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Abstract: We study the dynamics of a charged Brownian particle in a 2-D harmonic well under the action of two AC driving
forces with different amplitudes as well as with a phase difference, ¢ between them. Interestingly we observed that the system
exhibits magnetism even in the absence of magnetic field. We have exactly calculated the magnetic moment and investigated
the behaviour in the presence of a linear velocity dependent force. The behaviour of the magnetic moment in various parameter
regimes of the model is analyzed. The magnetic moment is found to get suppressed with increase in the amplitude of the linear
velocity dependent force. Interestingly we observed that when the phase difference between the AC drives lies in between 0 and
5, the system shows a paramagnetic behaviour whereas the system shows a diamagnetic behaviour when the phase difference
between the AC drives lies in between 7 and 7. These magnetic behaviours have also been confirmed from the parametric plots.
For the phase difference between 0 and 7, the orbit of precission of the Brownian particle is in the clockwise direction where as

for the phase difference between 7 and , the orbit of precission of the Brownian particle is in the anticlockwise direction.
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1. Introduction

The contemporary philosophical discussions of statistical
mechanics primarily focus on issues such as securing a
basic foundation for thermodynamics and interpreting the
probabilities in statistical physics. What philosophers mean
when they say that the target of non equilibrium statistical
mechanics is to account for aspects of thermodynamics. While
there are a number of aspects of thermodynamics whose
justification relies on non equilibrium statistical mechanics,
philosophers have tended to focus on the issues to express the
existence of thermodynamically irreversible processes with the
underlying reversible dynamics. Equilibrium thermodynamics
is based on the observation that some states of matter, which
are operationally definable. The thermodynamic study of non-
equilibrium systems requires more generalised concepts that
deals with by the means of equilibrium thermodynamics [1-4].

The theory of Brownian motion is perhaps the simplest
approximate way to treat the stochastic dynamics of non-
equilibrium systems [5-7]. The most fundamental equation

used to represent the dynamics of a stochastic or Brownian
particle is called the Langevin equation; it mainly contain two
different kinds of forces, namely frictional force or viscous
force and the random force or noise. These two different kinds
of forces are basically due to the intercation of the particle
with the environment [8-11]. The viscous force mainly opposes
the particle in a direction opposite to it’s motion where as
the random force try to make the movement of the particle
in a random direction. Over the progress of years, there
is a huge interest in the study of Brownian dynamics of a
particle in various circumstances in both physics as well as
in Biology. In this article, we particularly take interest in the
dynamics of a charged Brownian particle under the action of
two sinosoidal driving forces and in the presence of a linear
velocity dependent force. Some of the recent studies are based
on the stochastic dynamics of a particle in the presence of linear
velocity dependent forces [12-14].

In this work, we are particularly interested in the dynamics of
the particle in the nonequilibrium steady state or stationary state.
We have mainly investigated the impact of the linear velocity
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dependent force on the dynamics of a charged Brownian particle
under the action of two sinosoidal driving forces. Due to the
circular motion of a charged Brownian particle in the presence
of magnetic field, one would expect non-vanishing magnetic

moment even without considering the spin of a charged particle.

This delusion has been discussed by Neils Bohr and H J van
Leuween separately in there research works [15, 16]. They
had shown that in the presence of a constant magnetic field
and in classical equilibrium systems, the magnetisation or the
corresponding magnetic moment of a charged Brownian particle
is identically zero. This is known as Bohr van Leuween (BvL)
theorem. However, the particle posses a magnetic moment
when the particle is in nonequilirbium conditions [17-19]. In the
present work, we show that when a charged Brownian particle
is subjected to two sinosoidal driving forces with a phase
difference ¢ between them, the system posses a nonequilibrium
magnetic moment even in the absence of magnetic field and is
consistent with the classical Bohr-van-Leeuwen theorem.

2. The Model

We consider the dynamic of a charged Brownian particle with
charge e in a two dimensional harmonic well in the presence
of two ac drives along both x and y direction with a phase
difference ¢ between them and an additional linear velocity
dependent force fs(1 — ;-), where vy is the autonomous
velocity [20] in both x and y direction. The motion of such
a particle including inertia is described by the Langevin’s

equation of motion [3, 4, 18, 21-23]

mi= - - Dy raw

ox

z
Vo

ou
mj ==y — -+ fs(L— =)+ &(t) 2)

dy
where m is the particle mass and £,(t) is the random force
which is a Gaussian white noise. It satisfies the properties
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Here o, 8 = z,y and < is the frictional coefficient. The
predefined factor D = 2~kpgT is the consistensy condition
for a system to approach in equilibrium in the absence of
a time dependent potential. The time-independent potential
was considered earlier to expound the crutial role played by
the boundary conditions in the celebrated theorem of Bohr
van-Leeuwen in the absence of diamagnetism in classical
systems[24, 25]. This interprets that the free energy of a system
is independent of the presence of magnetic field. The equations
of motion for the charged Brownian particle in the over-damped
regime reduce to,
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Here k is the harmonic constant, A and B are the
corresponding amplitudes of the ac drive forces.

3. Results and Discussions

In order to solve the dynamics, we have defined a new
variable 2 = x + iy(i = \/—1) [4, 18] and with the help
of this new variable, the under-damped equations (1) and (2)
changes to,

mz"(t) + L2 (t) + kz(t) = Asin(wt) + iB cos(wt + ¢) + s’ + £(t) (6)

where
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The formal solution of above coupled equations can be obtained as,
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where p = v/ L? — 4km where at time ¢ = 0 the initial condition is taken as zg = xq + iy

3.1. Non-Equilibrium Magnetic Moment

The averaged magnetic moment over a single period (22) of
the drive can be calculated as [3, 18, 24]

—00 2me 27

€ w t+277r
<M >= lim |- / <FxT>dt'|  @8)
t

Both 7 and ¢ can be obtained from the solutions of the
dynamics and substituting 7" and ¥ in above equation, we get
the nonequilibrium magnetic moment as
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We have plotted the dimensionless magnetic moment ((M) =
3

(%)) as a function of dimensionless frequency w for

different values of phase difference ¢ and fs. Here we have set

A, B, , vy and m as unity.
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Figure 1. The plot of dimensionless { M) versus sinusoidal frequency
w for different values of fs and for two different values of phase
difference ¢.

In Figure 1(a) and Figure 1(b), we have plotted the
nonequilibrium magnetic moment, (M) as a function of the
frequency of the drive for two different phases. From the
calculation of (M) and from the above plots, we conclude
with some observations. In a non-equilibrium state, we obtain
a non zero magnetic moment, and this does not violate the
well known Bohr-van Leeuwen theorem as it is valid only for
systems in thermodynamic equilibrium. (M) goes to zero as
w — 0, and this limit corresponds to an equilibrium state. For
both small and large value of w, (M) vanishes thatis (M) — 0
as w — 0 and w — oo. For all the values of the frequency
of the drive, w, the (M) is positive when the phase difference
between the driving forces are 45 and hence the system shows
a paramagnetic behaviour. However the (M) is negative for
all the values of the frequency of the drive when ¢ is 135 and
hence the system is diamagnetic in nature. (M) exhibits a peak
as a function of w. For a fixed f value, the (M) first increases,
shows a peak and then decreases with w. For f, = 0, the (M)

shows a peak exactly at w = 1. That means at this point the
systems exhbits a resonance kind of behaviour. As a result
the (M) shows a maximum exactly when the freqency of the
drives matches with the natural frequency of the particle, i.e.,
atw = /( %) The peak value of (M) gets suppressed with
increase in fs. At the same time, the peaks get shifted towards
left with increase in f value. This indicates that slow varying
driving force is required in order to have a maximum value
in the magnetic moment with increase in the linear velocity
dependent force.

The similar observations have been drawn when the phase
difference is ¢ = 135. (M) exhibits a maximum as a function
of w in the negative direction. This confirms the diamagnetic
behaviour of the system. The peaks of diamagnetic regime
also decrease with increase in the value of fs;. The magnetic
moment shows a transition with the phase difference between
the two driving forces, i.e., from paramagnetic to diamagnetic
behaviour at ¢ = 90°. So the systems with ¢ < 90° show
paramagnetic behaviour and systems with ¢ > 90° show
diamagnetic nature.

Similarly in Figure 2, we have plotted the dimensionless

magnetic moment, ((M) (M)) as a function of
frequency of the drive, w for different values of the harmonic
constant k and for two different values of phase difference ¢.
Here also we have set A,B and m as unity.
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Figure 2. The plot of average Magnetic moment (M) versus
sinusoidal frequency w for different values of k and for two different
phase difference ¢.
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From the calculation of (M) as well as from the above
plot (Figure 2(a)), we observed that there exists a non zero
magnetic moment in nonequilibrium state, i.e., (M) is having
finite value for any finite values of the frequency of the drive
other than 0 and co. In this case, the phase difference between
the two driving forces is kept as 45. In the limit of w — 0 and
w — 00, the (M) approaches zero value. k& — 0 limit basically
corresponds to the free particle behaviour. In this limit, the
(M) decreases with increase in the frequency of the drive and
approaches zero in the large frequency limit. For a finite value
of k, the (M) increases with increase in w, shows a maximum
value and then decreases with w. The peak or maximum value
in (M) shifts toward right with increase in the value of the
harmonic constant k. This implies that with increase in k value,
higher value of frequency is required in order to achieve the
resonant kind of behaviour, as a result the output response
will be enhanced and the (M) will show a peak. Further with
increase in k value, the peaks get broader. This implies that
the fluctuations across the minimum of the well increase with
increase in the k value. Similar kind of observations have been
drawn when the phase difference between the driving forces
is 135. However, the (M) shows negative values for all values
of frequency of the drive. This implies the system exhibits a
diamagnetic nature, when the two driving forces are separated
by a phase difference¢ = 135°.

3.2. Parametric Plots

In order to understand the movement or the trajectory of
the particle, we have plotted the parametric plots (y(t) versus
2(t)) in various parameter regimes of the model. The natural

frequency of the particle is nothing 2 = \/%. Due to the

complex interaction of the particle in the presence of The other
parameters k, m, vg and -y are fixed to be as unity.

When the amplitude of both the driving forces are same and
if there is no phase difference between them (i.e., if ¢ = 0 and
A = B), we observed that on average the particle moves in
the plane in circular orbits as expected. This implies that the
particle exhibits angular momentum and hence the magnetic
moment. This magnetic moment is due to the orbital motion of
the particle and hence paramagnetic in nature [26]. Under the
application of the linear velocity dependent force, the motion of
the particle is draged in the direction of the force. As a result we
observed that for the phase difference ¢ = 0°, there is a shift
of the circular orbits in the plane in the diagonal direction with
increase in the value of f. This clearly indicates that under the
action of the linear velocity dependent force, the motion of the
particle on average is dragged in the direction of the force in
the diagonal direction of the plane. This is because the effect
of the application of the force on the motion of the particle is
same in both = and y direction as the amplitude of the driving
force are same in both x and y direction.

When the amplitude of driving force in the y-direction is
larger than that of the amplitude of driving force in the x-
direction, i.e., for A > B, there is an asymmetry in the
movement of the particle in the xy-plane on average. For

A > B, the influence of the motion of the particle is more
in the direction of the amplitude of driving A (y-direction)as
compared to the motion of the particle in the direction of
amplitude of driving B (z-direction). As a result even if there
is no phase difference between the driving forces, i.e., for
¢ = 0°,the particle on average moves in elliptical orbits as
there is an asymmetry in the motion of the particles in both
the directions in the XY-plane. This corresponds to a state of
non zero orbital magnetic moment. The parametric plots for
different values of f, confirms that there is a shift of the plots in
the plane with increase in f, value. In addition to the motion of
particle in the xy plane, it follows the direction of linear velocity
dependent force, that’s why there is a shift in the parametric
plots with increase in f5 value.

Similarly when the amplitude of driving force in the x-
direction is smaller than that of the amplitude of driving in the
y-direction, i.e., for A < B, the motion of the particle is more
favoured in the x-direction as compared to the y-direction. As a
result there is an asymmetry in the motion of the particle in the
XY plane. In the presence the sinosoidal driving forces in both
the directions, the particle exhibits orbital motion and hence
posseses the orbital angular momentum. However the orbit of
motion is elliptic in nature due to the presence of assymetry in
the motion. In the presence of linear velocity dependent force,
the particle follows the direction of velocity dependent force
in addition to it’s motion in the xy-plane. These behaviour can
be confirmed from the parametric plots (Figure 3(c)). With
increase in the value of fs, there is shift of the orbits in the
diagonal direction of the xy-plane.

From the parametric plots (Figure 4(a) and Figure 4(b)), it
is observed that when the phase difference between the driving
forces is ¢ = 45°, the orbit of motion is elliptic in nature
even if the amplitude of drivings in both z and y are same.
Most importantly from the parameteric plots we can notice
that the particle precesses in clockwise direction in an elliptic
orbit. This implies that particle exhbits a positive magnetic
moment and hence the system is paramagnetic in nature. This
is a clear confirmation of the results obtained in Figure 1(a)
and Figure 2(a) respectively. Moreover, with increase in f
value, there is a shift of the orbits in xy-plane. This indicates
that in addition to the motion of the particles in an elliptic
orbit, the particle takes the advantage of the linear velocity
dependent force and follows the direction of f resulting a
shift of orbits in the xy-plane with increase in f,. Similarly
the parametric plots from Figure 4(b), it is reflected that when
the amplitude of two driving forces are same and if they are
separated by a phase difference ¢ = 135°, the particle precesses
in anticlockwise direction in an elliptic orbit and hence posses
a negative magnetic moment. As a result the system shows
diamagnetic behaviour. This is clear confirmation of the results
already obtained from Figure 1(b) and Figure 2(b).
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Figure 3. Parametric plots ({y(t)) vs (z(t))) for different values of
fs and for different situations for the amplitudes of drivings in (a), (b)
and (c) respectively when the two external driving forces are separated
by a phase difference ¢ = 0°. The other parameters k, v and m are

fixed to unity.
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Figure 4. Parametric plots (y(t)) versus {(x(t)) for different values
of fs and for phase difference ¢ = 45° in Figure 4(a) and for the
phase difference ¢ = 135° in Figure 4(b). The amplitude of drivings
remain same in both the cases. The other parameters k, v and m are
fixed to unity.

4. Conclusion

In conclusion, we have studied the dynamics of a charged
Brownian particle in the presence of two sinosoidal driving
forces of different amplitudes but with a phase difference, ¢
when the particle is confined in a 2D harmonic well and further
subjected to a linear velocity dependent force. Interestingly
here we observe that the particle posses an angular momentum
in the presence of two sinosoidal driving forces even in the
absence of magnetic field, hence shows magnetic behaviour.
Further, there is a transition of the magnetic behaviour of the
system at ¢ = 90°. For ¢ < 90°, the system is paramagnetic
in nature and for ¢ > 90°, the system is diamagnetic in
nature. For both the phases, we have exactly investigated
the parametric plots and analyzed the orbiting behavior of
the particles. It is confirmed that for the phase difference
¢ < 90°, the particle precesses in an elliptic orbit in the
clockwise direction, reflecting the paramagnetic nature of the
system. For the phase difference ¢ > 90°, the particle precesses
in an elliptic orbit with anticlockwise direction, reflecting the
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diamagnetic nature of the system. Moreover,in the presence of
linear velocity dependent force the particle follows the direction
of force as a result we observe a shift in the orbits in the xy-
plane with f.
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