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Abstract: Numerical analysis is a subject that is concerned with how to solve real life problems numerically. Numerical 
methods form an important part of solving differential equations emanated from real life situations, most especially in cases 
where there is no closed-form solution or difficult to obtain exact solutions. The main aim of this paper is to review some 
numerical methods for solving initial value problems of ordinary differential equations. The comparative study of the Third 
Order Convergence Numerical Method (FS), Adomian Decomposition Method (ADM) and Successive Approximation Method 
(SAM) in the context of the exact solution is presented. The methods will be compared in terms of convergence, accuracy and 
efficiency. Five illustrative examples/test problems were solved successfully. The results obtained show that the three methods 
are approximately the same in terms of accuracy and convergence in the case of first order linear ordinary differential 
equations. It is also observed that FS, ADM and SAM were found to be computationally efficient for the linear ordinary 
differential equations. In the case of the non-linear ordinary differential equations, SAM is found to be more accurate and 
converges faster to the exact solution than the FS and ADM. Hence, It is clearly seen that the ADM is found to be better than 
the FS and SAM in the case of non-linear differential equations in terms of computational efficiency. 

Keywords: Accuracy, Adomian Decomposition Method, Convergence, Differential Equation, Efficiency,  
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1. Introduction 

It is a known fact that several mathematical models 
emanating from the real and physical life situations cannot be 
solved explicitly, one has to compromise at numerical 
approximate solutions of the models achievable by various 
numerical techniques of different characteristics. 
Development of numerical methods for the solution of initial 
value problems in ordinary differential equations has 
attracted the attention of many researchers in recent years. 
Many authors have derived new numerical integration 
methods, giving better results than a few of the available 
ones in the literature such as: [1-11], just to mention a few. 

The Adomian decomposition method (ADM) is an 
approximation method used for solving nonlinear differential 

equations, [12, 13]. The proper use of the ADM has made it 
possible to obtain an analytic solution of a singular initial-
value problem when it is homogeneous or inhomogeneous 
[14, 15]. Some of the merits of this method are that it 
converges fast to the exact solution [16], it requires less 
computational work than the other methods and it also has 
the ability to solve non-linear problems without linearizing. 
Some of the shortcomings of this method are that it gives a 
long series solution which must be cut short for it to be useful 
in practical application and the convergence rate for wider 
region is said to be slow [17]. A modified approach to the 
Adomian polynomials which converges a little faster than the 
original Adomian polynomials and is favourable for 
computer generation was introduced by [18]. A study for an 
effective modification of the ADM for solving second-order 
singular initial value problems was done and it was 
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discovered that with few iterations used, the ADM is simple, 
easy to use and produces reliable results [19]. Successive 
approximation method is a means of solving initial value 
problems in ordinary differential equations numerically. It is 
useful when the solution of the differential equations cannot 
be obtained analytically. The method of successive 
approximations constitutes a so-called “algorithm or 
algorithmic process” for solving equations of a certain class 
in terms of a succession of elementary arithmetic operations. 
In this paper, the review of FS, ADM and SAM for the 
solution of linear and non-linear differential equations in the 
context of the exact solution is presented. The rest of the 
paper is organized as follows: Section Two presents the 
analysis of the methods. In Section Three, five illustrative 
examples were solved. Section Four presents the discussion 
of results and concluding remarks. 

2. Analysis of the Methods 

This section presents the analysis of the methods under 
consideration  as follows: 

2.1. Analysis of the Third Order Convergence Numerical 

Method 

The third order convergence numerical method devised via 
the transcendental function of exponential type for the 
solution of the initial value problem in ordinary differential 
equation is given by [20]. 

���� = �� + ℎ�� + 	
� ���
�� + ��
��� + 
1 − ��	 − ℎ���
��  (1)  

2.1.1. Local Truncation Error and Order of Accuracy of the 

Method 

Under localizing assumption, the local truncation error is 
obtained as 

LTE = 	��� ��
�� − ��
��� + O
ℎ��                   (2) 

Thus, the leading term of the local truncation error 
involves ℎ�  confirms the third order accuracy of the 
numerical method given by (1) [20]. 

2.1.2. Convergence Analysis of the Method 

The necessary and sufficient conditions for convergence 
are [21] 

i. Consistency 
ii. Stability 
(i). Consistency Analysis of the Method 
For a numerical method to be consistent, it is important for 

the truncation error to be zero when the step size, h, gets 
smaller and ultimately reaches to zero. Among many, one of 
the ways of analyzing consistency of a numerical technique 
is to check that whether (see [22]). 

lim	→" #$%	 = 0                                (3) 

From (2), we have that 

lim	→" 	��� ��
�� − ��
��� ℎ' = lim	→" 	(�� ��
�� − ��
��� = 0 (4) 

Equation (3) has been established. From (4), it is observed 
that the method has consistency property. 

(ii). Stability Analysis of the Method 
For stability analysis of the scheme (1), one of the popular 

ways is to apply it to the test problem of the form 

�) = −*�, �
0� = 1                             (5) 

with the theoretical solution of the form 

�
,� = ��-., * > 0                            (6) 

Where λ is, in general, a complex constant. 
For the integration interval	1,� , 	,���2, where	ℎ = ,��� −,�; the exact solution at the point	, = ,��� is 

�
,���� = ��-.345 = ��-.3 . ��-	 = �
,��. ��-	       (7) 

where h is defined as 	
,��� − ,� = ℎ� . The numerical 
approximation obtained using the proposed technique gives 

���� = �� �1 − 	*ℎ + -
	
�! − -(	(�! �              (8) 

Let 

8 = 1 − 	*ℎ + -
	
�! − -(	(�!                     (9) 

Then 

���� = B��                             (10) 

Comparing (7) and (10), this shows that the factor B is 
merely an approximation for the factor 	��-	  in the exact 
solution. Truly, the factor B is the four-term approximation 
for the Maclaurin’s series for	��-	  for small λh. The error 
growth factor B can be controlled by ‖B‖ < 1, so that the 
errors may not magnify. Thus, the stability of the third order 
convergence method requires that 

<1 − 	*ℎ + -
	
�! − -(	(�! < < 1              (11) 

Setting z=λh, then (11) becomes 

<1 − 	*= + >
�! − >(�!< < 1                  (12) 

2.2. Analysis of the Adomian Decomposition Method 

Consider the following equation 

( )Ly Ry Ny h x+ + =                            (13) 

where N is a non-linear operator, L is the highest order 
derivative and R is a linear differential operator. Taking the 

1−L of both sides of (13), one obtains; 

1 1 1( )y L h x L Ny L Ry− − −= − −                      (14) 

Since L is assumed to be invertible, in general one can 



 International Journal of Applied Mathematics and Theoretical Physics 2020; 6(1): 7-13 9 
 

define 1L− for 
n

n

d
L

dx
=  as the n-fold definite integration with 

interval [0, x]. Thus, from (14), one gets 

1 1 1( )y C Dx L h x L Ny L Ry− − −= + + − −                 (15) 

where A and B are constants of integration. ADM assumes 
that the unknown function y can be expressed by an infinite 
series of the form 

0

( )n

n

y y x
∞

=

=∑                                 (16) 

where the components ( )ny x  will be determined 
recursively. Moreover, the method defines the nonlinear term 
by the Adomian’s polynomials. ADM also assumes that the 

nonlinear operator ( )N y  can be decomposed by an infinite 

series of polynomials given by 

( )
0

n

n

N y A
∞

=

=∑                                 (17) 

with 

0 0

1
, 0,1,2,...

!

n
j

n jn
j

d
A N y n

n d
λ

λ
λ

∞

= =

 
= = 

 
∑       (18) 

where (13) represents the Adomian polynomials of 

0 1 2, , ,..., ny y y y . 
By means of (16), (17) and (18), one gets 

0

( )n

n

y x
∞

=

Θ =∑                              (19) 

with 

1 1 1

0 0

( ) ( )n n

n n

C Dx L h x L R y x L A
∞ ∞

− − −

= =

   Θ = + + − −   
   
∑ ∑  (20) 

The recursive formula is given by 

0

1 1
1

( )

n n n

y g x

y L Ry L A
− −

+

= 
= − − 

                  (21) 

Using (21), the solution of y can be obtained as follows 

0

lim
n

j
n

j

y y
→∞

=

= ∑                                 (22) 

The order and the rate of convergence of the Adomian 
decomposition method are summarized below [23]. 

Definition 1 

For every {0},n N∈ ∪ we define the rate of convergence 
as 

?� = @‖����‖‖��‖ , ‖��‖ ≠ 00, ‖��‖ = 0  

Theorem 1 
Let N be an operator from a Hilbert space H into H and y 

be exact solution of fyNy += )( . Then the sum, ∑ yn,���EF"  which is obtained from (19) converges to y such 
that 0	 ≤ ?	 < 1, ‖����‖ 	≤ ?‖��‖, ∀I	 ∈ K	L{0}. 

Remark 1 

a)  The expression in Theorem 1 that is ∑
−

=

1

0

n

j

ny converges 

to an exact solution y, when 0≤ ?� < 1, I = 1, 2, 3, … 
b) A detailed proof of the convergence of ADM using the 

entire series property can be found in [24] 

2.3. Analysis of the Successive Approximation Method 

Here, the successive approximation method will be 
analyzed as follows [25]. 

Consider the initial value problem of first order ordinary 
differential equation of the form 

y'(x)=f (x, y), y (,")=�"                      (23) 

Integral representation of (23) yields 

R �′
,�	T,	..U = R 	�
,, �
,��T,..U                  (24) 

Solving (24) further one gets 

�
,�	– 	�	
,"� = R 	�
,, �
,��T,..U                 (25) 

Substituting the initial condition y (xo)=yo into (25), yields 

�
,� = �" +	R 	�
,, �
,��T,..U .                  (26) 

Changing the variable of integration to t instead of x in 
(26) gives, 

�
,� = �" +	R 	�
,, �
W��TW..U                     (27) 

Equation (27) is used to generate a successive 
approximation of solution to the initial value problem (23) 
which is of the form: 

��
,� = �" + R 	��,, ����
W��TW..U , I = 1, 2, 3, ...     (28) 

Hence, the successive approximations are obtained as: 

y0 (x)=�", ��
,� = �" + R 	��,, �"
W��TW..U ,	��
,� = �" + R 	��,, �"
W��TW..U ,…                            (29) 
 

The following result gives the existence and uniqueness 
theorem for the successive approximation method [26] 

Theorem 2 
Let ),( yxf be a continuous function of (x, y) plane in a 
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region D. Let M be a constant such that 

│f (x, y)│ < M in D                         (30) 

Also, let f (x, y) in D satisfies the Lipschitz condition: 

│f (x, y1) - f (x, y2)│ ≤ A│y1-y2│                (31) 

where A is independent of x, y1, y2. 
Suppose there exists a rectangle R defined by 

│x-x0│≤ h, │y-y0│≤ k,                        (32) 

such that Mh < k where R ⊆ D. Then for │x- x0│ ≤ h, 
),( yxfy =′  has a unique solution y=y (x) for which

00 )( yxy = . 

3. Illustrative Examples 

It is usually necessary to demonstrate the suitability and 
applicability of the methods. In this course, the algorithms of 
the methods have been successfully translated into the 
MATLAB programming language and implemented on some 
initial value problems. The performance of the methods has 
been checked by comparing their accuracy and efficiency 
with the exact solution. The efficiency was determined from 
the number of iterations counts and number of function 
evaluations per step while the accuracy is determined by the 
size of the discretization error estimated from the difference 
between the exact solution and the numerical 
approximations. 

Problem 1 
Consider the initial value problem of first order linear 

ordinary differential equation 

1)0(,02 ==−′ yxyy                  (33) 

The exact solution of (33) is obtained as 

2( ) exp( )y x x=                          (34) 

The comparative results analyses of the FS, ADM and 
SAM in the context of the theoretical solution are displayed 
in Figure 1 below. The errors incurred in the FS, ADM and 
SAM are shown in Figure 2 below. 

 

Figure 1. The comparative results analyses of the ADM and SAM in the 

context of the Exact Solution (ES) for different values of x. 

 

Figure 2. The errors incurred in the FS, ADM and SAM for different values 

of x. 

Problem 2 
Consider the initial value problem of first order linear 

ordinary differential equation 

1)0(,0 ==−′ yyy                        (35) 

The exact solution of (35) is obtained as 

)exp()( xxy =                              (36) 

The comparative results analyses of the ADM and SAM in 
the context of the exact solution are displayed in Figure 3 
below. 

 

Figure 3. The comparative results analyses of the FS, ADM and SAM in the 

context of the Exact Solution (ES) for different values of x. 

Problem 3 
Consider the initial value problem of first order non-linear 

ordinary differential equation 

21 , (0) 0y y y′ = − =                       (37) 

The exact solution of (37) is obtained as 

1 exp( 2 )
( )

1 exp( 2 )
x

y x
x

− −=
+ −                             (38) 

The comparative results analyses of the FS, ADM and 
SAM in the context of the exact solution are displayed in 
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Figure 4 below. The errors incurred in the FS, ADM and 
SAM are shown in Figure 5 below. 

 

Figure 4. The comparative results analyses of the FS, ADM and SAM in the 

context of the Exact Solution (ES) for different values of x. 

 

Figure 5. The errors incurred in the FS, ADM and SAM for different values 

of x. 

Problem 4 
Consider the initial value problem of third order non-linear 

ordinary differential equation 

2( ) 3 , (0) 0, (0) 2y yy y y y y′′′ ′′ ′ ′ ′= − + + = = −  (39) 

The exact solution of (39) is obtained as 

1
( ) (1 exp( 2 ))

2
y x x= − −                         (40) 

The comparative results analyses of the FS, ADM and 
SAM in the context of the exact solution are displayed in 
Figure 6 below. The errors incurred in the FS, ADM and 
SAM are shown in Figure 7 below. 

 

Figure 6. The comparative results analyses of the FS, ADM and SAM in the 

context of the Exact Solution (ES) for different values of x. 

 

Figure 7. The errors incurred in the FS, ADM and SAM for different values 

of x. 

Problem 5 
Consider the initial value problem of first order non-linear 

ordinary differential equation 

,1)0(02 ==−′ yyy                      (41) 

The exact solution of (41) is obtained as 

x
xy

−
=

1
1

)(                                (42) 

The comparative results analyses of the FS, ADM and 
SAM in the context of the exact solution are displayed in 
Figure 8 below. The errors incurred in the FS, ADM and 
SAM are shown in Figure 9 below. 

 

Figure 8. The comparative results analyses of the FS, ADM and SAM in the 

context of the Exact Solution (ES) for different values of x. 
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Figure 9. The error incurred in the FS, ADM and SAM for different values of 

x. 

4. Discussion of Results and Concluding 

Remarks 

In this paper, the review of some numerical methods, 
namely third order convergence numerical method known as 
“FS” devised via a transcendental interpolating function of 
exponential type, ADM and SAM for the solution of linear 
and non-linear differential equations is presented. The 
comparative results analyses of FS, ADM and SAM in the 
context of the exact solution are also presented. The 
performance of the FS, ADM and SAM is measured based on 
the accuracy, efficiency and convergence. Five illustrative 
examples were considered. The results generated via the 
three methods show that they are good tools for the solution 
of initial value problems of first order linear ordinary 
differential equations; see Figures 1 and 3. It is also observed 
that FS is more accurate than ADM and SAM as shown in 
Figure 2. It is observed from Figures 4, 6 and 8 that FS and 
SAM performed better than ADM in terms of accuracy in the 
case of the non-linear differential equations. It is also 
observed from Figures 5, 7 and 9 that SAM converges faster 
to the exact solution than the FS and ADM. In terms of 
efficiency, ADM has performed excellently since the run time 
of ADM is less than that of FS and SAM in the case of non-
linear ordinary differential equations. Some extensions and 
modifications of the methodology can be explored by further 
research. A natural extension is the applications of FS, ADM 
and SAM for the solution of some special initial value 
problems of higher order differential equations emanating 
from the real life problems with the point of singularity. 
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