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Abstract: The assessment of the accessibility of water in the basin and significance setting of its use is essential before 

planning for the expansion and development of additional sectors which poses pressure on water availability. The main purpose 

of this study was to evaluate the performance of SWAT model to simulate stream flow of Mojo River. The performance 

evaluation of the model was to obtain the water balances was conducted. In this study both secondary and primary data were 

used. The SWAT model was used for data analysis. In this study for stream flow yield simulation the parameters involving 

surface runoff (CN2.mgt) and ground water (ALPHA_BNK.rte was found to be the most sensitive parameters. A good 

agreement between observed and simulated discharge were observed, which was verified using both graphical technique and 

quantitative statistics. The value of R
2
=0.80, NSE=0.75, RSR=0.5 and PBIAS=-10.6 obtained during calibration and R

2
 value 

0.76, NSE value 0.69, RSR value 0.56 and PBIAS -14.4 obtained during validation as well as the uniformly scatter points 

along the 1:1 line during calibration and validation justify that the model is very good in simulating observed steam flow. From 

the results the total annual surface water available yields is estimated around 0.401Billion Cubic Meters (BCM). 
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1. Introduction 

1.1. Background 

The adequacies of the water for irrigation need supply for 

specific area is seldom known for a particular year. 

Likewise; the determination of net consumptive use, 

records are inadequate for estimating rates for individual 

years but are believed to be reliable when taken as an 

average over a period of years. Consumptive use will be 

greater during dry, hot summers, and a greater part of the 

water must be supplied by irrigation during these years [5]. 

The industries in the major cities of Ethiopia located in the 

basin are the sources of water pollution. Urbanization, 

industrial development of agricultural chemicals and 

fertilizers overcharged the carrying capacity of water bodies 

and resulted in deterioration of surface water quality and 

groundwater aquifer in the basin. This issue requires an 

urgent attention from the government and stakeholders. 

Water logging and salinization are putting increasing 

pressure on land and water quality in the basin in irrigated 

agriculture. Through collection and analysis of reliable and 

adequate data on water resource status, sound decisions can 

be made on how best to develop and manage these 

resources. Proper assessment of the water resources in time 

and space is important to plan future water use rationally 

and on a sustainable basis. The assessment of the 

availability of water in the basin and priority setting of its 

use is important before planning for the expansion and 

development of additional sectors which poses pressure on 

water availability [5]. The main purpose was to evaluate the 

performance of SWAT model to simulate stream flow of 

Mojo River. 

1.2. Statement of the Problem 

Ethiopia is blessed with ample water resources. The 
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country has 12 river basins with an annual runoff volume of 

122 billion m
3
 of water and an estimated 2.6 to 6.5 billion m

3
 

of ground water potential, which makes an average of 1575 

m
3
 of physically available water per person per year, a 

relatively large volume [10]. However, distribution and 

availability of water is erratic both in space and time. Hence, 

despite the abundance, the country is highly water-scarce 

[17]. Of the total water resources available to Ethiopia, only 

9% remains in the country; the bulk flows downstream to 

neighboring countries, and is particularly important for 

Somalia, Kenya, Sudan and Egypt [21, 17]. 

Awash River originates in the Central Highlands and flows 

down northeast for a length of 1200 km has longer flooding 

period and larger dry seasons at downstream. However, due 

to under development of this natural resource most people 

are influenced by these extreme events. Mojo River is one of 

the rivers that face competition among users. The 

competition for water among the major users of the river is 

increasing due to socio-economic development and 

population growth in the catchment. Equitable access and 

sustainable water resources development in a participatory 

approach of all stakeholders is important to cope with water 

scarcity. Therefore, the aim of this research was to investigate 

the availability of surface water of Mojo River with SWAT 

model. 

2. Materials and Methods 

2.1. Description of Study Area 

This study was conducted at Modjo River, which is located 

in the upper part of Awash River basin, Ethiopia. Mojo 

watershed having a total area of 2017.09 km
2
 is situated in 

central Oromia Regional state, Ethiopia, Figure 1 

Geographically it is located between latitudes of 8° 16´ N 

and 9° 18´ N and longitude of 37° 57´ E and 39° 17´ E. The 

Modjo watershed drains finally into Awash River. The mean 

annual rainfall of the area ranges from 918.50 to 1226 mm 

with more than 83% of annual rainfall falling during June to 

September. The mean maximum temperature of the 

watershed is ranging from 21°C to 27°C the highest being 

recorded in the month of May and the lowest in July. The 

mean minimum temperature ranges from 8°C to 12°C where 

the minimum and maximum are occurring in the month of 

December and April respectively. The altitude of the 

watershed ranges from 1592.15 msl at the river bed to 

3065.49 msl at the upper part of the watershed. 

 
Figure 1. Location map of study area. 

2.1.1. Rainfall Data 

Effective rainfall was calculated based on 31 years monthly rainfall data collected from four stations. The annual rainfall in 

the catchment or mojo watershed during (1987-2017) ranges 918 -1226 mm. 
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Figure 2. Rainfall pattern of Mojo Watershed. 

2.1.2. Land Use Land Cover 

The land use is one of the main factors affecting surface 

runoff and evapotranspiration in the watershed area. The major 

land use and land cover types of the catchment are irrigated 

agricultural land, plantation forest, pastureland, degraded 

(barren) land, settlement (rural and urban), and water bodies. 

According to SWAT land use and land cover classification, 

Agriculture (Cultivation) is the dominant land use in the study 

area (figure 3). Around 63.7% of the watershed area is covered 

by agricultural land (cultivated land). 

 
Figure 3. Land use Land cover of Mojo watershed. 
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2.1.3. Soil Types 

According to the FAO/UNESCO soil classification system, the mojo watershed area comprises five major soil types. 

Table 1. Major soil of Mojo watershed and the area distribution. 

Nos. Identified soil types Major soils Textures Area (Ha) Area (%) 

1 Vitric andosols Andosols Loam 121261.68 60.11 

2 Pellic Vertisols Vertisols Clay 2569.53 1.25 

3 Chromic Luvisols Luvisols Clay loam 59966.77 29.73 

4 Umric Leptosols Leptosols Loam 2612.73 1.30 

5 Chromic Cambisols Cambisols Sand Clay Loam 15301.69 7.57 

 

2.2. Data Collection 

2.2.1. Secondary Data 

All daily observed meteorological dataset such as rainfall, 

maximum and minimum temperature, relative humidity, wind 

speed, and sunshine hour of four representative stations 

within and around watersheds (Mojo, Bishoftu, Diredam and 

Chefedonsa) for a period of 31years (1987-2017) were 

collects from National Meteorology Agency (NMA). For 

Hydrological modelling of Mojo watershed, stream flow 

datasets of Mojo River station recorded from (1987-2016), 

Spatial data (topographic, land use/cover data and map, soil 

map) and digital elevation model (DEM) data with a 

resolution of 30x30 was collected from Ethiopian Ministry of 

water, Irrigation and Energy (MOWIE). 

2.2.2. Estimating the Missing Data 

While working with hydrological model, it is common to 

encounter missing weather data values from observed records 

for so many reasons. It is very essential to fill in the missing 

data when a hydrological basin analysis needs a continuous 

data. Also in availability of stream flow studies it is common 

to check the gaps in the time series of precipitation and 

temperature before filling the missing data. Simple 

mathematical equation was applied to quantify the total 

percentage of the missing value from the total data series as 

follows. 

% of missed data 1

2

*100
 

=  
 

X
a

X
                      (1) 

Where, X1 is count of missed data; X2 is whole data set 

The filling of missing data is very essential to perform 

metrological data analysis and stream flow simulation using 

data of long time series. In this study two methods were 

applied to fill the missing values; Arithmetic mean method 

(for the normal annual precipitations at surrounding gauges 

are within the range of 10% of the normal annual 

precipitation of station with missed data) 

P� � �
� �P� � P� � 	 � P�
                        (2) 

Where, P1, P2…Pn are the precipitation of index stations 

PX is that of the missing station and n, is the number of 

index stations. 

And the normal ratio (for the surrounding gauges have the 

normal annual precipitation exceeding 10% of the gauge with 

missed data) for rainfall. 

P� � ��
� 
��

�� � ��
�� � 	 � ��

���                     (3) 

Where, P1, P2…Pn are the rainfall data of index stations, N1, 

N2,…Nn the normal annual rainfall of index stations and PX, 

NX the values for the missing station "X" in question and n, is 

the number of stations surrounding station "X". 

2.2.3. Data Consistency Test 

Double mass curve method was used to check the 

consistency of the data (Figure 6) by comparing data of a 

single station with that of a pattern composed of the data 

from other station. The data of the annual rainfall of the 

doubtful station and the average rainfall of the group of base 

stations covering a long period was arranged in the reverse 

chronological order. The cumulative values of the doubtful 

stations were plotted against the cumulative average groups. 

From Figure 6 the annual cumulative rainfall (mm) for each 

stations were put in “y- axis and the average annual 

cumulative (mm) in “x-axis. 

 
Figure 4. Double mass curves for four representative meteorological station 

of Mojo. 

2.3. SWAT Model Input 

The SWAT model works with spatial and temporal data. 

Spatial data include elevation, soil type, slope and land 

use/cover. To delineate the watershed Digital Elevation 

Model (DEM) grid, digitized stream network files were 

loaded using the watershed delineation tool. Land use and 

land cover was also one of the most important spatial input 

data in SWAT Model. The land use/cover data was 
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reclassified according to requirement of the SWAT model. 

Soil data are another spatial input required by SWAT model. 

SWAT model requires different soil textural and 

physicochemical properties such as soil texture, available 

water content, hydraulic conductivity, bulk density and 

organic carbon content for different layers of each soil type. 

Basic physical and chemical property of major soil types in 

watershed were collected from the Ministry of Water and 

Electricity (MOWIE). 

The temporal input data for the model are meteorological 

datasets and stream flow data. For this study, the 

meteorological data element such as daily precipitation, 

minimum and maximum air temperature, Relative humidity, 

wind speed and sunshine hours for thirty one years (1987-

2017) of four representatives’ weather station were obtained 

from national meteorological agency. Station those have 

missing meteorological data values were filled using weather 

generator model (WXGEN). Other parameters required in 

User weather generator were calculated using pcpSTAT.exe 

and dew02.exe computer program. PcpSTAT.exe is a 

computer program used to calculate statistical parameters of 

daily parameters of daily precipitation data used by weather 

generator of the SWAT model and the other weather 

parameters such as average daily dew-point temperature and 

humidity was calculated using dew02.exe computer program. 

Stream flows are another temporal input data required by 

SWAT model for calibration and validation. For calibration 

purpose, Arc SWAT requires stream flow data as an input. 

Stream flow data of the Mojo sub-basin is collected from 

Ministry of Water, Irrigation and Electricity and is used for 

calibration and validation of the model. The daily discharge 

of hydrological gaging station of the Mojo sub-basin for 

about 30 years continues data (1987-2016) where used for 

performing sensitivity analysis, calibration (1987-2001) and 

validation (2002-2016) of the model. 

2.4. SWAT Model Setup 

2.4.1. Watershed Delineation 

The first step in creating SWAT model input was 

delineation of watershed from a DEM. Inputs entered into the 

SWAT model were organized to have spatial characteristics. 

The SWAT model provides three spatial levels: the watershed, 

the sub basins, and the hydrologic response units (HRUs). 

Each level characterized by a parameter set and input data. 

The largest spatial level, the watershed, refers to the entire 

area being represented by the model. The watershed and sub 

watershed delineation was done using DEM data. The 

watershed delineation process includes five major steps, 

stream definition, outlet and inlet definition, Watershed outlet 

selection and definition and calculation of sub basin 

parameters. For the stream definition the threshold based 

stream definition option was define the minimum size of the 

sub basin. The Arc SWAT interface allows the user to fix the 

number of sub basin by deciding the initial threshold area 

which was used to obtain detail watershed sub-basin. The 

SWAT model development for particular area was defining 

watershed boundary. These boundaries normally fall along 

the ridges in a watershed. [6] and [16] indicated that GIS data 

resolution has significant impact on model output uncertainty. 

So, in order to minimize model uncertainty associated with 

input data Mojo watersheds covering a total drainage area of 

2017.09 km
2
 is delineated and subdivided into 25 sub-basins 

based on the minimum threshold area of 5000 ha [8]). 

Because, the SWAT model with greater resolution of soil 

property and a greater number of HRUs produce the best 

calibration statistics [18]. Accordingly, multiple HRUs were 

defined based on the minimum threshold level that accounts 

for 10% Land use, 15% soil and 10% slope threshold 

combination to have a better estimation of stream flow of 

Mojo watershed. As Figure 7 shows delineated Mojo 

Watershed and sub-basin from Awash basin with the 

geographic location of the meteorology and river gauging 

station. 

 
Figure 5. Delineated Mojo Watershed from Awash Basin DEM. 

2.4.2. Hydrological Response Unit 

After watershed delineation, sub-basin was subdivided into 

areas having unique land use, soil and slope so called 

hydrologic response units (HRUs). The HRU Analysis tool in 

Arc SWAT helped to load land use, soil layers and slope map 

to the project. HRU analysis in SWAT includes divisions of 

HRUs by slope classes in addition to land use and soils by 

considering multiple slope option. The spatial inputs like 

LULC, soil and slope map was reclassified in order to 

correspond with the parameters in the SWAT database. After 

reclassifying the land use, soil and slope in SWAT database, 

all these physical properties were made to be overlaid for 

HRU definition. Different researchers set default threshold 

level in SWAT for land cover, soil and topography depend on 

project goal and detail required by the modeler [22, 24] 

recommend the default threshold level as 5%, 20% and 10% 

for land, soil and slope respectively. For this study, the 

threshold levels were set to 10% for land use, 15% for soil 

and 10% for slope. The land use threshold level is used to 

eliminate minor land uses in each sub-basin and covered land 

use area below the threshold is eliminated. The remaining 

area after elimination process is reapportioned so that 99.9% 

of the land area in the sub-basin is modeled. The same is true 

for soil classes and slope ranges distribution in all sub-basins. 

2.4.3. Sensitivity Analysis 

The determination of the most sensitive parameters was 

the key and first step, for model calibration and validation at 

the watershed scale. Sensitivity analysis was the process of 
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identifying the model parameters that exert the highest 

influence on model calibration or on model predictions. 

Sensitivity analysis was done using SWAT CUP which is a 

computer program for calibration of SWAT models using a 

SUFI2 global sensitivity method, for the whole catchment 

area as applied by [24]. These parameters were selected from 

previous studies done in Mojo watershed [24]. Sensitive 

parameters were selected based on the calculated value of t-

stat and P-value in SWAT_CUP software. In this analysis, the 

larger in absolute value of t-stat and the smaller the p-value, 

considered and most sensitive the parameter. Accordingly, 

the sensitivity analysis was made for selected parameters 

(Table 1) to rank their potential influence based on t-stat and 

P-value. The analysis was made with observed flow data 

measured at Mojo station found near the outlet of the sub-

basin delineated. 

In the process of parameter identification an important 

consideration for applying parameter identifiers is that the 

changes made to the parameters should have physical 

meanings and should reflect physical factors such as soil, 

Land use, elevation, etc. [1]. Therefore the following notation 

where used; X_Code to indicate the type of change to be 

applied to the parameter, V_means the existing parameter 

value is to be replaced by the given value, a_ means the 

given value is added to the existing parameter value, and 

r_means the existing parameter value is multiplied by (1+a 

given value). The presented encoding scheme allows us to 

make distributed parameters dependent on important 

influential factors depending on the nature of the parameter. 

2.5. Calibration and Validation of SWAT Model 

Model calibration and validation are necessary and critical 

steps in any model application. Automatic calibration and 

uncertainty analysis incorporated in SWAT 12 via the SWAT-

CUP (SWAT Calibration and Uncertainty Procedures) 

software developed and tested by [1] with the semi-

automated program SUFI2 (Sequential Uncertainty Fitting 

ver. 2) was used for this study. SUFI-2 is widely used 

(example [23, 4, 8] mainly due to the relatively fewer 

required number of runs to reach an acceptable calibration 

results. Additionally, [23] concluded that SUFI-2 requires 2–

30 times fewer runs than the other programs of the SWAT-

CUP. Therefore, based on these two reasons SUFI-2 was 

selected for calibration and validation of the SWAT models. 

The relevant model parameter selected based on their 

sensitivity, t-stat and p-value, were Calibrated on monthly 

bases for stream flow using SWAT-CUP, SUFI2 interface by 

changing the parameter value within the range until the 

predicted value was reasonably in line with that of observed 

value and its accuracy was evaluated with Nash-Sutcliffe 

coefficient (NSE) and Coefficient of determination (R
2
). 

The stream flow data of the period (1987-2016) having 

continuous data was used for calibration and validation of the 

model. The data of (1987-2001) for calibration and (2002-

2016) year data were used for validation. So, based on 

sensitivity analysis ranks the top thirteen relevant model 

parameters selected were used as starting points for model 

calibration on monthly bases for the stream flow. Then, 

calibration of the model was done by changing the parameter 

value within the range until the simulated value is reasonably 

fit with that of observed value. After the model is calibrated, 

the accuracy of the model was evaluated during the 

validation process with the help of the data (2002-2016), 

which are not used during the calibration process without any 

adjustment to the calibrated value. 

2.6. Model Performance Evaluation 

The accuracy of SWAT simulation results was determined 

by examination of the coefficient of determination (R
2
), the 

Nash and Sutcliffe (1970) model efficiency coefficient (NSE), 

the root mean square error (RMSE), percentage bias (PBAIS) 

and observation standard deviation ratio (RSR). 

2.6.1. Coefficient of Determination 

The R
2
 value is an indicator of the strength of the linear 

relationship between the observed and simulated values, 

while the (NSE) simulation coefficient indicates how well the 

plot of observed versus simulated values fits the 1:1 line. It 

measures how well the simulated versus observed regression 

line approaches an ideal match and ranges from 0 to 1, with a 

value of 0 indicating no correlation. The R
2
 statistic is 

calculated as: 

( )( )

( ) ( )

2

2 1

2 2

1
1

n
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i
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=
=

 − − 
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∑ ∑
                    (4) 

Where R
2
=Coefficient of determination, n is the total 

number of observation Oavr, Pavr, are mean observed and 

predicted value respectively, Oi=Observed (measured) value 

and Pi=Modelled (predicted) value. 

2.6.2. Nash-Sutcliffe Efficiency (NSE) 

The Nash-Sutcliffe efficiency (NSE) indicates how well 

the plot of observed versus simulated data fits the 1:1 line. It 

generally ranges from −∞ to 1. Higher value of NSE 

indicates better accuracy of model prediction whereas lower 

NSE indicates poor model prediction. If the NSE is between 

0 and 1, it indicates deviations between measured and 

simulated values. If ENS is negative, predictions are very 

poor, and the average value of output is a better estimate than 

the model prediction (Nash and Sutcliffe, 1970). In general, 

model simulation can be judged as satisfactory if NSE >0.50, 

Moriasi et al. (2007). NSE is computed as shown below: 

( )

( )

2

1

2

,

1

n

sim obs

i

NS
n

obs obs m

i

Q Q

E

Q Q

=

=

 − 
 =
 − 
 

∑

∑

                       (5) 

Where: Qobs is observed flow (m
3
/s), Qsim is the simulated 

flow (m
3
/s), Q obs, m is the observed measured flow (m

3
/s) and 

Q sim, m is average simulated flow (m
3
/s). 



 Hydrology 2020; 8(1): 7-18 13 

 

2.6.3. Percent Bias (PBIAS) 

Percent bias measures the average tendency of the 

simulated data to be larger or smaller than their observed 

counterparts. The optimal value of PBIAS is 0.0, with low 

magnitude values indicating accurate model simulation. 

Positive values indicate model underestimation bias, and 

negative values indicate model overestimation bias [9] as 

cited in [[13]. PBIAS is computed as shown below. 

( )

( )
1

1

*100

n

i i

i

n

i

O S

PBIAS

Oi

=

−

−
=
∑

∑

                                  (6) 

Where, PBIAS is the deviation of data being evaluated, 

expressed as a percentage. If PBIAS ± 25% for stream flow 

and PBIAS ± 55% for sediment, the model simulation can be 

judged as satisfactory. 

2.6.4. Root Mean Square error Observation Standard 

Deviation Ratio (RSR) 

RSR incorporates the benefits of error index statistics and 

includes a scaling/normalization factor, so that the resulting 

statistic and reported values can apply to various constituents. 

RSR varies from the optimal value of “0”, which indicate 

zero root mean square error (RMSE) or residual variation and 

therefore Perfect model simulation, to a large positive value. 

Generally, if the value of RSR ≤ 0.70 the model simulation 

can be considered as satisfactory [13]. 

RSR � ����
�������� �  ∑ �"#$�#
�%&'�

 ∑ �"#$�()*
��&'�
                       (7) 

Table 2. Classification of statistical indices (Moriasi et al., 2007). 

Performance Rating RSR NSE R2 PBIAS 

V. good 0.00≤RSR≤0.50 0.75≤NSE≤1.00 0.75<R2≤1.00 PBIAS ≤ ±10 

Good 0.50≤RSR≤0.60 0.65<NSE≤0.75 0.6 <R2≤0.75 ±10≤PBIAS ≤ ±15 

Satisfactory 0.60≤RSR≤0.70 0.50<NSE≤0.65 0.5<R2≤0.6 ±≤PBIAS≤±25 

Unsatisfactory RSR>0.7 NSE≤0.50 R2≤0.25 PBIAS ≥ ±25 

 

2.6.5. P-Factor and r-Factor 

The above statistical indices only apply to the comparison 

of two signals and are not adequate when outputs are 

expressed as uncertainty bands. In this case, as the simulation 

results are usually expressed by the 95% prediction 

uncertainties (95PPU), they cannot be compared with the 

observation signals using the traditional R
2
 and NSE statistics. 

For this reason, [3, 4] suggest using two measures, referred to 

as the p-factor and the r-factor. The p-factor is the percentage 

of the measured data bracketed by the 95PPU. This index 

provides a measure of the model’s ability to capture 

uncertainties. As all the “true” processes are reflected in the 

measurements, the degree to which the 95PPU does not 

bracket the measured data indicates the prediction error. 

Ideally, the p-factor should have a value of 1, indicating 100% 

bracketing of the measured data, hence capturing or 

accounting for all the correct processes. The r-factor, on the 

other hand, is a measure of the quality of the calibration and 

indicates the thickness of the95PPU. Its value should ideally 

be near zero, hence coinciding with the measured data. The 

combination of p-factor and r-factor together indicate the 

strength of the model calibration and uncertainty assessment, 

as these are intimately linked. 

The detail explanations of SWAT model was described as 

follow. 

 
Figure 6. Conceptual frame work of Arc SWAT for stream flow simulation yield. 
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3. Results and Discussions 

Performance Evaluation of Hydrological Model. 

3.1. Sensitivity Parameters 

Sensitivity analysis was done using SWAT-CUP, global 

sensitivity analysis, as suggested by [12] to consider seasonal 

sensitivity of stream flow parameters for a catchment area. 

The range of variations for these parameters is based on a 

listing provided in the SWAT –CUP manual [15] and the 

previous studies. The number of sensitive parameters to be 

considered ranged between 2 and19 and depended on the 

complexity of the hydrological features in the catchments and 

modeling efforts [14]. Accordingly, among the selected 

parameter for sensitivity analysis, the top thirteen ranking 

parameters, based on the highest absolute value of t-stat and 

low p-value, were selected as starting points for model 

calibration in table 3. 

The most sensitive parameters during the model 

calibration step was presented at the top of the ranking as 

shown in figure 9 below that was the highest value of t- stat 

index module which represent the ratio of parameter 

coefficient by the standard error; and the lower value of the” 

p value” which was related to the rejection of hypothesis that 

addition in the value parameter provides a significant 

increase in the variable response [4]. In this study, the 

parameters towards evaporation like (EPCO and ESCO), 

surface runoff (CANMX) and ground water parameters like 

(GW_DELAY, ALPHA_BF, and GWQMN) are very low. 

The parameters involving surface runoff (CN2) and ground 

water (ALPHA –BNK) were the most Sensitive parameter in 

flow simulation. On the other hand, according to the result 

from the global sensitivity analysis the curve number (CN2), 

was found to be the most sensitive parameter followed by 

base flow alpha (ALPHA –BNK) of ground water flow, 

effective hydraulic conductivity in main channel (CH –K2), 

available water capacity of soil layer (SOL –AWC), average 

slope steepness (HRU_SLP), surface runoff lag time 

(SURLAG), manning’s “n” values for main channel (CH_N2) 

and etc. as ranking from one up to thirteen position were 

selected for model calibration. Table 3 below shows the fitted 

value of thirteen most sensitive parameters for stream flow 

calibration & validation. 

 
Figure 7. Screen shot of Global Sensitivity output of Stream flow sensitivity analysis during Calibration and Validation. 

 
Figure 8. 95ppu plot by SUFI-2 during Sensitivity analysis for stream flow. 
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Table 3. Summary of 13 most global sensitivity parameter (t- and p -) 

analysis values. 

SN Parameter Name t – Stat P-Value Ranking 

1 r_OV-N 0.0476673 0.962245 13 

2 r_TLAPS -0.141392 0.88835 12 

3 r_SLSUBBSN 0.50192 0.618783 11 

4 r_REVAPMN -0.923268 0.362015 10 

5 v_TLAPS.sub 1.0578358 0.29717716 9 

6 r_HRU_SLP 1.279305 0.2089742 8 

7 a_GWQMN.gw -1.385735 0.174352969 7 

8 v_CHARG_DP 1.579307046 0.1230133 6 

9 v_CH_N2 1.781452 0.0832772 5 

10 r_SOL_AWC 1.784614 0.0827536 4 

11 v_CH_K2 2.1667255 0.0369523 3 

12 v-ALPHA-BNK -4.72602276 0.000034599 2 

13 r_CN2 16.363445523 0.00 1 

The rank for each parameter was assigned depending on P-

value and t-stat. Here, t-stat provides a measure of sensitivity 

and hence larger in absolute values are more sensitive. On the 

other hand, P-value indicates the significance of the 

sensitivity and hence a value close to zero has more 

significance. Therefore, ranking in both cases (t-stat or P-

value) give the same result i.e. a parameter will have the 

same rank whether it is ranked based on the t-stat or P value. 

Table 3 above shows the performance evaluation of most 

parameters depending on the p-values and t- values. 

3.2. SWAT Model Calibration and Validation 

Some of the causes of uncertainty occurrences are due to 

the changes of land use land cover, changes of forest land 

into urban area, release of waste water in to the watershed, 

climatic data like Rainfall and Temperatures as well as 

unreliable recorded Observed data. Given the above 

possible errors, calibration and validation results of the 

Mojo watershed can be qualified as ‘‘Good to very Good’’ 

for stream flow yield in this study after calibration and 

validation. This may be due to a good quality of the input 

data as well as small conceptual model errors in the 

dominant processes in the watershed. During calibration 

process to maximize the model efficiency hydrological 

parameters selected during sensitivity analysis using SUFI-

2 algorithm were considered. In other way, the models 

approximate the reality of the natural systems. Both 

graphical methods and statistical tests are used in model 

calibration and validation. The details simulation of the 

basin was given in Table 4. 

Table 4. Details of Model Simulation for the Mojo Basin. 

SI. No Simulation details Remark 

1 Simulation length 31 years 

2 Warm up period 3 year 

3 Calibration Period 15 Years excluding warm up period 

4 Validation period 15 Years 

5 Total number of sub basin 25 

SI. No Simulation details Remark 

6 Total numbers of HRU 42 

7 Input metrological data Measured 

8 total basin area 2017.09km2 

The calibration was performed using monthly observed 

data from the year 1987 to 2001excluding the warm up 

periods. The Calibrated model was validated using data from 

2002 to 2016 on monthly time step. Both the calibration and 

validation were taken for equal periods of fifteen years. 

3.3. Model Calibration 

After sensitive parameters identified the model were 

calibrated and validated using the hydrological parameters 

selected during sensitivity analysis. The calibration process 

using SUFI-2 algorithm gave the final fitted value of the 

most sensitive parameters for the watershed (Table 5). 

Table 5. Final calibrated sensitive parameters. 

Parameter Name Min.value Max_value Fitted Value 

r__CN2.mgt -0.2 0.2 -0.021542 

r__ALPHA_BNK.rte 0.0 1.0 0.039968 

r__RCHRG_DP.gw 0.0 0.2 0.090479 

r__CH_K2.rte 0.0 150.0 1.736827 

r__CH_N2.rte 0.0 0.5 0.483162 

r__TLAPS.sub -10.0 10.0 -4.996675 

r__HRU_SLP.hru 0.0 0.2 0.001056 

r__REVAPMN.gw 0.0 10.0 5.79177 

r__SURLAG.bsn 0.0 10.0 7.31308 

r__SOL_AWC (...).sol -0.2 0.4 0.026561 

r__SOL_K (...).sol -0.5 0.5 -0.225174 

r__GW_REVAP.gw -0.1 0.0 -0.032535 

r__OV_N.hru -0.2 0.0 0.034993 

From the 23 parameters for the stream flow analyzed the 

most 13 parameters had been selected based on the 

performance evaluation criteria. So it shows the most 

sensitive parameters that were selected during both 

calibration and validation period without any changes of 

parameters. Initially, the decreasing curve number at 

moisture condition II (CN2), and GW_REVAP increasing 

were over prediction during calibration or first iteration. 

Setting only CN2 to their Calibrated values improved 

efficiency of SWAT. CN2 is found to be a most important 

parameter in calibration of SWAT [6]; Noor et al., 2014; 

Ridwansyah et al. 2014; and Kumar et al., 2014) as cited by 

[24] and contributes directly to surface runoff generation. On 

this study, model under prediction were adjusted by 

increasing REVAPMN and SOL_AWC. All above parameters 

values were adjusted manually for calibration. The 

performance of the model was evaluated using R
2
, ENS and 

PBIAS statistical measures for both manual and auto-

calibration. Evaluations were performed at monthly time 

scales and the result of statistical parameters during 

calibration obtained were 0.80 for R
2
, 0.75for ENS and -10.6 
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for PBIAS. The values indicate that there is good agreement 

between observed and simulated stream flow of Mojo 

watershed. Figure 10 below shows hydrography comparison 

during model calibration. 

 

Figure 9. Calibration of Observed & Simulated stream flow of Mojo Watershed. 

 
Figure 10. Scatter plot of Observed and Simulated flow of the Calibration period. 

3.4. Model Validation 

Validation of model results was necessary to increase user 

confidence in model predicting capability. Fifteen year 

monthly observed data (2002-2016) were used for model 

validation without any adjustment of fitted value during 

calibration period. So the values of 0.76 for R
2
, 0.69 of ENS 

and -14.4% of PBIAS were obtained. However, the result 

obtained during calibration and validation period in above is 

almost similar with the results of [13]. And but different from 

the result obtained by Lemma (2015) from Kulekhani 

watershed (153.54 ha) and Hassen et al. (2014) from May bar 

experimental watershed (113.75 ha) as cited by [24]. Here the 

results obtained confirm that SWAT model is more 

appropriate to be used for large watershed. Calibrated and 

validated model predictive performances values for Mojo 

River on monthly flows base are summarized in Table 6 and 

the time series plot of measured and simulated monthly flow 

for validation are shown in Figure 11 and Figure 12 below 

respectively. 
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Figure 11. Validation of simulated & observed stream flow of Mojo watershed. 

Table 6. Model Performance indicator during Calibration and Validation. 

Period 
Model statistical efficiency measures 

R2 NSE bR
2 PBIAS RSR P-factor r-factor 

Calibration 0.80 0.75 0.78 -10.6 0.5 0.82 0.01 

Validation 0.76 0.69 0.74 -14.4 0.56 0.77 0.01 

 

 

Figure 12. Scatter plot of observed and simulated flow for Validation period. 

As it could been seen from table 6 the model under 

estimated stream flow compared to observed mean monthly 

stream flow in 1987, 1990, 1993, 1996, 1997 & 2000 during 

calibration and 2003, 2005, 2007, 2010, 2011 & 2014 during 

validation period. One of the factors that have contributed to 

uncertainty of the model might be the effect of SWAT 

parameters that are considered to have negligible influence 

on the stream flow but cumulative of which would have 

affected the model performances. There were also 

unconsidered factors in modeling process that resulted in the 

model error is also another factors. Another source of 

uncertainty may be stream flow recorded at the gauge 

stations and uncertainty that rises from filling the missing 

flow data. In other way, the result of SUFI-2 indicates that 

the p-factor, percentages of data being bracketed by 95PPU, 

for the calibration period was 0.82 and 0.77 for the validation 

period. This was indicates that 82% and 77% of the measured 

data for calibration and validation respectively were correct 

simulated flow by the model while the remaining occur due 

to an errors of input data such as rainfall and temperature. 

4. Conclusions 

The Main aim of this study was to examine the water 

availability of mojo watershed using SWAT model for 

simulating stream flow. The model was successfully 

Calibrated and validated for the Mojo watershed using 

SWATCUP, SUFI-2 algorithms. In the process of model 

calibration the identified sensitive parameters helps to reduce 

the number of model parameters to thirteen. The selected 

parameters gave good results in minimizing the differences 

between observed and simulated stream flow yield. The 

model evaluation statistics for prediction of stream flow yield 

gave good to very good results that were verified by NSE 

greater than 0.69 and R² greater than 0.75. The Uncertainty 

related to the model and data used for stream flow was 

minimized by adjusting the value of selected parameters and 

the performance of the model R
2
=0.80, NSE=0.75, error 

index (RSR=0.5) and percent bias (PBIAS=-10.6) obtained 

during calibration and R
2
 value 0.76, NSE value 0.69, RSR 

value 0.56 and percent bias -14.4 obtained during validation 

justified the capability of the model in simulating runoff. The 
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Calibrated and validated model used to determine water 

balance of the watershed. The estimated annual water balance 

component indicates that 27.8% and 13.15% of the annual 

precipitation lost by evapotranspiration and deep percolation 

respectively. Whereas Lateral contribution 28.55%, surface 

runoff 62.15% and groundwater 33.5% contributed to the 

total yield of the watershed. The total surface water yield of 

the Mojo River is estimated to be 0.504 BCM/year. 
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