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Abstract: The background of this contribution is the ongoing extended debate over quantum effects in the biology since 
decades. Typical examples of the quantum biology are photosynthesis, enzymatic activities, bird navigation and especially the 
coherent movement of microtubules. The reason for all these effects is dominantly the quantum coherence of waves. The 
objective of this contribution is the quantum description of the instability dynamics of microtubules at their assembly and 
disassembly phases during the interphase. The corresponding theoretical investigations of this article confirm the existence of 
quantum coherence of microtubules. Experimental results assert such vibrations of microtubules by the observation of γ-waves 
in the human brain generated by bundles of microtubules. Tubulin subunits and the accessory proteins are of nano size; 
therefore, they are modeled as field quanta in the framework of non-relativistic quantum field theory. This approach describes 
the dynamics of these quantum particles and their interactions, by accentuation of their different performances as coherent or 
incoherent waves. The achieved results strongly depend from the preconditions: whether the fluctuating forces are turned on or 
turned off. With the inset of fluctuations, the quantum coherence is destroyed, and only incoherent particle solutions are 
obeyed. Without the impact of fluctuations wave solutions dominate. Another type of wave solution are coherent wave packets 
which are counter-running, where their superposition can extinct or enhance them. This kind of interfering coherent solutions 
is applied on the polymerization of protofilaments. The calculations of this contribution demonstrate that the quantum 
coherence can be only observed when fluctuations are excluded. The conclusion is that that dedicated biological processes 
must be able to suppress the destroying influences of the local environment. In contrary to technical-based experiments, where 
coherence is only obtained when the fluctuations are deliberately excluded (e.g. quantum computer). Therefore, the answer 
why the processes of quantum biology can generate quantum coherence at least in case of microtubules is actually not 
answered. Kinesins in combination with microtubules are fundamental for cellular functions and morphogenesis. Recent 
genetic experiments uncovered their role for tumor suppression and developmental patterning. However, these findings which 
open exciting new areas of kinesin research are not included in this contribution, because the description of the kinesin-
microtubule system is to comprehensive for one article. 
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1. Introduction 

The remarkable system of microtubules, actin filaments 
and intermediate filaments is called cytoskeleton [1, 2], 
where this contribution concentrates to microtubules, 
Possible disorders of them and medical implications are in 
the actual focus of research activities [3].  

They are dynamic and adaptable with respect to their 
assembly and disassembly and they direct the intracellular 

transport. However, the microtubules are without the large set 
of asseccory proteins which are essential for the regulated 
assembly or disassembly at particular locations (self-
organization). Thus, the role of these proteins is comparable 
to the set of proteins that bind to an enhancer DNA sequence 
and to the plenty of transcriptional repressors [4]. 

Typical already approved quantum processes that occur in 
biological processes are the photosynthesis, enzymatic 
activities, sense of smell, bird navigation (compass in bird 
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eyes) and finally the coherent vibration of microtubules. All 
aforementioned processes belong to quantum biology [5], 
where the last-mentioned effect was strongly advocated by 
Penrose [6], who was harshly criticized by opponents of 
quantum biology, because they consider the brain is too 
warm, wet and noisy for selected quantum processes. Thus, 
the established quantum physics exclude the quantum 
coherence under such conditions. However, for instance the 
discovery of quantum vibrations in microtubules contradict 
this statement. Because there exists experimental evidence 
that bundles of microtubules (amplification effect) generate 
oscillations that are generated by quantum coherence and are 
measurable as EEG waves (γ-waves) [7, 8]. 

Thus, it is astonishing that the aforementioned quantum 
processes are confirmed, although they are all mainly initiated 
by the effect of quantum coherence. The corresponding 
conclusion is that the effect of decoherence does not occur at 
special cases in cells. Although, experimental results and 
simulations, e.g. [9] demonstrate the quantum coherence e.g. 
of microtubules, although the reason of this effect is not well 
established. So, three oppositional explanations exist. The first 
statement claims that consciousness is closely connected with 
quantum coherence of microtubules (Penrose). The second 
assertion asserts that coherent quantum waves can superpose 
and reinforce themselves to. wave crest or even to “quantum 
tsunamis” which suppress the destroying influence of noise, at 
least for a short duration. The third clarification explicate the 
possibility that a kind of a sheltering wall is established by 
nature which prevent the destroying forces of the local 
environment, as for instance it occurs in case of 
superconductivity. Which proposal is valid is currently not 
decided. 

Independent of the proposals about the origin of quantum 
coherence it seems obvious that coherent waves envelope 
several free molecules (e.g. tubulin subunits) at once and 
compose them together (assembly) more quickly than by a 
regular particle by particle assembly (e.g. elongation of 
1µm/min). Inversely, the breakdown of a coherent wave can 
accelerate the disassembly of a microtubule (e.g. standard 
value 7 µm/min). Both effects can be applied to make 
corresponding measurements or perform suitable simulations. 

Two previous publications considered the one-arm (motion 
of a myosin head on actin filaments [10] and the bipedal (“leg-
over-leg”) walk of dynein along microtubules [11]. In both 
cases the applied fundamental methods are based on non-
relativistic Quantum Field Theory (QFT) [12]. It is remarkable 
that the solutions of myosin and dynein despite the different 
mechanisms of movement, include also coherent waves results 
(quantum coherence). Thus, the wave like results of the motion 
of dynein supplement the quantum coherence of microtubules 
which are elaborated in this contribution. 

The focus of this paper directs to dominant aspects of the 
motility of eukaryotic cells originating from microtubules. 
Thus, the essential topic of this contribution is the quantum 
mechanical description of the self-organizing processes 
caused by the dynamics of the polymerization (assembly) and 
depolymerization (disassembly) of microtubules during the 

interphase (G₁, S and G₂ phases) of a cell cycle [13]. The 
quantum dynamics of processes that are also reported are the 
polymerization of tubulin subunits, the assembly of 
protofilaments together with their nucleation at the MTOC 
(microtubule-organizing center) and the motion of free 
subunits to the locations at nascenting microtubules. 

Microtubules are often considered in connection with the 
essential motor protein kinesin. Cytosolic kinesin moves along 
microtubules and transport heavy molecules (e.g. organelles, 
vesicles) from the minus end of a microtubule to the plus end 
(anterograde transport) through a crowded cytosol. The 
cytoplasmatic dynein carry for instance vesicles toward to the 
minus end of a microtubule (retrograde transport). 

Mitotic (spindle) kinesin transports for instance 
chromosomes along microtubules, assembles spindles and 
attach chromosomes to spindles. Thus, both types of kinesin 
are an integral operative during mitosis. 

Since about two decades exciting and extended 
experimental results and profound theoretical investigations 
of different kinesin-microtubules systems have been 
published [14-16]. These endeavors concern, for example the 
kind of movements (mechanochemical cycle) of 14 different 
family members of kinesin, where each member of the 
kinesin family transports a specific cargo. Astonishing details 
of cargo transports and the unexpected role of kinesin are 
observed in the regulation of physiological processes, tumor 
suppression and developmental patterning [17]. 

This contribution mainly concentrates to the assembly 
respectively the disassembly of microtubule in the interphase. 
The consideration of the relevant transport features of kinesin 
along microtubules are not considered, because the 
integration of the great amount of their complex transport 
details is beyond the scope of this paper. It requests a new 
separate treatment. 

The fascinating effect of the self-organization of micro 
tubules is in biological view comparable with the swarm 
behavior of bees or ants. These insects are small and operate 
well organized to construct a huge “building” without using a 
predefined plan, where the established nests with separate 
cells react (backlash) on them. 

The basic mathematical principles underlying the self-
organized molecular processes of microtubules, is formally 
characterized by the synergetic approach [18]. However, this 
approach is only descriptively included in this contribution, 
because its emphasis lies in quantum-based descriptions of 
special cytoskeletal processes and not in the strong 
mathematical description of synergetics. So, for instance, the 
introduction of control and order parameters is typical for the 
synergetic approach. For example, ferromagnetic magnetic 
material becomes magnetic (order parameter) when the 
elementary magnets are aligned if T < Tcr, where Tcr is the 
critical temperature (control parameter). Consequently, they 
are arranged in aligned order. Analog ordering processes 
occur when water freezes to ice. 

Thus far, the role of accessory proteins is not integrated in 
the classical concept of synergetics, which was developed for 
example by reference to the Brusselator or the Belusov-
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Zhabotinski reaction [18]. In the context of microtubules 
these proteins are called MAPs (Microtubule associated 
proteins) with respect to their importance. MAPs regulate the 
assembly and disassembly of microtubules, organize them in 
bundles, cross-link them with membranes, and direct the 
intracellular transports [1]. 

The concept of a biological self-organization represents an 
extension of the original draft of synergetics, where the supply 
rate (e.g. per second) of the set of MAPs which are focused to 
a particular task e.g. to the assembly of microtubules is 
considered as an order parameter [19], or terser expressed as 
an order parameter field [20]. Since, above the critical 
concentration of free tubulin subunits (control parameter) all 
subunits in polymerized microtubules point in the same 
direction, and all protofilaments of a microtubule are aligned 
in parallel. Below this critical concentration of subunits, the 
microtubes depolymerize (disassemble). 

Another important aspect of synergetics which also can be 
applied to quantum biology is the description of the assembly 
processes respectively disassembly processes as non-
equilibrium phase transitions far from the thermal equilibrium. 
These kinds of transitions occur since cells are open systems. 

2. Molecules and Processes 

The building block of a microtubule is the tubulin subunit, 
a heterodimer formed from a pair of the monomers �-and β-
tubulin, which are tightly connected (non-covalent bond), 
where the β-tubulin builds the “top” (surface) of the subunit. 
The width of the tubulin subunit is 4 nm, whereas its height 
amounts 8 nm; thus, the heterodimeric subunits repeat every 
8nm and gives each protofilament a reiterated, elongated 
structure. The assembled protofilament has two different 
ends: �-tubulin end (−)	end) and a β-tubulin “top” (+) end. 
Thus, the protofilament gets a distinct structural polarity. The 
tubulin subunit originating by the polymerization of the �- 
and β-tubulin exists in two conformations. The � -tubulin 
binds the GTP molecule irreversibly and does not hydrolyze, 
because it is trapped at the interface between the �-and β-
tubulin. The β-tubulin binds GTP reversibly and hydrolyzes it 
to GDP. This binding site is called the exchangeable site, 
because GTP can be exchanged by GDP. A microtubule is a 
polymer, arranged in a cylindrical spiral that consist in the 
most cases of 13 elongated protofilaments that associate 
laterally into a hallow spiral. The length of such a tube varies 
from a fraction of one μm to hundreds of μm. The outer 
diameter amounts about to 25 nm and the inner diameter is 
roughly 14 nm [13]. 

In the interphase the assembly of a microtubule mesh, with 
long fibers that fill the whole cytosol, is created. All these 
tubulin fibers radiate from a central point, the MTOC which 
lies near the nucleus. This center nucleates the microtubules 
and it is supported by MAPs which organize the assembly 
and disassembly in eukaryotic cells, and regulate the number, 
the forms and the stability of them. Thus, MTOC arranges a 
wide variety of assembled microtubules with high order; in 
turn, this center represents an ordered lattice. 

Every accessory protein represents signal proteins 

(signaling pathway) that deliver information (message) to 
receptor molecules, which convert these signals in 
cytoskeletal actions. Typical MAPS are the γ-tubulin 
(supports the emanation of a microtubule from the surface of 
the MTOC), the MAP-2 cross-links different microtubules 
and τ bundles parallelly various microtubules. MAPS are 
generally only few nm in size, the tubulin subunit and the 
free �and β-tubulin molecules are from the same small nano 
size, therefore their movement within the cytosol is described 
by quantum equations of motions, which excludes the 
transport of cargo by dynein or kinesin. Usually, molecular 
motions are described by a classical diffusion. The extension 
of this standard approach to quantum diffusion or even to the 
process of multiple scattering (Green´s function) is 
apparently [21]. However, both approaches do not include 
the process of quantum coherence which is the focal point of 
this contribution, without considering cargo transports. 

The continuous flux of MAPs generates a set of assignments 
which stipulate special actions. The dynamical equilibrium of a 
cell is established by this flow which is comparable to a 
concerted plan (e.g. a musical score for an orchestra), which 
bring microtubules structures under the control of intracellular 
signals that trigger the essential transformations during each 
cell cycle. The continuity of the different, dynamical coherent 
supply rates of MAPs, concerning different processes (e.g. 
assembly MAPs), represent order parameters, because there 
orchestrated acting enables a eukaryotic cell to generate and 
maintain highly-organized structures that are flexible. The 
creation of highly organized systems is characteristically for 
non-equilibrium transitions [20]. 

The synergetic principle differentiates between one or 
more control parameters. One control parameter is the 
critical concentration Ccr (su) of the free subunits, because 
below this concentration the disassembly (depolymerization) 
of microtubules occur and above Ccr (su) their assembly 
(polymerization) take place. Thus, the system performance 
distinctly behaves below and above this particular 
concentration. The definition of the critical concentration is 
given by the loss-rate constant rloss of subunits divided by the 
addition-rate constant radd of subunits; that is Ccr (su) = rloss 
(su) / radd (su) [1]. This concentration equilibrium is reached 
when the disassembly of the polymer back to monomers 
precisely balance the assembly of monomers to the polymer 
(association rate =  dissociation rate). With respect to free 
subunits the value of Ccr (su) defines the concentration of free 
subunits left in cytosol at this point. 

Thus far, the critical fact of nucleotide hydrolysis has not 
been considered. A free tubulin subunit is usually not 
hydrolyzed; thus, it still contains the GTP. Such soluble 
subunits are in T-forms. A non-soluble heterodimer carries 
the GDP (hydrolyzation of GTP) and is called D-form. For 
example, during the growth of a microtubule that is not yet 
nucleated with the minus end at the MTOC, T-forms are 
added at the plus end of the tubulin polymer and D-forms 
leave it at the minus end. Hence, Ccr (su) defines an unstable, 
dynamical equilibrium because a released D-form is 
replenished by a free T-form. Near Ccr (su) microtubules 
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alternately grow or shrink, because at a subunit’s 
concentration below Ccr (su) no polymerization occurs. At a 
dimers concentration above Ccr (su) the tubulin subunits 
polymerize (assemble) into microtubules, where the added T-
forms transform into D-forms. 

However, the critical concentration of subunits represents 
a general threshold which is extended by two critical 
concentrations for T-forms and D-forms. The critical 
concentration 〈
�〉cr = 〈
�〉loss /〈	
�〉add of T-form polymers is 
equal to the constant ratio (equality of shrinking and 
elongation) of the loss rate divided through the addition rate 
of T-form subunits. Below 〈
�〉cr the polymer shrinks (loss of 
T-forms), above 〈
�〉cr it elongates (addition of T-forms). In 
analogy, the critical concentration of a D-form microtubule 
reads 〈
�〉 cr = 〈
�〉 loss /〈	
�〉 add. Below 〈
�〉 cr the polymer 
loses D-forms, above this threshold it grows. 

When the critical concentration of T-forms Ccr (T) exceeds 
Ccr (su), then the assembly proceeds spontaneously, because 
the free energy change ∆ G is less than zero; where G is the 
Gibbs free energy. The disassembly (depolymerization) of 
microtubules proceed spontaneously when the change of free 
energy is positive. Thus, the sign of the free energy 
determines the direction of the chemical reaction, where the 
critical concentration Ccr(su) describes the dynamical 
equilibrium state ∆ G = 0. 

The process of dynamical instability occurs when the 
concentration C(su) of free subunits intermediates Ccr (T) and 
Ccr (D), that is C (T) < C(su) < Ccr (D). In case, this constraint 
is fulfilled then the plus end of a free microtubule grows, while 
the minus end shrinks, where the growth threshold and the 
shrinkage threshold are different, Ccr (T) < Ccr (D). This means 
that D-forms lean more rapidly to disassembly, while T-forms 
lean more to assembly [1]. Thus, in the interphase the 
population of microtubules is unstable and short-lived. For 
example, in neural axons stable, long-lived population of 
microtubules replace the short-lived unstable microtubules. 
The disassembly of such stable structures has catastrophic 
consequences, axons would retract. 

Thus far, the influence of the temperature on tubulin 
concentrations and in succession on the assembly and 
disassembly of microtubules was neglected. The stability of 
assembled microtubules is temperature-dependent. At low 
temperature (e.g. 4°C) microtubules depolymerize into stable 
�, β-tubulins and at the higher temperature of 37°C and in the 
presence of GTP, tubulin dimers polymerize into 
microtubules (growth phase) [13]. The temperature of the 
thermal equilibrium of �, β-tubulins is settled to the mean 
body temperature of 37°C. When the temperature of the 
thermal dynamic equilibrium distinctly descends below 
37°C, then the microtubules depolymerize and release 
subunits (disassembly). At higher temperature than 37°C the 
subunits repolymerize in the presence of GTP. 

3. Methods 

This contribution reverts to methods of the essential 
framework of quantum biology, developed in [10]. That is, 
the complex dynamic behavior of microtubules that oscillate 

between growing and shrinking phases and the initiating 
activities of accessory proteins are described by the approach 
of the non-relativistic QFT. The � -and β-tubulin and the 
tubulin subunit, which compose the subunit and the group of 
accessory proteins represent field quanta. The essential point 
of this methodology is the particle interpretation, which 
includes their representation as matter waves, of the 
quantized field, where in this contribution the field quanta are 
Bosons. They are generated and destroyed by appropriate 
time-dependent creation and annihilation operators. For 
example, the operator n� 	��(t) denotes the particle creation − 
marked by the dagger symbol † −  in a quantum state of 
discrete energy level E�	 , whereas n� 	�	(t)	 defines the 
annihilation of this particle. Both operators are time 
dependent because the calculations are executed in the 
Heisenberg picture [10, 22]. In the following all operators are 
marked by a “roof”, so that they cannot be confused with 
eponymous numbers. 

According to de Broglie a quantum particle with the 

energy E		is associated to the four-vector 
�
ℏ (p	, E	) 	=	(k	, ω), 

where ℏ is the Planck’s constant h (action quantum) divided 
by 2π, k	is a wave vector and ω is the (circular) frequency of 
the associated quantum wave. The quantum mechanical wave 
function Ψ(x	, t) ~ exp {i		(k·x	 − ω	t)} of a free particle of 
momentum p	  and energy E	  brings in relation the two 
components of the four-vector. The phase velocity vphase =  	

!  

describes the motion of the maximum of the matter wave Ψ, 

but not the quantum velocity of a particle vparticle = ℏ	!
" . 

Therefore, in accordance to the particle wave duality, 
particles are associated with wave packets whose group 

velocity vgroup = #	 	
#!   is identical to the particle velocity [23]. 

The standard, discrete representation of the non-relativistic 
quantum field operators Ψ$	 	

	
 (cell normalization) and its 

Hermitian conjugate are 

Ψ$		
	
(x, t) = �

√&	 ∑ 
�	(	 ())*!+,  exp {i (k	·x	 − -!	t)},        (1) 

Ψ$		
�
(x, t) = �

√&	 ∑ 
�	!�())*!+,  exp {−i (k	·x	 − -!	t)}, 

where, for instance Ψ$		
�
(x, t) creates a particle at location x at 

time t by summation over all wave vectors k which includes 
the frequencies -(	 of the k-dependent energy eigenstates 
( ℏ-! = ℏ²|k|²/2m) . Four relevant remarks are here 
indicated. First, a non-relativistic field operator contains only 
one annihilation resp. creation operator in contrast to 
relativistic field operators which are composed of creations 
and annihilations operators [10, 22]. Second, both expansions 
(1) can be inverted by Fourier transformations to define n� 	(	  

and n� 	(�. Third, to simplify matters this contribution mostly 
restricts to the application of creation resp. annihilation 
operators which are associated to energy states or to 
locations, because they are more appropriate to the modelling 
of microtubules. Thus, 
� 	3�creates a field quantum of energy 

E� = ℏ-�  and for instance, ��	4�  creates a �-tubulin at site l. 
Fourth, the Bose-Einstein statistics for the quanta of this field 
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are ensured by the commutation rules of Bosons [10, 22]. 
The dynamics of microtubule processes is represented by 

the definition of the interaction Hamiltonian H$ 	�67  and the 
equations of motion for each individual particle operator, 
where every equation of motion is evaluated in the 
Heisenberg picture. Such an equation obeys the general form 

#
#8O$ 	(t) =

:
ℏ 	 ;H�67, O$ 	(t)< − =>O$ 	(t) + FA 	B(t),           (2) 

where 	O$ 	(t ) is a time-dependent operator and ;H$ 	�67, O$ 	< =
H$ 	�67	O$ −	O	$ 	H$ 	�67  defines the commutator between the 
Hamiltonian and the operator. Further, the full equation (2) is 
supplemented by a damping constant =B and by fluctuating 
forces FA 	B. 

In a system of many identical (indistinguishable) particles 
the basis state takes the form |n�	 , nC, . . >,  where n�  is the 
occupation number of the energetic state E� . In case of 

Bosons each of these numbers can take the integer values 
n�	 = 0, 1, 2, … Formally, these numbers are different 
eigenvalues of the number operators N$ 	� = n� 	��n� 	�	 , where the 

eigenvalue equation reads N$ 	�	|n� >= n�|n� > , with i 	=  1, 
2,…. 

In quantum systems the classical critical concentration Ccr 
(su) = nloss (su) / nadd (su) are replaced by the quantum 
version of this threshold 

〈
GH〉cr = 〈
GH〉loss/	〈	
GH〉add.                      (3) 

where 〈
GH〉 counts the mean number of the free subunits, 
summarized over all energy levels E� 

〈nGH〉	=〈n� 	�,GH� 	n� �,GH〉 = ∑ < 	
�,GH >	=	� ∑ 	� �
JK(LMNO)P�.  (4) 

The corresponding Bose-Einstein distribution function reads 

pQR(n = n�) = S 〈6M〉	〈6M〉T�U
6 �
(〈6M〉T�) and <	n�,GH >= ∑ 
	pQR(
 = n�),V                                        (5) 

where the equality n = n�	 denotes the situation that n 
particles exist at the energy level E�. Thus, the expression (4) 
defines the expectation value of the total number of subunits 
under the premise that these particles are members of a grand 
canonical ensemble of Bosons, which are in thermal 
equilibrium. The parameter W is the chemical potential that 
regulates the number of particles and β = 1/kB Ť, where kB is 
the Boltzmann constant and. Ť denotes the absolute 
temperature (to avoid the confusion with T-forms the 
temperature is marked by an inverse “roof”). 

4. Solutions 

This chapter presents the equations of motion and their 
solutions associated to the various phases of the assembly, 
disassembly and dynamic instability of microtubules which occur 
in the course of the interphase. The cylindric form of each 
microtubule suggests to introduce a curved grid-based space, 
where the location l of each grid point is represented by cylinder 
coordinates l ≈ (r, φl, zl), where r is the constant radius, φl, denotes 
the angle of the location l and zl the height of the position l. 

4.1. Polymerization of Subunits, Fluctuating Forces and 

Coherent Supply Rates 

The first step to assemble a protofilament, which consists of 
long linear string of adjacent subunits, where each subunit 
(heterodimer) links very tightly together the �,	 β-tubulins 
monomers. In the QFT-approach �,	β-tubulins are represented 
by appropriate types of operators. The operator ��	4�(T) creates 
a � -tubulin monomer at site l. and ��	4	 (T) annihilates this 
molecule at the same position l. The �-tubulin only exist in 
GTP-form, therefore, in the following �-tubulin operators are 
denoted without the addition of T. In analogy, the operators 

XY	4
�(T) and XY	4

	
(T) create a β-tubulin or destroy it. The operators 

XY	4
�(D)  and XY	4

	
(D) describe β-tubulins, where the nucleoside 

triphosphate hydrolyzed (GDP-form). Whereas, the hydrolysis 

process is GTP + H₂O → GDP + Phi + H+, where Phi is an 
inorganic phosphate group. In consequence, creation operators 
exist in two forms ]_̂ 	4

�(T) and ]_̂	4
�(D) and likewise the two 

annihilation operators ]_̂	4
	 (T) and ]_̂	4

	 (D). 
The creation process of a subunit in T-form, describes the 

generation of a new heterodimer by the interaction of the two 
dimers with each other. This process is formally represented 
by the operator expression 

]_̂	4
�(T)	αa	4	 	XY	4T�

	
(T).                           (6) 

This operator sequence defines the creation of a subunit in 
T-form at the location l by the annihilations of an �-tubulin 
at position l and of a β-tubulin at position l + 1, where for 
convenience the subunit is identified by the position l. The 
prescribed succession of the �,	β-tubulins from the minus end 
of a protofilament is reflected by the two different positions l 
of �-tubulin and l + 1 of β-tubulin. Notice that the shift of 
the position l (e.g. by 1) is expressed in vector notation. 

The similar expression for the creation of a subunit in D-
form is 

su_	4
�(D)	��	4	 	X$ 	4T�

	
(T) B$	c

�
=	su_ 	c

�(D)	su_	c
	 (T) B$	c

�
        (7) 

where the	dissipative energy of the hydrolysis is represented 

by the heat-bath (reservoir) operator B$	4
�
, and the expression 

��	4	 	X$ 	4T�
	

 = su_	4
	 (T) represents a short form of a tubulin subunit 

in T-form (7). 
The local interaction Hamiltonian H$ 	�67,4 for the creation of 

a free subunit in T-form and its reverse (Hermeticity) reads 

H$ 	�67,4 = − ℏ
:  g	[su_	4

�(T)	��	4	 	XY	4T�
	

(T) −	��	4�	XY	4T�
� (T)	su_	4

	(T)] (8) 

where g	is a real coupling constant and energy conservation 
is presumed (no dissipation). 

The Heisenberg equations of motion for the creation 
operators are 
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#
#8 	]_̂ 	4

�(T) = 	g ��	4�	X$ 	4T�
� (T) − =GH	]_̂ 	4

�(T) + FAGH�  (9) 

The dynamics of the subunit creation in T-form at location 
l is governed by the creation of the two composing 
monomers, however this composition subjects to damping 
and fluctuating forces. 

#
#8 ��	4� = − g		]_̂ 	4

�(T)	XY	4T�
	 (T) − =h��	4� +	FAh� + îh�.     (10) 

The dynamics of the "� -generation” succeeds by the 
creation of a tubulin subunit in T-form together with the 
destruction of a β-tubulin in T-form at location l + 1. This 
temporal derivative is supplemented by a damping constant 
=h , by time-dependent fluctuating forces FAh�  and by the 
supply rate îh�	of �-tubulin. 

#
#8 XY	4

�(T) = − g		su_ 	4P�
� (T)	��	4P�	 − =l	XY	4

�(T) +	FAl� + r�l�.	(11) 

The equation of motion of the creation of β-tubulin in T-
form is associated with the creation of tubulin subunit in T-
form together with the annihilation of �-tubulin, both at the 
position l	−	1. This equation is again extended by damping, 
fluctuating forces and the supply rate r�l� of β-tubulin. In both 
cases the supply rates are considered as constant coherent 
driving forces. The correlation of both rates is evaluated in 
subchapter 4.1. (ii). The equations of the equivalent 
annihilation operators are the Hermitian conjugates to the 
time derivativities of the creation operators. 

To solve these three operator equations their expectation 
values (c-numbers) are calculated in a coherent state. This 
transformation unearths the physical meaning of the operator 
equations (9) - (11), because only these values can be 
compared with experimental results. The mean value of the 
number operator specifies the occupation number (intensity) 
of specific particles. Whereas, correlation functions 
determine the degree of coherence (dependence), which in 
case of molecules, can be measured for instance by frequency 
filters [24]. Furthermore, the supply rates (fluxes) of the �-
tubulins and β-tubulins within the cytosol can be coherent (in 

phase) or incoherent (out of phase). This differentiation is for 
quantum particles especially important, because the particles 
are either represented by continuous quantum coherent waves 
or by incoherent quantum waves caused by scattering and 
dephasing of the coherent waves, where a strong dephasing 
(damping and fluctuations) causes a hopping influx. Thus, it 
is instructive to differentiate between a continuous wave-like 
flux (coherence) and a particle-like flux (incoherence), 
because this difference reflects the dualism between the 
wave-behavior and the hopping particle-behavior. 

The coupled nonlinear equations (9)	− (11) are solved by 
the method of adiabatic elimination [10]. To apply this 
approach the three damping constants are cast in the 
following order of magnitudes =l > =h > =GH . This order 
sequence of damping constants determines the succession of 
eliminations. A better clarity of the formulas is achieved by 
introducing the abbreviations: 

FAhn	= FAh 	+ r�h	 , FAln	 = FAl	 	 + îl	 ; 	FAh
n� = FAh� + îh�, FAln� = FAl� + r�l�.	(12) 

In the first step XY	pT�
� (T) is eliminated (setting the temporal 

derivative to zero in (11)) 

XY	pT�
� (T) = − 

q
rs 	]_̂ 	4

�(T)	��	4	  + tAlnn�	,		
	
where    (13) 

tAlnn�	 = u vPrs(8Pw)8
, 	FAln�(x)	yx.                 (14) 

Insertion of the Hermitian conjugate to equation (13) into (10) 
and performing a second adiabatic elimination of ��	p� yields 

��	4� = (
q²
rs 	]_̂ 	4

�(T)	]_̂ 	4
	(T) −	=h)¯¹g	]_̂ 	4

�(T)	FAln	+	FAhnn�	, where (15) 

tAhnn�	 = u vPrs(8Pw)8
, 	FAhn�(x)	yx              (16) 

Insertion of the Hermitian conjugate to equation (14) into 
equation (13) results in 

XY	pT�
� (T)	=	                         (17) 

Pq
rs 	 	]_̂ 	p

�(T)	|	}q²rs 	]_̂ 	p
�(T)		]_̂ 	4

	(T) − =h)¯¹~	]_̂ 	p
�(T)	FAln�	 + 	FAhn	��	+	FAlnn�	. 

To avoid the evaluation of further tedious calculations, we 
directly come to the essential results by considering only the 
leading term 	FAhnn�	in equation (13)	and FAlnn�		in equation (15). 
Inserting these two dominant terms into equation (9) yields 
its changed form 

#
#8 	]_̂ 	4

�(T) = 	G$	� − =GH	]_̂ 	p
�(T) + FAGH; 	with	G$	� = g	FAhnn�	FAlnn�	.	(18) 

The solution of (18) reads 

	]_̂ 	4
�(T, t) = 	u vPr��(8Pw)8

, 	(G$		
�(x) +	 	FA���	 (x))dx +	]_̂ 	4

�(T, 0)	vPr��7,               (19) 

where 	]_̂ 	4
�(T, 0) denotes the initial value. 

Two special cases are worthwhile to evaluate and to 
compare their results, that is at first, to include only 
fluctuating forces (incoherent supply rate) or at second, to 
exclude them and only consider coherent supply rates. The 
next subchapter treats the first case. 

(i) Fluctuating Forces 

The assumption that only fluctuating forces are considered 
(case 1) implies that the rates in equations (10) and (11) are 
neglected and FAhn	  = FAh , FAl	n	 	 = FAl  are set. Under these 
preconditions the expectation value of the number operator is 
calculated 

<	]_̂ 	c
�(T, t)		]_̂ 	c

	(T, t) >.                  (20) 
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A typical expression that occurs during the evaluation of 
the correlation function (20) is 

<u vPr��(8Pw)8
, 	G	$ 		

�(x)	dx u vPr��(8Pw	�	)8
, 	G	$ 		

	(x	n	)	d	τ	n	>, where (21) 

G	$ 		
�(x) = 	~ u vPr�(wP�)w

, 	 	FAh�	(�)	d� u vPrs(wP�	�	)w
, 	 	FAl�	(�	n)	d	ρ	n	.                                           (22) 

G	$ 		
	(x	n	) = 	~ u vPr�(w	�	P�		)w	�	

, 	 	FAh�	(�		)	d�		 u vPrs(w	�	P�	�	)w	�	
, 	 	FAl�	(�	n	)	d	�	n	,                                        (23) 

The result of the correlation function of <	G	$ 	 	
�(x) G	$ 	 	

	(x	n	) > reads 

<�	$ 		
�(x)	�	$ 		

	(x	n	) >	= 	g²	 < 
h(Ť)	>< 
l(Ť) >	(1−vPCr�|wPw	�	|	)	(1−vPCrs|wPw	�	|	)                           (24) 

≈ 	g² < 
h(Ť) >	< 
l(Ť) >, 

where < 
h (Ť )> respectively < 
l(Ť) >  are the average 
numbers of the two free monomers � -and X − tubulins	at 
possibly different absolute temperatures Ť	and	the	neglection 
of the exponential factors according to the previous 

assumption =l > =h > =GH. 
The final result for (21) is obtained by inserting (22) and 

(23) into (21) and performing the two integrations 

<u vPr��(8Pw)8
, 	G	$ 		

�(x)	dx u vPr��(8Pw	�	)8
, 	G	$ 		

	(x	n	)	d	τ	n	> =	                                                 (25) 

q²
r��²		 < 
h(	Ť)>	< 
l(Ť) > (1−vPr��8)². 

The calculation of (24) also requires the correlation function, for instance of FAh�  and FAh	  which is given by 

<tAh�(�)	FAh	 (�		) >	= 	2	=h < 
h(Ť) > 	δ(� − �		),                                                        (26) 

and equivalently 

<tAl�(�	n	)	tAl	 (�	n	) >	= 	2	=l < 
l(Ť) > 	δ(�	n − �	n	). 
Insertion of (19) and its conjugate into (20) under consideration of (24)	yields 

 <	]_̂ 	4
�(T, t)	]_̂ 	4

	(T, t) ≥ q�
r��� 		

 < 
h(Ť)	> (1 − vPr��8) < 	
l(Ť) >	(1−vPr��8) + <
��(Ť)>.                         (27) 

The expectation value of the initial value of the subunits reads 

<	]_̂ 	c
�(T, 0)		]_̂ 	c

	(T, 0) > vPCr��8 	=	< 
��(Ť)> vPCr��8. (28) 

The intermediate expressions (22) and (23) include the 
correlations of the fluctuation forces which act upon the �, 
X-tubulins. Thus, they demonstrate that the expected number 
of subunits (27), at an arbitrary site l, depends on these 
fluctuation forces. But, it also depends on the damped mean 
numbers of the two composing proteins and the undamped 
mean value of the subunits. Furthermore, the composition of 
the heterodimers is incoherent because no coherent supply 
rate exists. Hence, expression (27) confirms the anticipation 
that the mean number of subunits is subject to a hopping 
process (incoherence), which is caused by damping and 
fluctuation processes. 

The subunits and respectively the � − 	and X-tubulins are 
elements of different grand canonical ensembles of Bosons, 
thus, the mean total number of each separate ensemble of 
them can be calculated by formula (4). The separation into 
three different ensembles is required because the elements of 
each ensemble must be indistinguishable (identical Bosons). 

Furthermore, the hopping process is clearly demonstrated 
by considering the variance of the Bose-Einstein distribution, 
for example for �-tubulin by their variance 

�hC	= 〈
hC〉 − 〈
h〉C = 〈
h〉(〈
h〉 + 1).      (29) 

The variances �lC of β-tubulins can be calculated by the 
same formula (29). Hence, the hopping (bunching effect) of 
the influx of both composing components of subunits 
separately occur and in consequence the polymerization of 
the subunits ensues discontinuity. 

(ii) Coherent Supply Rates 
This subchapter describes the idealized case that the 

fluctuating forces FAh  and FAl  are neglected, because they 
generate the incoherent solutions. Thus, it is proposed that 
FAhn	= r�h	 ,	FAln	 =	 îl	  and therefore integral (16) changes to 

FAhnn	()) = u vPr�(7Pw)8
, 	r�h	 (x)	dx	= 

���	 (7)
r� 	(1−v

Pr�7), (30) 

where r�h	 ()) 	= 	 r�h	 (0), because this rate is constant. Under 
the assumption that the term vPr�8  can be ignored and the 
analog term in (14) also can be neglected then the 
expressions (14) and (30) yield  

FAhnn	()) = 
�̂�	 (7)
r� , FAl

nn	(t) = 
�̂s	 (7)
rs .                  (31) 

Consequently, the conjugate Hermitian solution to (18) 
modifies to 
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	]_̂ 	c

	(T, t) = 	R$ 	c
	(t) + 	su_ 	c

	(T, 0)vPr��7 + u vPr��(8Pw		)8
, 	FA��	 (x		)	d	τ		,                                                   (32) 

where 

	R$ 	¡
	 (t) = ¢

r��r�rs 	 îh
	 (t)	r�l	 (t)(1−vPr��8)     (33) 

The expectation value <	su_ 	4
	(T, t) > coincide with	R$ 	c

	(t), 
because in expression (32) the expectation value is 

< £(
)	|]¤̂ 	c
	(T, 0)	vPr��7|£(
) >	= 0,	 when this term is 

calculated with respect to a state that describes a fixed number n 
of subunits £(
) . In addition, the fluctuating forces are 
statistically independent (26) and therefore, they can be neglected. 
Hence, the expectation value of the numbers of subunits reads 

<	]_̂ 	c
�(T, t)		]_̂ 	c

	(T, t) >	= R	c	(t)R ∗	c	 (t)	+	< nGH(Ť)>, for all positions l,                                      (34) 

where R ∗	4	 	represents the complex conjugation of ¦	4	 . 
Continues coherent supply rates of <r�h	 (t)> and <r�l	 (t) > 

are not guaranteed by the Bose-Einstein distribution 
according to the “bunching effect” (2). Such a coherent rate 
is ensured by the Poisson distribution 

	§¨©:�(
) = 〈Vª,�〉ⁿ
V	! 	vP〈V­,�〉                         (35) 

where 〈
�,h〉  characterizes the expectation value of � −
tubulin	of energy E�. The variance of this distribution is in 
contradiction to the variance of Bosons in thermal 
equilibrium (29) 

�hC	= 〈
:,hC〉 − 〈
:,h〉C = 〈
:,h〉.                  (36) 

Thus, for example the supply rate of �-tubulin and X-tubulin 
in the cytosol occur with respective constant distance between 
the same types of molecules. Consequently, the fluxes of both 
monomers are continuous. With respect to the two different 
distribution functions (5) and (35) this change signifies a thermal 
non-equilibrium phase transition (dynamic equilibrium) to a 
changed probability function (35), which is typically observed in 
biological systems (e.g. influx of neurotransmitters into the 
synaptic cleft) or in nuclear physics (radioactive decay) and in 
quantum optics (coherent laser) [23]. 

As mentioned above, the critical concentration (threshold) of 
subunits 〈
GH〉cr (3) is the concentration of the hetrodimeric �, 
X-tubulin in a dynamic equilibrium of microtubules, where the 
polymer is a mixture of T-forms and D-forms subunits [1]. The 
critical temperature is Ťc = 236,15 0K (37°C), where � −, X -
tubulins polymerize. Distinctly below Ťc microtubules 
depolymerize, releasing � , X -tubulins. The connection of the 
thermal control parameter Ťc and the critical concentration is 
obvious. At the critical temperature Ťc and at the critical 
concentration 〈
GH〉 cr of subunits (� , X -tubulin) a dynamical 
equilibrium adjusts. Below Ťc and below 〈
GH〉 cr no 
polymerization occurs. At Ťc and above the critical concentration 
〈
GH〉cr subunits polymerize into microtubules. High temperature 
above Ťc and for instance in case of fever (38°C	−	42°C) and 
above 〈
GH〉cr, the assembly of microtubules is time dependent 
and the microtubules elongate where both their forms and their 
orientations vary. Though, in cells the states far from a (stationary) 
thermal equilibrium the non-equilibrium phase transition is kept 
stable by a continuous flux of energy into the cell and by an active 
consumption of this energy. 

After this thermodynamic “plug-in” it is appropriate to 
return to biological descriptions of the previously mentioned 

processes (e.g. assembly and disassembly of microtubules). 
Already the stability of the regulation of nascent tubulin may 
be obstructed by a degradation signal (nuclease) which binds 
to the tubulin molecule [4, 13]. In this case, the supply rate of 
both kinds of tubulins cannot be constant because the more 
the mRNA is degraded, the less tubulin molecules are 
produced. In consequence, the regulation of stability of the 
RNA translation depends from the actual initial state of this 
translation with the result that the production rate of tubulin 
changes steadily and leads, for example to a wasteful (e.g. 
cancerous) synthesis of tubulin. 

Besides the request for the stability of the regulation of the 
production rate of � − , X -tubulins also the assembly and 
disassembly processes in the cytosol must be considered. So, 
the preferred end of a microtubule, where the assembly 
(addition) and disassembly (loss) occur, is the (+) end. 
However, their time rates are different, because the 
mechanism of assembly differs from that of disassembly [13]. 
At the distal end (+) the growing rate is more slowly than the 
shrinking rate. Therefore, the concentration of released 
tubulin subunits grows during the shrinking phase and 
diminishes during the growth phase. Focused on the kind of 
the supply of free tubulin subunits, the disassembly process 
delivers a continuous coherent supply and the assembly 
process reduces the number of available tubulin subunits and 
the polymerization occurs stepwise.  

The supply rate of free tubulin subunits is a control 
parameter, because it determines their concentration, which 
settles whether the assembly or disassembly process occur. In 
quantum mechanical sense this is significant for the 
coherence of the quantum supply rate (wave description), 
which depends from the continuous replenishment of 
particles and the sheltering against the impact of fluctuating 
forces. Eventually, constant supply rates are assumed, 
because this contribution defines a basic description of the 
generation of microtubules, which all possible disruptive 
complex processes (e.g. erroneous mRNA translation or 
chaotic behavior of rates of MAPs) exclude. 

4.2. Protofilament Assembly by Noise-Free Quantum 

Movement of Free Subunits 

Free subunits associate longitudinally to form 
protofilaments, where the � -tubulins is down and the X -
tubulin is up in each heterodimer. Therefore, a protofilament 
and a microtubule achieves a distinct structural polarity, with 
�-tubulin at minus end and X-tubulin at plus end. 

The basic approach of this assembly includes the transport 
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of free subunits to the locations of stepwise growth of the 
protofilament. The sites of each integrated subunit into the 
originating linear, periodic structure are labeled by l ≈ zl, 
where l runs from 0 till l−1 and L defines the number of 

sites. The motion of a free sub unit from the location l´ to the 
final position l is supported by a quantum transfer function 
Tr	(l′, l). which conserves the energy. 

The basic Hamiltonian reads 

H$ 	�67 = 	ℏ	 ∑ 	V�	su_ 	4
�(T)	su_ 	4

	(T) 	+ ℏ∑ 	Tr(l′, l)		su_ 	4´³4
� (T)	su_ 	4

	(T),	4´´P�p	+	,                                     (37) 

where Vl indicates the potential that represents the longitudinal (vertical) forces between adjacent subunits. 
The equation of motion only supplemented by damping is 

#
#8 	]_̂ 	4

�(T) = 	i	V�	]_̂ 	4
�(T) + i∑ 	Tr(l′, l)		]_̂ 	4n

�(T) 	− 	=��	su_ 	4
�(T)		4´³4                                      (38) 

The solutions of (38) is accomplished by two obvious 
conditions, described in turn. Only nearest-neighbor transitions 
are allowed: Tr(l´, l) ≠ 0 only for l´ = l	 ± a,	where a is the 
distance between two adjacent subunits. That is, the position l´ 
lies in the direct vicinity of the location l of a protofilament. 
When the site l is already occupied then the next position l + a is 
allocated by a new free subunit. Further, the periodicity of a 
protofilament requires the equality 

		]_̂ 	4T·¸
� = 	]_̂ 	4

�(T).                           (39) 

In consequence, the following solution is proposed 

]_̂	4
�(T) = Sl v�((4T 7)Pr��7.                     (40) 

Considering only the transfer part of equation (38) and 
comparing the derivatives of the regarded part and of (40) yields. 

i- Sl = i Tr (Sl+a v�(· + Sl-a	vP�(·).             (41) 

Setting the equivalence Sl+a = Sl-a = Sl, then (41) represents 
the dispersion relation 

ω(k) = 2Tr	cos(k	a)                        (42) 

Thus, the general solution of (38) (only considering the Tr-
term) can be formulated as 

	]_̂ 	4
�(T) = �

√´	 ∑ 	¹!	( v:((4Tº(()7)Pr��7 	= 	 �¸∑ v:(((4P»)Tº(()7)Pr��7	(,» su_	»
� (T, t = 0),                           (43) 

with	¹! 	= 	 �√´	 ∑ 		4 vP�(	4]u_	4
�(T, t = 0), 

where the wave number is k	= 
C¼	6	
½	· , n = 0, 1, …, N-1, with N 

= L. 
The solution for the first potential term in equation (38) is 

given by (42) multiplied with the factor Vl 

lies in the solution (43), which is inserted. into the 
following correlation function 

< ϕ  (0) | 		]_̂ 	4n
�(T, t′)  	]_̂ 	4

	(T, t)|  ϕ  (0)>, with the initial 

condition Φ (0) =	]_̂ 	4₀
� (T, 0)|ϕ₀>, where |ϕ₀> is the vacuum 

state. The final result reads 

<ϕ₀ (|		]_̂ 	4n
�(T, t′)		]_̂ 	4

	(T, t)| ϕ₀> =          (44) 

�
´∑ v:	(n((4nP4₀)Tº((n)	7n)Pr��7n	(n ∙ 	�´ 	∑ vP�	(((4P4₀)Tº((,)7)Pr��7	( . 

On account of the dispersion relation (42), equation (44) 
can only be solved numerically. Thus, to achieve an analytic 
solution of (44) the equation (42) must be linearized without 
destroy the essential features. This is achieved in two steps. 
First, the number n is replaced by n′ 

n′	= n− ½	C = −
½	
C , −

½	
C  + 1, − ½	C  + 2, …, 0, 1, 2, …, 

½	
C − 1; N even.                                 (45) 

Hence, cos (k a) = cos (Á + CÂ	6‘	
½	 ) = −cos (

CÂ	6‘	
Ä	 ), where k = 

¼	
·  + 

C¼	
½	· n′.                             (46) 

Second, linear interpolation of the cosine function 

−cos (
CÂ	6‘	
½	 ) ≈ −1 +.

Å	|6‘|	
½	 .                                                                      (47) 

Now, the revised calculation, for instance of the 
	]_̂ 	4n

�(T, tn)  term of the correlation function (44) is 
performed, where the damping factor =��l′	 and the 
normalization factor 1/L are neglected for the moment. 

Eventually, l = l′ a, 0 ≤ l′ < N−1 is set, because the nearest-
neighbor condition ensures that the protofilament is stepwise 
assembled. Thus, the following equation is evaluated 

∑ v:([(4P4₀)Tº(()	7]	! = ∑ 	exp	{i	Ä/CP�
6‘+P½/C

C¼	
½	  (

Ä	
C  +n′) (l′ − l₀′) + i 2Tr (−1 + Å	|6‘|	

Ä	 )	t}	                           (48) 

=	exp {i π (l′ − l₀′)	−	i 2Ti	t} ∙ 	∑ exp{i	Ä/CP�	
6n+P½/C

CÂ	
Ä	  (l′ − l₀′) n′ + i 2Tr 

Å	|6‘|	
Ä	 t}. 

The sum over n′ can be evaluated by means of the formula of finite geometric series. The explicit full result for	]_̂ 	4
�(T) 
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reads 

exp {i π (l′ − l₀′)	−	i 2Tr	t} [ G�6	(	
É	
�	(4‘P4₀‘)	PC	��	7´)

G�6	(	
Ê

Ë	
(4‘P4₀‘)	P

Ì	ÍÎ	Ï´	

Ð	
)				
+	

G�6	(	
É	

�	
(4‘P4₀‘)TC��	7)

G�6	(	
Ê

Ë	
(4‘P4₀‘)T

ÌÑÒ	Ï	

Ð	
)	
]	vPr��7,                                (49) 

where the preceding modulation factor initiates strong 
oscillations. Both terms describe wave packets (quantum 
matter waves) which moves in opposite directions; where the 
first wave packet runs towards the cytosol and the second 
wave packet backwards. Thus, the sum of both expressions is 
a superposition (quantum interference) of two counter-

running wave packets with group velocities vgroup =
#	 	

#!
. The 

maximum of both wave packets lies at zero; more precise, 
where the arguments of the sinus functions of the nominators 
and denominators disappear. The peak height is N/2. Both 
maxima run with the phase velocity vphase =

 	

!
. The behavior 

of 	]_̂ 	c

	
(T) is equivalent to that of 	su_ 	c

�
(T), up to the complex 

conjugation of the modulation factor. Hence, the 
approximation of the correlation factor (44) is given by the 
multiplication of 	]_̂ 	c

�
(T) with	]_̂ 	c

	
(T). 

The next step would be to find the solution of the complete 
equation (38), where the fluctuating forces are included. 
However, the impact of quantum fluctuations was already 
demonstrated in subchapter 4.1. (i), therefore only the well-
known effect of fluctuations is here mentioned. The coherent 
part of the solution is destroyed by fluctuating forces. and only 
the incoherent part of the solution remains. Only, when the 
coherent part is sheltered against the impact of fluctuations 
then the coherent solution will be not destroyed. This effect is 
observed in the case of superconductivity. However, even in 
biological systems (receptors) the hypothesis was proposed 
that human consciousness can protect coherent solutions 
against environmental influences [25]. 

4.3. Nucleation of a Microtubule on MTOC 

The contribution of this chapter is devoted to the 
nucleation of a first lightly inclined loop of D-form subunits 
on top on a γ-tubulin ring at the minus end, which is 
mediated by accessory proteins. These proteins are necessary 
for initiating the assembling of microtubules at the minus, 
where they bind on the MTOC whose pericentriolar arranged 
material is an ordered lattice. 

The most important accessory protein is the γ-tubulin (γ-
TuRC, tubulin ring complex), which remains associated with 
the minus end, where a ring of γ tubulin serves as a template 
which creates an inclined loop of a microtubule even at 
subcritical concentrations. After assembly of the tubulin 
subunits the hydrolyzation of the GTP the changed 
conformation of GDP forces the protofilament into a curved 

shape (lateral forces). Hereby, much of the diphosphate bond 
energy is stored in the polymer, where the remaining energy 
is released (dissipates). This prosses of the release of free 

energy is represented by the heat bath operator 	B$ 	4
�
. 

The discrete cylindrical coordinates l = (r, φl, zl), with a 
fixed inner radius of about r = 14 nm or a fixed outer radius 
of ca. 24 nm, describe each location of a tubulin subunit 
within the loops of a microtubule, which spirals upwards 
from the first loop that emanates from the MTOC. Hence, in 
contrary to the previous linear coordinates of a protofilament, 
now cylindrical coordinates are applied to describe each 
position of a tubulin subunit within a microtubule. The angle 
φ runs stepwise from zero to 2π with the difference of ∆ φl, 
=.5º between l and l+1 of two adjacent horizontal tubulin 
subunits. The total height of a microtubule varies between 1 
µm till some hundred µm. The height of a tubulin subunit is 8 
nm, [13]. When the length of a microtubule is 1 µm then 125 
tubulin subunits compose a protofilament (usually 13 
protofilaments compose a microtubule), where the distance 
(distance of their barycenter’s) between two vertical locations 
of tubulin subunits which directly stack over one another is ∆ 
zl = 4 nm.  

In topological notation each location within a 
microtubule can be described with relation to each position 
of the basic loop, which is path homotopic to a circle S1 
=	 {v�	Ó ; x is real; |v�	Ó  = 1|}. Further, the circle is an 
element of the first homotopy group π₁ which again is 
homeomorphic (~) to the natural numbers; π₁ (S1) ~ ℤ [26]. 
This means more descriptively that a microtubule can be 
represented by a cylindrical helix of fibers (vertical lines) 
above S1, where each point of a fiber is characterized by 
natural number. The set of all equivalent points on a fiber 
which lies along the same vertical line are projected onto 
the same point x of S1. In the context of symmetry 
considerations, it is worthwhile to mention that S1 is 
homeomorphic to the unitary group U (1): S1~ U (1), where 
both groups are Lie groups. Thus, the shrinkage of a 
microtubule brakes the U (1) symmetry. 

Now back to the first position of the loop of a microtubule 
(minus end) which is built up by a column of three 
composing molecules with a fixed angle φl, and varying 
heights zl. According to the tininess of ∆zl and to the 
mathematical simplification of the local Hamiltonian the 
different locations of the three vertical aligned composing 
molecules are encapsulated to one location l.  

Thus, the local interaction Hamiltonian reads 

H$ 	:V7,c = ℏ	g₁(=�	c
�
	aca 	c

	
	su_	c

�(D)	su_	c

	(T)	B$ 	c
�
+ su_	c

�(T)	su_ 	c	

	
(D)	aca 	c

�
		
		=a	c
	
	B$ 	c
	
),                                       (50) 

where g₁	is a real coupling constant. The first term of this 
Hamiltonian creates a γ-tubulin molecule on top of an 
accessory protein (MAP), which is annihilated (aca 	c

	
).	On top 

of a γ-tubulin molecule a subunit in D-form is created and a 

subunit in T-form is annihilated. The hydrolysis of GTP is 

denoted by a heat bath (reservoir) 	B$ 	c
�
, which describes the 

release of free energy (dissipation). The diphosphate remains 
trapped (GDP) in the loop structure and forces it into a 
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curved shape (lateral forces). The attending release of 
inorganic phosphate is here not relevant and hence omitted. It 
will be later on considered when the shrinking phase will be 
described in (4.4.2.). The second term of (50) represents the 
Hermitian conjugate of the first term. 

The total Hamiltonian (complete basic loop) is 

H$ 	:67 =	∑ 		p	 H$ 	�67,4, where l ≈ (φl, zl)                (51) 

The complete set of local Heisenberg equations of motion 
resulting from the Hamiltonian (50), which are only 
augmented by damping constants, are given by 

#
#8 su_	c

�(T) = i g₁ =�	c�	aca 	c		 	su_	c
�(D) 	B$ 	c

� − 	γGH�	 	su_ 	c
�(T), (52) 

#
#8 su_	c

�(D) = i g₁ 	=a	c	 	aca 	c�	su_	c
�(T) 	B$ 	c

	 − 	γGH�	 	su_ 	c
�(D), (53) 

#
#8	 =�	c�= i g₁ aca 	c�	]_̂ 	c

	(D) su_	c
�(T) 	B$ 	c

	 − 	γÖ	 =�	c�, 			     (54) 

#
#8 aca 	c�= i g₁	=�	4�su_	c

�(D) su_	c
	(T)	B$ 	c

� − 	γ·×	 aca 	c�,      (55) 

#
#	7 	B$ 	c

� = 	i	g₁		=a	c	  aca 	c�su_	c
�(T)	su_	c

�(D) 	− 	γQ	 	B$ 	c
�
.    (56) 

To elaborate stepwise the solutions the following 
modifications are appropriate. The first assumption concerns 
the damping constants of the accessory protein and of the γ-
tubulin, where both are set to zero γ·×	 = 	γÖ	  = 0. The second 
simplification pertains the B-field, which is set to 1 in the 
equations (52) till (55). The solutions of equation (56) are 
described in [10]. All these modifications make it possible to 
elaborate analytical solutions of the differential equations 
(52) till (55). 

The remaining four operator equations are replaced by 
their expectation values in a coherent state representation, 
whereby they become c-numbers. Thus, the two proposed 
replacements for the solutions of the GTP and GDP forms of 
tubulin are: 

su_	c
�(T) = sin f(t) 	vPÖ7, su_	c

�(D) = cos	f(t)		vPÖ7,	  (57) 

where it is assumed that 	γGH�	 = 	γGHÙ	 	=  γ	 . The initial 
conditions for the subunits are	su_ 	c

�(T, 0)) =	0, ]_̂ 	c
�(D, 0) =

1. The ansatz for the γ -tubulin and the accessory protein read 

=�	c	� = cos G(t),  Ú¹_	c
� = i sin G (t),                    (58) 

where their initial conditions are =�	4	�(0) = 1, Ú¹_	4
�(0) = 0. 

Insertion of these four proposed solutions into the 
corresponding equations (52) till (55) yield the two coupled 
equations for f and G: 

#	Û
#	7 	= 	

�
C g₁	sin (2G) = g₁	sin (G) cos (G).     (59) 

#	Ü
#	7  = 

�
C g₁	sin (2f)		vPÖ7 = 	g₁	sin	(f)	cos	(f)		vPÖ7. (60) 

The first impression of the type of the solutions can be 
obtained when the damping constant γ is switched off. Then 
the symmetry of the two equations (59) and (60) immediately 

suggest to set f = ± G. Thus, by separation of variables the 
modified equation (60) becomes the form 

#	Ü
G�6	(Ù)	×ÝG(Ù)	= ± g₁dt.                       (61) 

The integral of (61) reads 

ln tg(G(t)	−ln tg G(t₀) = ± g₁(t	−t₀),          (62) 

which is equivalent to tg G(t) = tg G(t₀) 	v±q₁(7P7₀)	. 
The solution for f (59) is obviously 

f(t) = 	g₁	 u 	g₁	sin	G(τ)	cos	G(τ)	dτ	8
7₀ + f(t₀).     (63) 

It is revealing to consider the π-periodic, symmetric phase 
space which is spanned between f (x-axis) and G (y-axis). 
The phase portrait (G versus f), which is numerically 
calculated (e. g. g₁ =	0.1), show centers at different middle 
points, which are horizontally and vertically separated by the 
distance of π [10]. The set of the corresponding orbits starts 
at predefined initial points and turns around each central 
point (e.g. anticlockwise that corresponds to the minus sign), 
where their phase flow is restricted to a quadrate of an edge 
length of a bit less than π/2. Thus, the bundle of trajectories 
shows orbits that are classical circles S1 and path 
homotopical equivalent circles in the vicinity of the 
borderlines. 

In the next step the damping constant is switched on, 
where γ « g₁  (e.g. γ = 001, g₁ =0.1) is assumed. As a 
consequence, the phase flow in the same phase space (G 
versus f) changes dramatically. All “circles” dissolve and the 
changed orbits run away (+sign) from the centers or direct to 
the centers (−sign). So, in this case the + sign must be 
excluded because the “runaway” solution is for an assembly 
process inappropriate. For a disassembly process it is 
indicated. In addition, the previously observed U (1) 
symmetry, which is characteristic for electromagnetic 
interactions, is spontaneously broken. This effect shows 
some formally resemblance to the astonishing topological 
turbulence described in [20]. But, this similarity is not a 
biological resemblance because the mentioned paper 
describes the influence (“bombardment”) of Rho-GTPs on 
cell membranes which generates unstable vortices. 

4.4. Growths and Shrinkage of Microtubules; the Dynamic 

Instability 

The changeover between slow growth and rapid shrinkage 
of a microtubule is a phenomenon that is called dynamic 
instability. This change of phases occurs within some 
minutes. A growing microtubule has T-forms on its plus end 
which form a DTP-cap. When this cap is lost then the 
microtubule begins to shrink, this event is called 
“catastrophe”. The event, where the microtubule growth 
resumes is called “rescue”. 

The assembly of microtubule is performed by adding T-
form subunits on the plus end, because the most microtubules 
associate with their minus end to MTOCs. Thus, the 
descriptions of this chapter concentrate to the plus end and to 
concentrations of the free subunits C (su) that lie in the 
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intermediate position Ccr (T) < C (su) < Ccr (D) and remains 
there. When the polymerization (assembly) rate) of T-forms 
is greater than the dissociation (disassembly) rate which is 
initiated by the hydrolysis of GTP, then a GTP-cup grows on 
top of a GDP microtubule. When the polymerization rate is 
lower than the hydrolysis rate then the GTP-cup changes to a 
GDP-cap, which splays and gives the plus end a frayed 
appearance (“catastrophe”). However, before a shrinking 
microtubule vanishes GDP-GTP exchanges occur, where a 
GTP tubulin is set free and creates the self-assembly on top 
of the plus end (“rescue”). 

4.4.1. Growth of the Plus End of a Microtubule 

The basic local interaction Hamiltonian describes the 
allocation for example, of two D-forms at the sequential 
horizontal positions l and l+1 of the plus end of a less stable 
GDP microtubule, where for instance the GDP-GTP 
exchange (“rescue”) can occur or non-hydrolyzed T-form 
exist. This approach has the key advantage that the 
Hamiltonian for the shrinkage of microtubules remains with 
only minor changes (4.4.2.). The Hamiltonian reads 

H$ 	:V7,4 = ℏ	g₂	(su_	4
�(T)	su_ 	4	

	 (D)	aca 	4�			pk¤ 	4
	
 + pk¤ 	4

�
 aca 	4	 	su_ 	4

�(D) su_	4
	(T)) +	ℏ	g₃(su_	4T�

� (D) su_	4
	(T))		B$ 	4T�

�
 + su_	4

�(T)	su_ 	4T�
	 (D)	B$ 	4T�

	 ),  (64) 

where g₂	and g₃	are real coupling constants. 
The first term describes the creation of a GTP-tubulin by a 

GDP-GTP exchange (su_	c
�(T)	]_̂ 	c	

	 (D)), which occurs when 
the D-Form depolymerizes at location l. Hence this term 
describes the generation of a T-form (e.g. GTP-cap) at 
location l. The creation of an accessory protein ( 	ac_ 	c

� ) is 

supported by the phosphorylation of the protein kinase (pk¤ 	c
	
), 

whereby free energy is released (ATP-ADP exchange), which 
is here neglected, because the focus lies in the hydrolysis. 
The protein kinase is an intracellular signaling protein that 
acts as a molecular switch. The accessory protein is for 
example, the XMAP215 which accelerates the assembly of a 
T-form. 

The second term represents the Hermitian conjugate of the 
first term (inverse process), where the standard change of a 
T-form (hydrolysis) into a D-form is expressed by 	su_ 	4

�(D) 
]_̂	4

	(T)). Furthermore, the enzyme protein kinase is created 

(pk¤ 	4
�) and XMAP215 is annihilated (aca 	4	). Thus, the second 

term describes the generation of a D-form (GDP-cap) at the 
location l of the plus end. 

The third term of (64) deals with the allocation of a D-

Form at the next position l+1 ( 	]_̂ 	4T�
� (D)) , which is 

supported by the annihilation of a T-form (hydrolysis) at the 
previous position l (]_̂	4

	(T))), where free energy is released 

(	B$ 	4T�
�

). That is, the released free energy of the hydrolysis of 
the T-Form at location l supplies the allocation of a D-form 
at location l+1. Thus, this term takes up again the topic of the 
process described by the second term and concentrates 
essentially to the energetic aspect of the GTP hydrolysis. 

The fourth term describes the depolymerization of the D-
Form at location l+1, which causes the creation of a T-Form 
at position l and the consumption of the released energy 
(	B$ 	4T�

	 ). 
The total Hamiltonian describes the complete horizontal 

loop of the plus end, where for reason of generality 
(Hermeticity) both kind of caps are integrated. 

H$ 	:67 =	∑ 		p	 H$ 	�67,4, where l ≈ (φl. zl).         (65) 

The complete set of local Heisenberg equations of motion 
corresponding to the Hamiltonian (64) is only supplemented 
by damping constants, as in chapter 4.3: 

#
#8 su_	c

�(T) = i g₂	su_	c
�(D) pk¤ 	c

�	Ú¹_	c
	 + 	i	g₃	su_ 	cTß

� (D)	B$ 	cTß
� − 	γGH�	 	su_ 	c

�(T),                                 (66) 

#
#8 su_	c

�(D) = i g₂	su_	c
�(T)	ac_ 	c

�	pk¤ 	c
	 + 	à	g₃	su_ 	cPß

� (T)	B$ 	c
	 − 	γGH�	 	su_ 	c

�(D),                                (67) 

#
#8 pk¤ 	c

� = i g₂ 	su_ 	c
	(D)	aca 	c�	su_	c

�(T) 	− 	γá(	 	pk¤ 	c
�, 			  (68) 

#
#8 aca 	c� = i g₂	su_	c

�(D)	pk¤ 	c
�	su_	c

	(T) −	γ·×	 	aca 	c�.  (69) 

#
#8 	B$ 	c

� = 	i	g₃ 	su_ 	cPß
� (T)	su_ 	c

	(D) −	γQ	 	B$ 	4
�.    (70) 

In a first approach the solution for the initial location l 
(e.g. l = 1) are simplified by the following assumptions. First, 
all terms in equations (66) till (70) which contain the 
prospective location l+1 or the previous location l−1 can be 
deleted, since these states actually does not exist. Second, 
both damping constants in (68) and in (69) are set to 
zero		γá(	  = γ·×	 = 0. The resulting reduced equations are: 

#
#8 su_	c

�(T) = i g₂	su_	c
�(D) pk¤ 	c

�	aca 	c	 − 	γGH�	 	su_ 	c
�(T),  (71) 

#
#8 su_	c

�(D) = i g₂	su_	c
�(T)	ac_ 	c

�	pk¤ 	c
	 − 	γGH�	 	su_ 	c

�(D),  (72) 

#
#8 pk¤ 	c

� = i g₂ 	su_ 	c
	(D)	aca 	c�	su_	c

�(T), 			            (73) 

#
#8 aca 	c� = i g₂	]_̂ 	c

�(D)	pk¤ 	c
�	su_	c

	(T).             (74) 

When finally, the operator pk¤ 	4
�
 in equations (71) till (74) is 

replaced by the operator =�	4�  in equations (52) till (55), then 
both sets of equations looks equally. This conformity is not 
accidental, because the Hamiltonian defined in equation (50) 
and the first line of the Hamiltonian presented in (64) describe 
both the elementary assembly process of a microtube without 
consideration of the energetic aspect. The second line of the 
Hamiltonian (64) qualifies the conservation of energy. In 
consequence, the equations of motion (71) till (74) can also be 
solved analytically by the same approach as it was done in 
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chapter 4.3. To avoid redundancy, the same solution method 
will not be repeated here. 

Instead the endeavor goes back to the evaluation of the 
solutions of equations (66) till (69) at the next position l +1, 
where l is considered as the initial locations or equivalently l 

l = 2, if the initial position is l = 1. The dynamics of the B-
field operator is omitted (70), because its solution is tedious 
and needs a separate solution ansatz as the four remaining 
equations [3]. The set of the actualized Heisenberg equations 
at the location l + 1 reads 

#
#8 su_	4T�

� (D) = i g₂	su_	4T�
� (T)	aca 	4T�� 	pk¤ 	4T�

	 + 	i	g₃		su_ 	4
�(T)	B$ 	4T�

	 − 	γGH�	 su_	4T�
� (D),                         (75) 

#
#8 su_	4T�

� (T) = i g₂	su_	4T�
� (D)	pk¤ 	4T�

� 	aca 	4T�	 	+ 	i	g₃	su_ 	4TC
� (D)	B$ 	4TC

� − γGH�	 	su_ 	4T�
� (T),                  (76) 

#
#8 pk¤ 	4T�

� = i g₂	su_ 	4T�
	 (D)	aca 	4T�� 	su_	4T�

� (T). 			         (77) 

#
#8 Ú¹_	4T�

� = i g₂	]_̂ 	4T�
� (D)	§â¤ 	4T�

� 	]_̂	4T�
	 (T).           (78) 

The expression ig₃	su_ 	4TC
� (D)	B$ 	4TC

�
 in (75) can be 

neglected, because this state is not yet created. However, the 
term ig₃	su_ 	4

�(T)	B$ 	4T�
	

 in (76) still exists. Furthermore, in this 
sub-chapter hopping (incoherent) solutions are presented. In 
the next sub-chapter coherent wave solutions are presented. 

The proposed ansatz to solve the two first differential 
equations (75) and (76) is facilitated by the introduction of 
the following abbreviations: 

X1, X₄	= g₂	aca 	4T�� 	pk¤ 	4T�
	

,                      (79) 

where X₄ is real. 
Insertion of these variables into the equations (75) and (76) 

reformulate them to  

 
#
#8 X1 = i X₂	X₄ + X₃	 − γ X1,             (80) 

#	
#8 XC = i	X₁	X₄−γ	X₂,			                 (81) 

where 	γGH�	 = 	γGH�	 = γ. 
With the introduction of a further variable 

X₅ = u X₄	τ)	dτ8
8₁ ,                        (82) 

the solutions of equation (80) and (81) can be formulated as 

X� = u 	vPÖ(7Pæ)	cos(X₅	(t) − X₅	(τ))	X₃	(τ)	dτ8
8₁ ,      (83) 

X₂ = à u 	vPÖ(7Pæ)	sin(X₅	(t) − X₅	(τ))	X₃	(τ)	dτ8
8₁ .      (84) 

The correctness of these proposed solutions is proved for 

example for 
#	
#8 X� 

#	
#8 X� =	−γu 	vPÖ(7Pæ)	cos(X₅(t) − X₅(τ))	x₃	(τ)	dτ

8
8₁ 	+	X₃	(t)	vPÖ(7P7)	cos(X₅	(t) − X₅(t)) 

−	 #	#8 X₅ u 	vPÖ(7Pæ)	sin(X₅(t) − X₅(τ))	x₃	(τ)	dτ
8
8₁ = −	γ	X� − X₃	(−i	X₂) + 	X₃ = i	X₂	X₃ + X₃ − 	γ	X�.             (85) 

Rewritten in original forms the two solutions read 

]_̂	4T�
� (D) = 		 u Iè 	(t, τ)	]_̂ 	4

�(T, τ)	B$ 	4T�
	 (	τ)	dτ8

8₁ ,                                                         (86) 

]_̂	4T�
� (T) = u Ié	(t, τ)		]_̂ 	4

�(T, τ)	B$ 	4T�
	 	dτ,8

8₁ 	                                                             (87) 

where the introduced abbreviations are; 

ID =	i	g₃	vPÖ(7Pæ)	cos(X₅(t) − X₅(τ)).                                                                 (88) 

IT = i	g₃	vPÖ(7Pæ)	sin(X₅(t) − X₅(τ)).                                                                  (89) 

When the damping constant γ is sufficient large then |	X₅(t) − X₅(τ)| is small and can be approximated by α |t−τ|, where α 
is a positive constant. Hence, the cosine in (88) can be approximated by cos(α	|t − τ|) ≈ 1.	Thus, the magnitude of su_	4

�(D) is 
approximately given by 

|]_̂	4T�
� (D)| 	≈ | u 	i	g₃		]_̂ 	4

�(T, τ)	B$ 	4T�
	 	(τ)	dτ8	êNë(ÏNì)

8₁ | ≈ α |t − t₁| 	vPÖ7,                             (90) 

since the approximation 	]_̂ 	4
�(T, τ)	≈ 	vPÖæ	is pointed out by (57) and 	B$ 	4T�

	 	(τ)	is assumed to be constant and set to 1. Hence, 

|]_̂ 	4
�(D)| increase a short time with t until it will be damped by 	vPÖ7. 

The approximation for |	]_̂	4T�
� (T)| is 

|	]_̂	4T�
� (T)| ≈ | u 	vPÖ(7Pæ)	α	(t − τ)	i	g₃		su_ 	4

�(T, τ)	B$ 	4T�
	 	(τ)	dτ8

8₀ ≈ α	|t−t₁	|2.                  (91) 
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Hence, |	]_̂	4T�

� (T)| increase quadratically with time until 
the exponential damping dominates. 

Now, the next evaluations concern the two signaling 

proteins pk¤ 	4T�
�

 and aca 	4T�� .  If the abbreviation Y = i	g₂ 
]_̂	4T�

� (D)  su_	4T�
	 (T), í	є	ℝ  is introduced, then the 

corresponding equations of motion are rewritten as 

#
#8 pk¤ 	4T�

� = 	í aca 	4T�� , 
#
#8 aca 	4T�� = i Y pk¤ 	pT�

�
.        (92) 

Due to the previous temporal results for |]_̂ 	4T�
� (D)|	and 

| 	]_̂	4T�
� (T) | the approximation |Y| 	≈ α	 |t −t₁	 |³ is valid. 

Consequently, it can be assumed that 

#
#8 pk¤ 	4T�

� ≈ 0	and	 ##8 aca 	4T�� ≈	0.               (93) 

All in all, it was demonstrated that this approach describes 
the assembly of a microtubule periodically and stepwise from 
one location to the next one with D-forms (after hydrolysis of 
one T-form, (64)), which can be called “hopping” solution or 
incoherent solution. This was presented by the exemplarily 
sequential allocation of two D-forms at locations l and l+1, 
under the constraints that the initial conditions 

are:	]_̂ 	4
	(D, t = 0) = ]_̂ 	4T�

	 (D, t = 0) = 0. 

4.4.2. Shrinkage of the Plus End of Microtubules 

When the polymerization rate (adding rate of GTPs) is 
lower than the hydrolysis rate of T-forms then a GDP-cap is 
formed and splayed off. The energy of this “spring apart” is 
delivered by the release of the hydrolysis energy stored in the 
microtubule lattice. Cooperatively the free phosphate group 
is set free. When a T-form hydrolyzes then the free phosphate 
group and the energy of hydrolysis stored in the microtubule 
lattice are together released. This energy rapidly peels off the 
GDP-cap. But, GTP containing subunits still add to the 
shrinking plus end, if enough are added, then a new GTP cap 
forms and the microtubule growth resumes (“rescue”). 

The following, complete local Hamiltonian reverts to 
equation (64), where protein kinesin (pk¤ 	c

	)  is replaced by 

kinesin 13 (kın¤ 	c
	),	which enhances the disassembly at the plus 

end, and the further mediating accessory protein aca 	c	  is 

replaced by inorganic phosphor ph¤ 	c
	

. Consequently, the 
modified Hamiltonian reads 

H$ 	:V7,4 = ℏ	g₂	(su_	c
�(T)	su_ 	c	

	 (D)	ph¤ 	c
�			kın¤ 	c

	
+ kın¤ 	c

�
 ph¤ 	c

	 	]_̂ 	c
�(D) su_	c

	(T)) +	ℏ	g₃(	su_ 	cTß
� (D) ]_̂	c

	(T))		B$ 	cTß
�

 + ]_̂	c
�(T)	su_ 	4T�

	 (D)	B$ 	cTß
	 ),  (94) 

In this sub-chapter coherent, running waves solution of the 
equations of motion are preferred in contradiction to the 
“hopping solutions” of the preceding sub-chapter. Where, the 

preconditions are unaltered: 	B$ 	4
�	=		B$ 	4

	 = 1, 	γáò	  = γ(�6	 = 0, 

and = =  	γGH�	 =  	γGH�	 , and the fluctuations are neglected. 
Hence, the modified Heisenberg equations of motion at 
location l read: 

#
#8 su_	c

�(D) = i g₂	su_	c
�(T)	ph¤ 	c

�	kın¤ 	c
	 + 	i	g₃	su_ 	cPß

� (T)	B$ 	c
	 − =	]_̂ 	c

�(D),                                         (95) 

#
#8 su_	c

�(T) = i g₂	su_	c
�(D) kın¤ 	c

�	ph¤ 	c
	 	+ 	i	g₃	su_ 	cTß

� (D)	B$ 	cTß
� − =	]u_ 	c

�(T),                                       (96) 

			 ##8 kın¤ 	c
� = i g₂ 	su_ 	c

	(D)	ph¤ 	c
�	su_	4

�(T),           (97) 

#
#8 	ph¤ 	c

� = i g₂	su_	c
�(D	)	kın¤ 	c

�	su_	c
	(T).            (98) 

To simplify the finding of the solutions the locations l are 
again replaced by l = φl and the following assumptions are 
proposed for the solutions of the equations (95) till (98): 

su_	4
�(D) = 	R$ 	�

� 	v:ó	4,                      (99) 

su_	4
�(T) = 	R$ 	�

� 	v:ó	4,                    (100) 

kın¤ 	4
� = ôY	(�6

� 	v:ó	4,                    (101) 

	ph¤ 	4
� = ôY	áò

� 	v:ó	4.                      (102) 

Insertion of this ansatz into the original differential 
equations (95) till (98) cast they into the forms: 

#
#8 R$ 	�

� = i g₂ ¦A	�
�
 ôY	áò
�

 ôY	(�6
	

+ i	g₃ R$ 	�
� 	vP:ó	 −=R$ 	�

�
, (103) 

#
#8 R$ 	�

� = i g₂ R$ 	�
� 	ôY	(�6

� ôY	áò
	

 + ig₃	R$ 	�
� 	v:ó	 −= ¦A	�

� , (104) 

#
#8 ôY	(�6

� = i g₂R$ 	�
	 ôY	áò

� R$ 	�
�
,                (105) 

#
#8 ôY	áò

� = i g₂R$ 	�
�

 ôY	(�6
� R$ 	�

	
.               (106) 

The renewed replacement of the operators R$ 	�
�

 and R$ 	�
�

 in 
the equations (103) and (104) by the expressions 

R$ 	�
� =	ρ� 	��  vPr7 and R$ 	�

� =	ρ� 	��  vPr7, 
reformulate again the differential equations (103) till (104): 

#
#8 ρ� 	��= i (g₂ ôY	áò

� ôY	(�6
	

+ g₃ 	vP:ó	)	ρa 	�� 	≡ 	i	D	v�ö	ρ� 	�� ,	(107) 

#
#8 ρ� 	��= i (g₂ ôY	(�6

� ôY	áò
	

+ g₃ 	v:ó	)	ρa 	�� 	≡ 	i	DvP�ö	ρ� 	�� . (108) 

The next reformulation cast ρ� 	�� 	and	ρ� 	��  in the forms 

ρ� 	��= v:	÷(7)	 ρ₀, ρ� 	��= 	v:	÷(7)	vP�ö	ρ₀        (109) 
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where F(t) = u D(τ)	dτ8
8₀  and ρ₀ є ℝ. 

Consequently, the equations (105) and (106) obtain the 
modified forms 

#
#8 ôY	(�6

� = i g₂	ρ� 	�	  ρ� 	��  ôY	áò
� 	vPCr7 = i g₂ ρ₀²	vPCr7 vP�ö	ôY	áò

�
 (110) 

#
#8 ôY	áò

� = i g₂	ρ� 	��  ρ� 	�	 ôY	(�6
�

 vPCr7 = à	g₂	ρ₀²	vPCr7 v�ö	ôY	(�6
�

 (111) 

The solutions of these two equations are 

ôY	(�6
� =	e�	øôY	,

�
,                                  (112) 

ôY	áò
�

 =	e�	øv�ö	ôY	,
�
,                             (113) 

where H = u g₂	ρ₀²	vPCrædτ8
8₀  and 

ôY	,
�	is	arbitary	and	constant. 
The proof of correctness for instance for ôY	áò

�
 reads 

#
#8 ôY	áò

�
= i (

#
#8	H) e�	øv�	ö	ôY	,

�	+	e:	ø (
#
#8φ)	v 	�ö		ôY	,

�
 = i	g₂	ρ₀²	vPCræ v�	ö	(e�	ø ôY	,

�
),                               (114) 

because the phase φ  is assumed to be constant (e.g. φ =
Â
C), so 

#
#8φ	 = 0. 

Insertion of the two equations (112) and (113) into 
expressions (107) and (108) deliver the results: 

(g₂ |ôY	,
	 |²	v:û	+ g₃ 	vP:ó	) ≡ 	D	v:û	,            (115) 

(g₂ |ôY	,
	 |²	vP:û	+ g₃ 	v:ó	) ≡ D	vP:û	.           (116) 

Because D and ü  are constants the equations (115) and 
(116) are rewritten 

(g₂ |ôY	,
	 | − 	D)	v:û	+ g₃ 	vP:ó	) = 	0,            (117) 

(g₂ |ôY	,
	 |² − D)	vP:û	+ g₃ 	v:ó	) = 0.            (118) 

These two equations provide the following solutions: 

K = −ü and D = g₂ |ôY	,
	 |² + 	g₃.	              (119) 

Thus F(t) = u D(τ)	dτ8
8₀  (109) gets simply F(t) = D t, if 

)₀ = 	0	is stipulated. 
Starting from the equations (99) and (100) and retracing all 

relevant subsequently insertions concerning 	su_	4
�(D)  and 

su_	4
�(T)  then the final results represent damped outgoing 

running waves: 

su_	4
�(D) = v:(�7	P	û	4)	ρ₀	vPr7,                (120) 

su_	4
�(T) = v:(�7	P	û(4T�))	ρ₀	vPr7.            (121) 

The result for su_	4
�(D) characterizes descriptively that a D-

form of the GDT-cap peels-off and gives the plus end the 
appearance of a frayed end because the wave spreads out 
along the complete loop of the plus end of a microtubule. The 
wave solution designed for su_	4

�(T) only distinguishes by the 

phase factor (l + 1) from the phase factor l for su_	4
�(D), this 

means a phase difference between both waves. 
Notice, the same wave solutions (120) and (121) are also 

obtained for the assembly of the plus end of a microtubule or 
the growth of a microtubule in a vertical direction (e.g. GTP-
cap). Conversely, the previous “hopping solution” described 
in the previous sub-chapter 4.1. (i) can also be applied in case 
of the shrinkage of a microtubule. Thus, the two phases of 
the dynamic instability of a microtubule can be described 
either by an incoherent hopping solution or by a coherent 

matter wave solution. However, both types of solutions are 
obtained under the restriction that fluctuations are neglected. 

5. Conclusions 

The core theme of this contribution is the unifying quantum 
description of the dynamic self-organization of microtubules. 
Thus, this article connects the biological processes of 
microtubules with relevant aspects of the synergetic approach 
of the self-organization, and with thermodynamic effects. 
Regarding the quantum dynamical results, a strict 
differentiation is performed between incoherent and coherent 
wave solutions (duality of matter waves). However, the 
coherent wave solutions that correspond to quantum coherence 
(micro vibrations) are more significant, because they are 
actually experimentally verified by a bundle of microtubule 
(EEG waves), Thus, the coherent quantum effects of 
microtubules can also be enqueued into the set of approved 
processes of quantum biology. 

The main effect of quantum wave solutions is the 
emergence of new effects like irregular allocation of tubulin 
subunit into microtubules, the release of GDP-caps at once, 
the building of spiral waves during the growth of 
microtubules and their shrinkage. These are effects that 
distinctly deviate from the classical biologic descriptions. 
Consequently, the benefit of the knowledge of such effects is 
twofold. First, they represent an extension of the knowledge 
of selected biological effects. Second, they might activate to 
develop medical support for instance for the chemotherapy 
and opens the way to develop new medicine against cancer. 
For example, the replacement or complement of the taxol 
treatment of ovarian and breast cancer cells to retard their 
rapid cell divisions. 

Furthermore, the prosperous combination of the quantum 
aspect of microtubules with the fundamental impact of kinesin 
for the intracellular transport open new medical applications 
for the regulation of physiological processes as higher brain 
functions (e.g., conscientiousness), tumor suppression, and 
developmental patterning. Genetic experiments have 
uncovered important roles of microtubules together with 
kinesin in the regulation physiological processes. It will be 
intriguing to explore additional spectacular quantum effects of 
the microtubule-kinesin system in eukaryotic cells. This 
expectation is again intertwined with prospective, successful 
medical applications. 
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