaN 25.56 0.00 3.84 0.000 

Weibull NaN NaN 0.23 >0.25 0.04 > 0.25 

Table 12. Distributions and goodness of fit results for seasonal maxima rain 

fall. (NaN: not a number). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Norma 10.07 >0.1 0.76 0.45 0.11 0.07 

Chi square NaN NaN 25.5 <0.005 1.92 <0.005 

Gamma NaN NaN 0.68 0.25 0.10 0.25 

Logistic NaN NaN 0.94 0.005 0.10 0.25 

Gumbel NaN NaN 0.85 0.05 0.13 0.05 

Exponential NaN NaN 13.13 0.000 1.22 0.000 

Weibull NaN NaN 0.88 0.025 0.12 0.025 

For the seasonal near surface temperature time series data 

the best fit model are the Gamma and Gumbel (Extreme 

value –maximum) probability distributions that better 

explains the data and thus capable of reproducing the 

empirical cumulative distribution intrinsic in the seasonal 

data of Lwamunda forest catchment. 

Table 13. Distributions and goodness of fit results for Seasonal maxima 

evapotranspiration. (NaN: not a number). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value stat. P-value stat. P-value 

Normal 0.09 0.02 0.76 0.04 0.13 0.05 

Chi square NaN NaN 6.69 <0.005 1.02 <0.005 

Gamma NaN NaN 0.59 0.25 0.09 0.25 

Logistic NaN NaN 0.74 0.05 0.09 0.05 

Gumbel NaN NaN 0.33 >0.25 0.05 >0.25 

Exponential NaN NaN 34.07 0.00 1.44 0.00 

Weibull NaN NaN 2.203 < 0.01 0.33 < 0.01 

Table 14. Distributions and goodness of fit results for seasonal near surface 

temperature. (NaN: not a number). 

Distribution 
Llliefors (D) 

Anderson-

Darling (AD) 

Cramer-Von 

Mises (CVM) 

Stat. P-value Stat. P-value stat. P-value 

Normal 0.15 0.000 1.44 0.00 0.26 0.00 

Chi square NaN NaN 22.7 <0.005 4.84 <0.005 

Gamma NaN NaN 26.3 <1 5.73 < 1 

Logistic NaN NaN 1.28 < 0.005 0.18 < 0.005 

Gumbel NaN NaN 0.44 >0.25 0.69 >0.25 

Exponential NaN NaN 46.57 0.00 0.706 0.00 

Weibull NaN NaN 2.80 < 0.01 0.506 <0.01 

5.4. Appropriate Probability Distribution for Each time 

Series Hydroclimatological Data Set 

In section 5.2 a set of probability distributions from the 

group of probability distributions that are capable of 

reproducing the properties of hydro-climatological data for the 

study area were selected for Lwamunda catchment area. In this 

section the study assesses the most appropriate probability 

distribution that fits each hydroclimatological dataset and 

capable of reproducing statistical moments for each of the data 

set. The selected family of probability distribution models 

derived from empirical distribution tests were further assessed 

through comparison of the generated statistical moments 

derived from the randomly generated empirical data and the 

actual observations. In addition the family of fitted 

distributions was checked on the criteria of maximizing log 

likelihood, and on both Akaike and Bayesian information 

criteria to determine which model was maximizing the 

likelihood and minimizing information criteria. 

Thus for soil moisture content maxima time series, for 

annual maxima and seasonal maxima Weibull is considered 

to be the most capable of reproducing inherent statistics, 

while Normal distribution is the best for monthly averages. 

For rainfall annual and seasonal maxima series Chi square 

and Gamma are appropriate distributions respectively. 

Furthermore, for evapotranspiration annual and seasonal 

maxima; Logistic and Extreme value (Gumbel) are the most 

appropriate distributions capable of reproducing the 

statistical moments respectively while Normal is for monthly 

average evapotransipiration series. Finally for near surface 

temperature series, annual and seasonal maxima, the 

appropriate probability distributions are; Logistic and 

Gumbel respectively. Gumbel is the appropriate distribution 

capable of reproducing the statistical moments for both 

seasonal and monthly series. 

5.5. Discussion of Results 

The practice of fitting probability distribution models to 

data especially hydroclimatological data has been reported in 

literature [29, 30, 31, 32, 36]. In such studies, different 

probability distribution models were fitted to data series at 

watershed, catchment or point observations [33, 34]. The use 

of probability distribution models capable of reproducing the 

statistics of hydro-climatology data series is helpful in 

analyzing complex phenomena with compounding factors 

such as the interaction between land use change and water 
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resources. Seven probability distributions have been analyzed 

to characterize hydro-climatology of Lwamunda forest 

catchment. These include; Weibull distribution, Normal 

distribution, Chi square, Gamma, Logistic and Extreme value 

maximum distribution (Gumbel). Three goodness of fit tests 

were applied: Lilliefor (D), Anderson Darling (AD) and 

Cramer van Mises, to evaluate the best fit probability 

distribution model. For each hydro-climatology dataset, the 

best fit model was selected on the basis of ranking metric. 

Soil moisture content was fitted by Weibull distribution for 

temporal scale series. Since the distribution is generally used 

for minimum values, it implied that for the period of 31 years 

(1980-2010) soil moisture content was of minimum values 

thus low water content in the soil. Hence there is a high 

probability that increases in land use change that preceded 

forest cover loss explains the reduction in water content for 

both crops and human consumption. 

Rainfall series was fitted by Chi square and Gamma 

probability distribution for seasonal maximum. Since the Chi 

square is a special case of Gamma distribution, it implies that 

rainfall pattern in the study area is explained by Gamma family 

of distribution. This result confirms the findings of [35, 28]. 

Therefore rainfall events are due to some physical factors such 

as vegetation change. So extreme change in vegetation cover 

especially forest cover loss determines rainfall patterns. 

Furthermore, loss of water from soil and vegetation is 

explained by evapotranspiration and the best fit probability 

distribution for this hydro-climatology series are Logistic and 

Extreme value Maximum. The Logistic distribution is mostly 

used for growth modeling while Extreme value maximum 

distribution is used to model strength and life of an event. The 

implication of this is that with extreme bare soil (loss of 

vegetation) evapotransipration has a high probability of 

increasing in areas with more vegetation change. Similar 

results are reported by [22]. Regarding near surface 

temperature data series it is fitted by Logistic distribution and 

Extreme value maximum distribution signaling a high 

probability of increase in temperatures as more vegetation and 

forest cover is lost. The result is in agreement with expected 

increase in temperature due to vegetation loss [11, 18], this 

corroborates to studies in literature that forecast increase in 

temperature as more vegetation is lost. 

6. Conclusions 

The direction of forest cover change in the study area 

provides strong argument to assess the impact of land use 

change on water resources. Although the interactions 

between forest cover loss and water resources is complex, 

one way to understand it is to assess the impact using a 

probability distribution model which mimics the statistical 

moments of the underlying process from which conclusions 

are made. For hydro-climatology, fitting probability 

distributions to data is still open for many parts of Sub-

Saharan Africa. In this current study a hydro-climatology 

data series comprised of monthly averages, seasonal and 

annual maximum series from Lwamunda forest catchment 

area have beenanalysed in order to determine appropriate 

probability distribution models of the underlying 

hydroclimatology. In the analysis seven probability 

distributions were considered. The GoF tests used were 

Lilliefors (D), Anderson Darling (AD), Cramer van Mises 

(CvM) to evaluate the best fit probability distribution model 

for each hydro-climatology data series. Since each data series 

had different probability distributions that fitted data, a 

ranking metric that used the test statistic from the three GoF 

tests was used to select the most appropriate probability 

distribution model capable of reproducing the statistics of the 

data series. The ranking metric considered the sum of the 

three GoF statistics and selected the one with minimum sum. 

On the basis of this selection criterion, results show that 

different best fit probability distribution models were 

different for the different data series. With the exception of 

soil moisture content for annual and seasonal maximum that 

had the same best fit model. In addition, evapotranspiration 

seasonal maximum and near surface temperature seasonal 

maximum as well as monthly near surface temperatures have 

the same best fit model. In general results show different 

models for different data series depending on location and on 

temporal scales which corroborate with those reported in 

literature. The soil moisture content data series was best fit 

by the Weibull probability distribution, rainfall series was 

best fit by Chi square and Gamma probability distributions. 

The evapotranspiration data series was best fit by Logistic 

and Extreme value maximum (Gumbel) probability 

distributions. Finally for near surface temperature was best fit 

by Logistic and Gumbel probability distributions. The 

contribution of this study is the use of hydro-climatological 

data series including soil moisture content to analyse a 

pattern of water resources variables (evapotranspiration and 

rainfall). The findings of this study are important for 

agricultural planning and to forest managers in simulation of 

forest degradation impacts on water resources. 
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