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Abstract: Inspired by the studies on the influence of transition metal impurities in high Tc superconductors and what is already 

known about nonmagnetic suppression of Tc in unconventional superconductors, we set out to investigate the behavior of the 

nonmagnetic disordered elastic scattering for a realistic 2D anisotropic high Tc superconductor with line nodes and a Fermi 

surface in the tight-binding approximation. For this purpose, we performed a detailed self-consistent 2D numerical study of the 

disordered averaged scattering matrix with nonmagnetic impurities and a singlet line nodes order parameter, varying the 

concentration and the strength of the impurities potential in the Born, intermediate and unitary limits. In a high Tc anisotropic 

superconductor with a tight binding dispersion law averaging over the Fermi surface, including hopping parameters and an order 

parameter in agreement with experimental data, the tight-binding approximation reflects the anisotropic effects. In this study, we 

also included a detailed visualization of the behavior of the scattering matrix with different sets of physical parameters involved 

in the nonmagnetic disorder, which allowed us to model the dressed scattering behavior in different regimes for very low and 

high energies. With this study, we demonstrate that the scattering elastic matrix is affected by the non-magnetic disorder, as well 

as the importance of an order parameter and a Fermi surface in agreement with experiments when studying this effect in 

unconventional superconductors. 

Keywords: Unconventional Anisotropic Superconductors, Lifetime, Non Magnetic Disorder, Unitary,  

Intermediate and Born Regimes 

 

1. Introduction 

The discovery of high temperature superconductivity led to 

a new era in solid state physics. It was a ceramic composite 

known as calcium doped lanthanum cuprate having a 

transition temperature Tc of 30 K [10]. 

This Tc was already high to suggest that it might be difficult 

to explain the phenomenon using the BCS Theory. The next 

year it was found a close related material with a Tc of about 93 

K [23]. High Tc cuprate superconductors (HTSCs) are 

anisotropic layered structures, containing CuO2 planes. All of 

them have lots of amazing properties, that cannot be explained 

by the BCS theory of superconductivity [12, 13, 33]. 

In particular, to this work, the first experiments 

investigating the influence of transition metal impurities in 

HTSCs, showed that nonmagnetic disorder suppress 

superconductivity, more strongly than magnetic impurities 

disorder [16, 24, 37], on the contrary to BCS superconductors, 

where only magnetic impurities reduce the transition 

temperature (TC). 

It was suggested [40] that Momono and collaborators 

experiments showed that the La2-xSrxCuO4 compound was in 

the unitary scattering regime. Sometime later it was observed 

that in disordered La2-xSrxCuO4 doped with non-magnetic Sr 

impurities (Sr is an alkali earth metal), the transition 

temperature Tc started to decrease rapidly [25]. 

Nowadays, low temperatures properties of 

superconducting doped La2-xSrxCuO4 continue to be 

intensively investigated [26]. 

On the other hand, it has been proposed that in HTSCs, the 

superconducting gap corresponds to a paired singlet state 

∆��� � ∆���� and with certain kind of nodes. In particular, 

one of these gaps has ��	
�	  symmetry [8]. The 

superconducting gap for this symmetry has lines nodes on the 
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Fermi surface corresponding to the one-dimensional 

irreducible representation B1g of the tetragonal point 

symmetry group D4h [6]. In a ��	
�	  symmetry gap, 

nonmagnetic disorder strongly quenches superconducting 

ordering leading to strong suppression of Tc [16].  

In this work, we use a tight binding anisotropic model with 

a nearest neighbor expression for a single band sheet centred 

at the corners (±π/a, ±π/a) of the first Brillouin zone in 2D, 

�
��, ��� � � � 2 � �cos��� �� � cos � �� ���  with 

well-established from experiments hopping parameters 

��, �)=(0.2, 0.4) meV and an electron-hole (eh) symmetry 

��
��, ��� � ��
��� , ���� [34]. 

For the k dependence of the gap, we use a realistic 2D tight 

binding expression corresponding to lines nodes in the Fermi 

surface Δ
�� , ��� � Δ� �
��, ��� , with �
�� , ��� �
�cos��� �� � cos � �� ���  and ∆0=33.9 meV, which is in 

agreement with optimally doped (x=0.15) La2-xSrxCuO4 

experiments [34]. We follow [7] arguments and use a pure 

��	
�	  order-parameter symmetry to model HTSCs. This 

expression has been used recently to study the doping 

dependence of the pairing symmetry in La2-xSrxCuO4 [2, 32]. 

 

Figure 1. 2D implicit plot of the tight binding anisotropic Fermi surface and superconducting gap with line nodes. 

Figure 1 shows the implicit plots for the Fermi surface 

� 
��, ��� � 0 (red violet shadowed region) and the line 

gap nodes Δ
�� , ��� � 0 (orange lines) for the set of tight 

binding parameters of the previous paragraph. The four 

intersections of the Gap and the Fermi surface contain the 

nodal quasiparticles region that is modeled at low 

frequencies. 

Our contribution to this work is the study the impurity 

scattering disorder in a self-consistent manner for disordered 

dressed ω"�ω � # 0$� with a tight binding anisotropic model 

in 2D. TB anisotropic modeling allowed us to successfully fit 

experimental low temperature data in another unconventional 

multiband superconductor at very low temperatures [28, 29]. 

The computational and mathematical details of the 

algorithm were tested and reported for an isotropic Fermi 

surface and its corresponding order parameter in a previous 

work [27]. 

The structure of this paper is as follows. In section 2, we 

introduce the theoretical formalism of the elastic scattering 

non-magnetic disordered averaged matrix ω"�ω � # 0$�. In 

section 3 we model the behavior of the imaginary part of the 

electron-hole symmetric scattering matrix depending on the 

disorder parameters, i.e., the impurity disorder concentration 

Γ+
, and the inverse of the strength of the impurities potential 

c in the Born, intermediate, and unitary regimes. 

The inverse of the imaginary part of the scattering matrix 

ℑ
% [ω"�ω � # 0$�] enters the expressions for the kinetic 

coefficients of unconventional superconductors at very low 

energies and temperatures [5], that is, the thermal 

conductivity, the sound attenuation, and the electrical 

resistivity. 

The universal behavior has been observed experimentally 

and studied theoretically at very low temperatures (see [36] 

and references therein for a review of non-magnetic disorder 

in unconventional superconductors). 

For reviews on the question, whether a gap with nodes can 

explain experimental data on anisotropic HTSCs, please see 

[11, 21, 35]. For a discussion of other impurity effects 

affecting HTSCs and other unconventional superconductors, 

see [39]. Finally, for Fermi and Bose atomic gases at 

ultra-cold temperatures there is a study emphasizing the 

importance of the unitary limit and the scattering matrix 

analysis [20]. 

2. Formalism for Non-magnetic 

Impurities 

In this section, we present the main equations for the 

scattering formalism involving the self-energy matrix 

ω"�ω � # 0$�  in the case of non-magnetic disorder [9] 

following a realistic approach for modelling experimental 

data. 

This approach was introduced to calculate the residual 

absorption at zero temperature in d-wave superconductors [9, 

17]. The formalism comes from the combination of the 

Gorkov Greens function [1, 19] and the Edwards 

non-magnetic disorder scattering techniques [15, 31]. 
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This formalism has been used to study the low temperature 

behavior of several physical kinetic properties in Heavy 

Fermions, Ruthenates, and HTSCs among other 

unconventional superconductors [3, 5, 9, 14, 17, 30, 36], it 

allows fitting experimental low temperature data in the unitary 

region, where the Boltzmann equation approach does not 

work. 

The equation for ω"�ω + # 0$)  can be written in the 

following way [9] 

ω"(ω + # 0$) = ω + # & Γ$ (()" )
*	$(	()" )         (1) 

The function ω"(ω + # 0$) in this particular case, describes 

the self-consistent renormalization of the quasiparticle energy 

(dressed frequencies ω") due to elastic impurity scattering for 

non-magnetic impurities disorder in the case of electron-hole 

symmetry, i.e. +(,") = +�(,"). 

Following [9], the parameter - = 1 (& /  0�)1  represents 

the impurities strength with NF the density of states at the 

Fermi surface and U0 is the impurity potential. The parameter 

Γ$ = 2345 (&6 / )1  is proportional to the impurity 

concentration nimp. 

Non-magnetic scattering disorder in normal metals assumes 

the following physical conditions [15, 31]: there are N 

impurities equal and independent of each other which create 

random disorder (on a macroscopic scale the crystal is 

homogeneous), and the impurities scatter electrons elastically 

(i.e. there is no energy loss in collisions) following quantum 

mechanics scattering rules [18]. 

The function +(,")  in (1) is given by the following 

expression 

+(,") = 7 ω"
8ω"	
∆	
9:,9;� 

<   =            (2) 

The average 7… <FS is performed over the tight binding 2D 

Fermi surface “�
�� , ���” according a technique successfully 

used to fit experimental data on the low T superconducting 

sound attenuation and electronic thermal conductivity [28, 

29]. 

Finally, if electron-hole symmetry (eh) is not considered, 

the other spin Pauli components of +(,") have to be taken 

into consideration, that is, +%(,")  and +?(,") , but for a 

d-wave HTSCs with a singlet gap +%(,") ~ 7Δ
��, ���< ==0, 

and +?(,") ~ 7ξ
��, ���< ==0 follows from eh symmetry [38]. 

Born's approximation applies and if c >> 1 (i.e. U0 << 1) 

with a new disorder parameter ΓB$ = Γ$
-61  << 1. However, a 

realistic value for the inverse of the strength is - ~ 0.4 for 

reasonable numbers for the disorder concentration Γ$in the 

Born limit as we will see from the simulation. In the Born limit 

(1) becomes 

ω"(ω + # 0$) = ω + # & ΓB$ +(,")          (3) 

In addition, for large values of U0, c=0 and this limit 

represents the unitary regime which is given by equation 

ω"(ω + # 0$) = ω + # & Γ$ %
(()" )           (4) 

The imaginary part of (1) defines the inverse of the 

quasiparticle disordered averaged lifetime as [9] 

%
C(ω) = 2 ℑ D,"(ω)E               (5) 

For very low frequencies when ω = 0,ω" = # γ . The 

quantity γ defines the “zero dressed” or “impurity averaged” 

frequency of the zero energy elastic scattering rate in the 

superconducting state as being the function γ (Γ$, -)  with 

γ (Γ$, -) = &F$  +(#G) D-6 + +6(#G)EH  and +(#γ) =

7G G6 + |K|6 1 <F [9]. 

γ (Γ$, -)  is the transcendental equation of the residual 

impurity averaged lifetime at zero frequency (, = 0) with a 

residual disordered averaged lifetime defined as γ = 1 L(0)1 , 

it has been studied in previous works [9, 17, 27]. 

γ (Γ$, -) determines the crossover energy scale separating 

the two scattering limits as we will see in the following section. 

If the energy of excitations is greater than γ self-consistence 

can be neglected and we use the Boltzmann equation for 

calculating the kinetic properties in HTSCs [4], but if the 

typical energy is smaller than γ, self-consistency cannot be 

neglected in the physical kinetics at low energies. For a 2D 

line nodes HTSC order parameter in the Born region it is 

found that GB~M
N*O  with -� = LPΔ�  and in the unitary 

region GQ~ Δ� R0.5 & (-� ln -�)⁄  [22]. 

To conclude this section, the energy uncertainty principle 

allows the low energy quasiparticles to have a spread in 

energy of the order of Γ+
, henceforth disordered dressed 

quasiparticles ω" ~ ω + # Γ$  have a lifetime L ~ 0.5 Γ$1 . In 

addition, the superconducting density of states (DOS) for line 

nodes HTSCs in the Born limit is approximated 
/B / 1 ~ 

, Δ�1  and in the unitary limit is approximated by 
/Q / 1 ~ 

Γ$ Δ�1 , this derivations shows the existence of normal states 

dressed quasiparticles at zero energy in the unitary limit. 

3. Numerical Results and ω" (ω + X Y$) 

Visualization 

3.1. Evolution from the Unitary Regime to the Born Limit 

In this subsection, we model the solution of (1) by varying 

the parameter strength c, that is, - = 1 (& /  0�)1 , and by 

fixing the value of disorder concentration Γ$for two cases of 

physical interest. The first case is for a value of Γ$ =
0.15 ZM[ , which resembles optimally doped values of 

impurities in experimental samples. The second case is for a 

very dilute disorder concentration nimp, that is, Γ$ =
0.01 ZM[. 

Figure 2 shows the evolution of ℑ Dω"E (ω + # 0$)  as 

function of the parameter c which is inversely proportional to 
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the strength of the impurities U0 from values 

0\  ] 1 �2� - 
$
^  0  (violet curve) to values 

0\  _ 1 �2� - 
–

^  1  (yellow curve) i. e. when 

& /  0�


^ 1, �/  ~ 10%a M[
%�  for an electron-hole 

symmetric tight binding dispersion and for a disorder 

concentration of Γ$ � 0.15 meV. 

 

Figure 2. Plot of the bZ ,"� ,  +i 0$ ) as a function of the inverse 
scattering strength c for an optimal disorder concentration. 

The region under ℑ Dω"E �ω � # 0$�  in the unitary limit 

corresponding to c=0.0 (violet curve) has been shaded violet 

in the right side of the plot. On the other hand, a well define 

Born scattering region with a smooth minimum at zero 

frequencies corresponds to an inverse strength of c=0.4 

according our calculation. In the left side of figure 2, the Born 

region under ℑ Dω"E �ω � # 0$�has been shaded red. In figure 

2, disorder affects most strongly the low energy region near up 

to, say, 5 meV. 

For the unitary limit (violet shaded region) in the right side 

of figure 2, we observe a maximum centred at zero 

frequencies (, � 0� in the ℑ Dω"E �ω � # 0$� function which 

is clearly an indication of strong disorder. It corresponds to a 

minimum in the scattering lifetime of the dressed 

quasiparticles (which are unitarily bounded to the 

non-magnetic disorder potential U0). 

In figure 2, for ℑQDω"E  we do not observe a minimum, 

instead we see a flattening of the function for higher energies 

(monotonically drops as frequency increases), it indicates a 

constant lifetime in the unitary limit for the normal state. 

For the Born shaded red region in the left side (negative 

frequencies) of figure 2, we observe a maximum Z�cℑBDω"E 
scattering centred at higher non-zero frequencies in the 

ℑ Dω"E �ω � # 0$�  function (a maximum in scattering rate 

occurs around ω=4 meV for an optimal disorder value of 

Γ
+
=0.15 meV, which is a larger value than its value at ω=0 

meV denoted by γ). 

That maximum in scattering corresponds to a minimum in 

the lifetime of Born (weakly bounded to the non-magnetic 

impurities disorder potential U0) quasiparticles. We also 

observe a displacement of the Z�cℑBDω"E as the inverse of 

the strength c increases. A weak scattering potential blurs 

Z�cℑBDω"E, spreading the width of the peak. We also observe 

a smooth minimum at frequencies γ=0 meV for most clear 

colors lines (from c=0.4 to c=1 values). 

At energies ω � K� ~ d 33.9 ZM[ , we observe the 

transition in ℑ Dω"E �ω � # 0$� from the superconducting to 

normal state as an small abrupt change in the slope of the 

function ℑ Dω"E  for both regimes. In the normal state the 

function ℑ Dω"E  tends to be constant and slight varies for 

different initial residual G  values, indicating a constant 

quasiparticles disordered lifetime in the normal state. 

Therefore, we define the unitary nonmagnetic disordered 

averaged quasiparticles, as the ones that have a smooth 

Z�cℑQDω"E given by the value γ �F$, -� � γ �0.15, 0� for the 

case of eh symmetry. 

We also define the Born nonmagnetic disordered average 

quasiparticles, as the ones that have an smooth Z�cℑBDω"E 
given by the valueg �F$, -� � �0.15, 0.4�  and that have a 

smooth minimum given by the value  γ �F$, -� � 0 for the 

case of eh symmetry. 

 

Figure 3. Plot of bZ ,"� , +i 0$) as a function of the inverse scattering 
strength c for a very dilute disorder. 

Figure 3 shows the evolution of ℑ Dω"E �ω � # 0$�  as a 

function of c for a dilute concentration of impurities, that is, 

Γ$ � 0.01 meV. 

The region for ℑ Dω"E �ω � # 0$�  in the unitary limit 

corresponding to c=0.0 has been shaded violet in the right side 

of the plot as in the previous case, we observe a much smaller 

area compared with the previous optimal disorder case. On the 

other hand, a well define Born scattering region corresponds 

now to a smaller c=0.2 value. In the left side of figure 3 for 

negative frequencies, the Born region has been shaded 

saturated violet, that indicates that for very diluted Γ$ � 0.01 

meV most of the behavior correspond to the Born case, as we 

expected for the analysis in section 2. 

For the unitary violet region in the right side of figure 3, we 

observe a maximum centred at zero frequencies in the 

ℑ Dω"E �ω � # 0$� function with a much smaller value of zero 

residual frequencies G . For ℑQDω"E  we do not observe a 

minimum, but instead as in the previous case, we see a 

monotonically flattening of the function for higher energies, 

that indicates a constant normal state quasiparticles lifetime in 

the unitary limit for the case of very dilute impurities 

concentration. 
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For the Born saturated violet region in the left side of figure 

3, we observe a Z�cℑBDω"E centred at non zero frequencies 

in the ℑ Dω"E �ω � # 0$�  function starting from c=0.2, it 

corresponds to a minimum in the quasiparticle scattering 

lifetime for dilute disorder. We also observe the displacement 

of the Z�c ℑBDω"E  as c increases. As before, a weak 

scattering potential blurs the maximum, spreading 

monotonically the width of the peak and decreasing the 

Z�cℑBDω"E. In figure 3, for the function ℑ Dω"E �ω � # 0$� 

we observe a pronounced minimum at zero frequencies with a 

exponentially increasing frequency dependence starting with 

the c=0.1 value (blue color). 

At energies ω � K� ~ d 33.9 ZM[ , we also observe the 

transition in ℑ Dω"E �ω � # 0$� from the superconducting to 

normal state as an small abrupt change in the slope of the 

function ℑ Dω"E for both regimes and all c values. In table 1, 

we summarize our findings for figures 2 and 3. 

Table 1. Disorder parameters dependency for very dilute and optimal concentration of non-magnetic impurities. 

Disorder parameters: the strength c and the 

concentration Γ+ Very dilute imp. concentration: Γ+ =0.01 meV Optimal impurities concentration: Γ+ =0.15 meV 

c=0 (U0 >> 1) Strong disorder (violet line). 
Unitary behavior, with a maximum ℑQDω"E and 

γ < 1. 

Unitary behavior, with a maximum ℑQDω"E and 

γ > 1. 

c=0.2 Intermedia disorder (saturated violet) 
Born behavior with two displaced maximums 

ℑBDω"E and one minimum at zero frequencies. 

Undefined limiting behavior with a minimum at 0 
frequencies but maximum at higher frequencies. 

c=0.4 Weak disorder (red line) 
Born behavior with two displaced maximums 

ℑBDω"E and one minimum at zero frequencies. 

Born behavior with two displaced maximums 

ℑBDω"E and one minimum at zero frequencies 
c=1 (U0 << 1) Very weak disorder (yellow line). Born extended (almost constant behavior). Born extended (almost constant behavior). 

 

3.2. Disorder Evolution Inside the Unitary, the Born and 

the Intermedia Limits 

In this subsection, we firstly study the behavior of 

ℑ Dω"E �ω � # 0$� for the unitary strength limit c=0 and 

varying impurities concentration, from values of Γ+ starting 

at very diluted disorder (yellow line), dilute disorder (orange 

line), an almost optimal disorder (brown line), an optimal 

disorder (red line), and finally an enriched disorder (violet 

line). 

Figure 4 shows the evolution of ℑ Dω"E �ω � # 0$� at c=0 

for the five values of Γ+
 in meV. We observe the smooth 

maximum centred at zero frequencies γ in ℑiDω"E  with a 

much smaller value of residual γ for very dilute values of 

disorder.  

 

Figure 4. Plot of the tight binding bZ ,"� , +i 0$) as a function of the 

disorder averaged impurities concentration F$�ZM[�  for an strong 
impurities potential U0 in the unitary limit. 

For ℑiDω"E we do not observe a minimum, but instead as in 

previous cases, we see a monotonically flattening of the 

function for higher energies indicating a constant lifetime 

value in the unitary limit for the normal state for all cases of 

non-magnetic disorder. We observe that the value of ℑiDω"E in 

the normal state (above 33.9 meV) depends on the disorder 

concentration, given the optimal doped disorder a value of 

0.40 meV, meanwhile the very dilute disorder gives 0.01 meV. 

Figure 5 shows the evolution of ℑ Dω"E �ω � # 0$� at 

c=0.4 (Born scattering limit) as function of the five values of 

disorder.  

 

Figure 5. 2D Plot of the tight binding bZ ,"� , +i 0$) as a function of the 

disorder averaged concentration F$�ZM[� for a weak disorder potential 
U0 in the Born limit region. 

We observe a Z�cℑBDω"E centred at ω ~ d 4 meV in the 

function for electrons and holes. A very dilute disorder Γ+
 

blurs the maximum, spreading monotonically the width of the 

peak and decreasing the Z�cℑBDω"E. For the function ℑBDω"E 
we observe a minimum at zero disordered averaged 

frequencies. For very diluted disorder we observe a power 

increase at very low energies, and for optimal disorder we see 

an exponential increase of ℑBDω"E at very low energies. 

We notice that the value of ℑBDω"E  in the normal state 

(above 33.9 meV) also depends on the disorder concentration, 

given the optimal doped disorder a value of 0.50 meV, 

meanwhile the very dilute disorder gives 0.01 meV. 

To complete the whole picture, figure 6 shows the disorder 

evolution of ℑn Dω"E �ω � # 0$�  at c=0.2 which is an 
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intermediate region between Born and unitary limits. 

We observe a different from zero min ℑo Dω"E �0� centred 

at zero frequencies γ in the ℑn Dω"E function as happens in the 

Born scattering case. Small values of the zero residual 

frequency γ appear for very dilute values of Γ+
 in the 

intermedium case. 

 

Figure 6. Plot of the tight binding bZ ,"� , +i 0$) as a function of the 

disorder averaged impurities concentration F$�ZM[�  for intermediate 
values of the disorder potential U0 (c=0.2). 

We also observe a Z�cℑoDω"E centred at , ~  d 4 ZM[ in 

the ℑoDω"E �ω � # 0$� function as happens in the Born limit. 

In this case there will be finite γ values for all disorder 

concentrations as happens in the unitary case. From figure 6, 

we observe an exponential increase of ℑnDω"E  at very low 

energies for all Γ+
. 

Finally, from figures 4, 5, and 6, we observe that the 

Z�cℑQ,B,oDω"E for the three functions is different in values for 

all Γ+
. For the unitary case, the maximum value (3.0 meV) 

doubles the value for maximum in the Born case (1.3 meV), 

meanwhile in the intermedium case has a max. value of 2.0 

meV. 

4. Conclusions 

The present work was aimed at investigating the behavior 

of the elastic scattering non-magnetic disordered averaged 

matrix ω"�ω � # 0$� for a realistic 2D anisotropic HTSC 

with line nodes and a tight binding Fermi surface and a gap. 

The results are summarized in two subsections of section 3. 

In subsection 3.1, we modeled first the behavior of the 

imaginary part of the electron-hole symmetric scattering 

matrix depending on eleven values of c (the inverse of the 

strength of the disorder potential U0) for two disorder regions 

of physical importance. First, an optimal disorder region with 

Γ+
=0.15 meV and second for a very dilute region with 

Γ+
=0.01 meV. The results are visualized in figures 2 and 3 

and a summary of the results is given in table 1. 

Subsection 3.1 visualizes the behavior of the disordered 

matrix ω"�ω � # 0$� inside the unitary (c=0) intermedia (c=0.2) 

and Born (c=0.4) regions for five disorder concentrations, 

starting at very diluted disorder, dilute disorder, an almost 

optimal disorder, an optimal disorder, and finally an enriched 

disorder. The results were visualized in figures 4, 5 and 6 and 

the analysis with the results is given in subsection 3.2. We found 

in this section that the evolution of the disordered matrix 

ω"�ω � # 0$� depends strongly on the value of Γ+
. 

By studying the disorder effects caused by Γ+
 and c on the 

elastic scattering matrix, we found different physical 

scenarios that require more detailed studies, also, we propose 

future studies to explore the influence of the tight-binding 

parameters on the shape of the scattering matrix as well as 

other gap symmetries of interest. 
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