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Abstract: Solving systems of partial differential equations (linear or nonlinear) with dirchelet boundary conditions has rarely
made use of the Adomian decompositional method. The aim of this paper is to obtain the exact solution of some systems of
linear and nonlinear partial differential equations using the adomian decomposition method.After having generated the basic
principles of the general theory of this method, five systems of equations are solved, after calculation of the algorithm.Our results
suggest that the use of the adomian method to solve systems of partial differential equations is efficient.However, further research
should study other systems of linear or nonlinear partial differential equations to better understand the problem of uniqueness of
solutions and boundary conditions.
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1. Introduction

Over the past 25 years, the adomian decomposition method
(ADM) [1], first introduced by American physicist George
Adomian, has been used to efficiently and easily solve
a large class of ordinary linear and nonlinear and partial
differential equations. In his famous book, Adomian [2, 3]
showed the possibility of obtaining explicit solutions to a
variety of physical problems. He indicated that no similarity
reduction is used to solve Burger’s equation, where the explicit
solution was obtained using the t-partial solution. In this
sense Adomian et al. [4] analyzed mathematical models
of the dynamic interaction of the immune response with a
population of bacteria, viruses, antigens, or tumor cells. Other
researchers, for example by Cherruault et al. [5], Kaya and
El-Sayed [6], Biazar et al. [7], Hashim et al. [8], and Lesnic
[9].

Subsequently studied analytically and numerically other
scientific models. Recently, Sweilam and Khader [10] applied
ADM to analyze the nonlinear vibrations of multi-walled
carbon nanotubes. In most cases, ADM provides a rapidly
converging sequence of approximations, often requiring no

more than a few terms for high accuracy. Moreover, the
convergence of ADM has been discussed by Cherruault
[11], Cherruault et al. [12], Cherruault and Adomian [13],
and Cherruault et al. [14]. Moreover, many authors
who are interested in this method to solve limit value
problems [15] have shown that the ADM method can be used
directly without restrictive assumptions, linearization or green
functions. For example, Adomian and Rach [16] have shown
the efficiency of this method in solving nonlinear BVPs in
several dimensions particularly various ordinary and partial
differential equations with Dirichlet conditions and Neumann-
type boundary conditions. Thus, Adomian by solving the
Thomas - Fermi equation subject to the boundary of Dirichlet’s
conditions to show that his solution depended on the evaluation
of the unknown constants of integration by applying the
boundary conditions of each determined approximate solution.
Many other problems from physics and engineering have been
solved by ADM such as the Shawagfeh nonlinear oscillator
equation [17], the heat equation of Hadizadeh and Maleknejad
[18 ], and Wazwaz’s Bratu-type equations [20]. Benabidallah
and Cherruault [21–23] also used ADM to solve classes of
BVP with Dirichlet boundary conditions subsequently higher
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order nonlinear boundary value problems were investigated
by Al-Hayani [ 26], Wazwaz [27, 28] and Hashim [29].
Dehghan [30] applied the ADM to solve a two-dimensional
parabolic equation subject to non-standard limit specifications,
however little attention has been devoted to the application of
ADM in solving systems of partial differential equations with
Neumann boundary conditions, the mathematical difficulties
encountered in solving these systems of partial equations
this brought led the researchers to develop several techniques
to obtain approximate or exact solutions capable of best
describing the physical laws and the observed phenomena.
This is the case for systems of equations resulting from
the Brusselator diffusion-reaction model, the resolution of
which appealed among others to the Sumudu method [19]
and variational iterations [24, 31, 32]. However, taking into
account the difficulties presented in the determination of the
exact solution of this system, the decompositional method
of Adomian seems to circumvent this one by the use of
recursive relations developed in due course, the aim of this
paper to determine the exact solutions of some systems of
partial differential equations (linear and nonlinear) using the
Adomian decompositional method.

2. The Adomian Decomposition Method

2.1. About the Adomian Decomposition Method

Assume function u the solution in a real Hilbert space H of
following equation:

Au = f (1)

where A : H → H is a linear or a nonlinear operator, f ∈ H
and u is the unknown function. The principle of the ADM is
based on the decomposition of the operator A in the following
form:

A = L+R+N (2)

The operator A is the linear sum L + R , N nonlinear,
L invertible with L−1 as inverse. Using that decomposition,
equation (1) is equivalent to

u = θ + L−1f − L−1Ru− L−1Nu (3)

where θ verifies Lθ = 0. (3) is called the Adomian’s
fundamental equation or Adomian’s canonical form.We look
for the solution of (1) in a series expansion form u =
+∞∑
n=0

un and we consider Nu =
+∞∑
n=0

An where An are

special polynomials of variables u0, u1, ..., un called Adomian
polynomials and defined by:

An =
1

n!

dn

dλn

[
N

(
+∞∑
i=0

λiui

)]
λ=0

n = 0, 1, 2, ... (4)

where λ is a parameter used by ”convenience”. Thus (3) can
be rewritted as follllows:

+∞∑
n=0

un = θ + L−1f − L−1R(

+∞∑
n=0

un)− L−1(

+∞∑
n=0

An) (5)

If we assume that the series
+∞∑
n=0

un and
+∞∑
n=0

An are

convergent, by identification we get the Adomian algorithm:

u0 = θ + L−1f = g
u1 = −L−1(Ru0)− L−1A0

.

.

.
un+1 = −L−1(Run)− L−1An n > 0

(6)

In practice it is often difficult to calculate all the terms of
an Adomian series, so we approach the series solution by the

truncated series: u =
n∑
i=0

ui, where the choice of n depends on

error requirements. If this series converges, the solution of (1 )
is:

u = lim
n→+∞

n∑
i=0

ui (7)

2.2. Remark

In order overcome the short coming , we assume that g
can be divided into the sum of two parts namely g0 and g1 ,
therefore we get

g = g0 + g1. (8)

Using the iteration procedure Eq (6) we suggest the
following modification u0 = g0

u1 = g1 − L−1(Ru0)− L−1A0

un+1(x, t) = −L−1(Run)− L−1An, n ≥ 1
(9)

We see that the solution through the modified Adomian
decomposition method highly depends upon the choice of g0
and g1.

3. Applications

3.1. Example 1

Let us consider the following linear system [10]:

∂u(x, t)

∂t
− ∂v(x, t)

∂x
− u(x, t) + v(x, t) = −2

∂v(x, t)

∂t
− ∂u(x, t)

∂x
− u(x, t) + v(x, t) = −2

u(x, 0) = 1 + ex

v(x, 0) = −1 + ex

(10)

where u(x, t) ⊂ C1 (Ω) et v(x, t) ⊂ C1 (Ω), Ω = [0, L] ×
[0, T ].

Let’s take Lt (.) =
∂ (.)

∂t
, L−1t (.) =

t∫
0

(.) ds
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From (10), we have: 

u(x, t) = 1 + ex − 2t+

t∫
0

∂v(x, s)

∂x
ds+

t∫
0

u(x, s)ds−
t∫

0

v(x, s)ds

v(x, t) = −1 + ex − 2t+

t∫
0

∂u(x, s)

∂x
ds+

t∫
0

u(x, s)ds−
t∫

0

v(x, s)ds

(11)

Suppose now that the solution (u(x, t); v(x, t)) of the problem (10) is expressed as form:
u(x, t) =

+∞∑
n=0

un(x, t)

v(x, t) =

+∞∑
n=0

vn(x, t)

(12)

Putting (12) into (11) gives

+∞∑
n=0

un(x, t) = 1 + ex − 2t+

+∞∑
n=0

t∫
0

∂ (vn(x, s))

∂x
ds+

+∞∑
n=0

t∫
0

(un(x, s)) ds−
+∞∑
n=0

t∫
0

(vn(x, s)) ds

+∞∑
n=0

vn(x, t) = −1 + ex − 2t+

+∞∑
n=0

t∫
0

∂ (un(x, s))

∂x
ds+

+∞∑
n=0

t∫
0

(un(x, s)) ds−
+∞∑
n=0

t∫
0

(vn(x, s)) ds

(13)

From (13), we get the following Adomian algorithm:


u0(x, t) = 1 + ex

u1(x, t) = −2t+
t∫
0

∂v0(x, s)

∂x
ds+

t∫
0

u0(x, s)ds−
t∫
0

v0(x, s)ds

un+1(x, t) =
t∫
0

∂vn(x, s)

∂x
ds+

t∫
0

un(x, s)ds−
t∫
0

vn(x, s)ds, n ≥ 1

and
v0(x, t) = −1 + ex

vn+1(x, t) = −2t+
t∫
0

∂u0(x, s)

∂x
ds+

t∫
0

u0(x, s)ds−
t∫
0

v0(x, s)ds

vn+1(x, t) =
t∫
0

∂un(x, s)

∂x
ds+

t∫
0

un(x, s)ds−
t∫
0

vn(x, s)ds, n ≥ 1

(14)

Thus, we obtain: 


u1(x, t) = tex

u2(x, t) = 1
2 t

2ex

...
un(x, t) = 1

n! t
nex

and
v1(x, t) = tex

v2(x, t) = 1
2 t

2ex

...
vn(x, t) = 1

n! t
nex

(15)
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Combining the results obtained above we obtain
u(x, t) = 1 + ex

(
1 + t+

1

2!
t2 + · · ·+ 1

n!
tn + · · ·

)
v(x, t) = −1 + ex

(
1 + t+

1

2!
t2 + · · ·+ 1

n!
tn + · · · .

) (16)

The solution of the problem (10) is  u(x, t) = 1 + ex+t

v(x, t) = −1 + ex+t
(17)

3.2. Example 2

Let us now consider the following system of linear partial differential equations:

∂u(x, t)

∂t
+
∂v(x, t)

∂x
− u(x, t)− v(x, t) = 0

∂v(x, t)

∂t
+
∂u(x, t)

∂x
− u(x, t)− v(x, t) = 0

u(x, 0) = sinhx

v(x, 0) = coshx

(18)

where u(x, t) ⊂ C1 (Ω) and v(x, t) ⊂ C1 (Ω), Ω = [0, T ]× [0, T ] .

Operating with L−1t (.) =
t∫
0

(.) ds on (18), we obtain


u(x, t) = sinhx−

t∫
0

∂v(x, s)

∂x
ds+

t∫
0

(u(x, s) + v(x, s)) ds

v(x, t) = coshx−
t∫
0

∂u(x, s)

∂x
ds+

t∫
0

(u(x, s) + v(x, s)) ds

(19)

Let’s now we suppose that the solution (u(x, t); v(x, t)) of the problem (18) has the following form:
u(x, t) =

+∞∑
n=0

un(x, t)

v(x, t) =
+∞∑
n=0

vn(x, t)

(20)

from (19) using (20), we have

+∞∑
n=0

un(x, t) = sinhx−
t∫
0

∂

(
+∞∑
n=0

vn(x, s)

)
∂x

ds+
t∫
0

(
+∞∑
n=0

un(x, s) +
+∞∑
n=0

vn(x, s)

)
ds

+∞∑
n=0

vn(x, t) = coshx−
t∫
0

∂

(
+∞∑
n=0

un(x, s)

)
∂x

ds+
t∫
0

(
+∞∑
n=0

u(x, s) +
+∞∑
n=0

vn(x, s)

)
ds

(21)
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Therefore, the pair of zeroth components is given by


u0(x, t) = sinhx

un(x, t) = −
t∫
0

∂ (vn(x, s))

∂x
ds+

t∫
0

(un(x, s) + vn(x, s)) ds

and
v0(x, t) = coshx

vn(x, t) = coshx−
t∫
0

∂ (un(x, s))

∂x
ds+

t∫
0

(un(x, s) + vn(x, s)) ds

(22)

Consequently, we obtain 



u(x, t) = sinhx
u1(x, t) = t coshx

u2(x, t) =
t2

2!
sinhx

u3(x, t) =
t3

3!
coshx

...
and

v0(x, t) = coshx
v1(x, t) = t sinhx

v2(x, t) =
t2

2!
coshx

v3(x, t) =
t3

3!
sinhx

...

(23)

.
Rearranging the results obtained previously gives

u(x, t) =

(
1 +

t2

2!
+ · · ·

)
sinhx+

(
t+

t3

3!
+ · · ·

)
coshx

v(x, t) =

(
1 +

t2

2!
+ · · ·

)
coshx+

(
t+

t3

3!
+ · · ·

)
sinhx

(24)

We obtain the solution of the problem (18) :  u(x, t) = sinh (x+ t)

v(x, t) = cosh (x+ t)
(25)

3.3. Example 3

Let us now consider the following system of non linear partial differential equations :

∂u(x, t)

∂t
+ 2

∂u(x, t)

∂x
v(x, t)− u(x, t) = 2

∂v(x, t)

∂t
− 3

∂vx, t)

∂x
u(x, t)− v(x, t) = 3

u(x, 0) = ex

v(x, 0) = e−x

(26)
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where u(x, t) ⊂ C1 (Ω) and v(x, t) ⊂ C1 (Ω), Ω = [0, T ]× [0, T ] .

Operating with L−1t (.) =
t∫
0

(.) ds on (26), we get


u(x, t) = ex + 2t− 2

t∫
0

N(x, s)ds+
t∫
0

u(x, s)ds

v(x, t) = e−x + 3t+ 3
t∫
0

M(x, s)ds−
t∫
0

v(x, s)ds

(27)

Where N(u, v) =
∂u(x, t)

∂x
× v(x, t) and M(u, v) =

∂v(x, t)

∂x
× u(x, t).

According to the ADM, we assume that the solution of (26) is expressed as
u(x, t) =

+∞∑
n=0

un(x, t)

v(x, t) =
+∞∑
n=0

vn(x, t)

(28)

and 
An(x, t) = N(u, v) =

1

n!

dn

dλn

[(
+∞∑
n=0

λiui

)′
x

(
+∞∑
n=0

λivi

)]
λ=0

Bn(x, t) = M(u, v) =
1

n!

dn

dλn

[(
+∞∑
n=0

λivi

)′
x

(
+∞∑
n=0

λiui

)]
λ=0

; n = 0, 1, ... (29)

Using the (ADM), the equation (27) can be written as follows:

+∞∑
n=0

un(x, t) = ex + 2t− 2
t∫
0

(
+∞∑
n=0

An(x, s)

)
ds+

t∫
0

(
+∞∑
n=0

un(x, s)

)
ds

+∞∑
n=0

vn(x, t) = e−x + 3t+ 3
t∫
0

(
+∞∑
n=0

Bn(x, s)

)
ds−

t∫
0

(
+∞∑
n=0

vn(x, s)

)
ds

(30)

So, the Adomian algorithm is:


u0(x, t) = ex

u1(x, t) = 2t− 2
t∫
0

A0(x, s)ds+
t∫
0

u0(x, s)ds

un+1(x, t) = −2
t∫
0

An(x, s)ds+
t∫
0

un(x, s)ds, n ≥ 1

and
v0(x, t) = e−x

v1(x, t) = 3t+ 3
t∫
0

B0(x, s)ds−
t∫
0

v0(x, s)ds

vn+1(x, t) = 3
t∫
0

Bn(x, s)ds−
t∫
0

vn(x, s)ds, n ≥ 1

(31)
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(29)and (31) result to: 


A0 = N(u0, v0) =

∂u0(x, t)

∂x
× v0(x, t) = 1,

u1(x, t) = tex

An = 0, n ≥ 1

un(x, t) =
tn

n!
ex, n ≥ 2

and
B0 = M(u0, v0) =

∂v0(x, t)

∂x
× u0(x, t) = −1,

v1(x, t) = −te−x
Bn = 0, n ≥ 1

vn(x, t) =
(−t)n

n!
e−x, n ≥ 2.

(32)

We obtain the solution of the problem (26)
u(x, t) = lim

n→+∞

n∑
i=0

tn

n!
ex = ex+t

v(x, t) = lim
n→+∞

n∑
i=0

(−t)n

n!
e−x = e−t−x

(33)

3.4. Example 4

Let us consider an other system of non linear partial differential equations:

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
− 2u(x, t)

∂u(x, t)

∂x
+ v(x, t)u(x, t) = 0

∂v(x, t)

∂t
− ∂2v(x, t)

∂x2
− 2v(x, t)

∂v(x, t)

∂x
+ v(x, t)u(x, t) = 0

u(x, 0) = sinx
v(x, 0) = sinx

(34)

Operating L−1t (.) =
t∫
0

(.) ds on (34), leads to:


u(x, t) = sinx+

t∫
0

∂2u(x, s)

∂x2
ds+ 2

t∫
0

u(x, s)× ∂u(x, s)

∂x
ds−

t∫
0

∂

∂x
[v(x, s)u(x, s)] ds

v(x, t) = sinx+
t∫
0

∂2v(x, s)

∂x2
ds+ 2

t∫
0

v(x, s)× ∂v(x, s)

∂x
ds−

t∫
0

∂

∂x
[v(x, s)u(x, s)] ds

(35)

⇐⇒ 
u(x, t) = sinx+

t∫
0

∂2u(x, s)

∂x2
ds+ 2

t∫
0

M (u, v) ds−
t∫
0

P (u, v) ds

v(x, t) = sinx+
t∫
0

∂2v(x, s)

∂x2
ds+ 2

t∫
0

N (u, v) ds−
t∫
0

P (u, v) ds

(36)

Where 

M (u, v) = u(x, t)× ∂u(x, t)

∂x

N (u, v) = v(x, t)× ∂v(x, t)

∂x

P (u, v) =
∂

∂x
[v(x, t)u(x, t)]

(37)
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According to the ADM, we suppose that the solution of (34) has the following form

(u(x, t); v(x, t)) =

(
+∞∑
n=0

un(x, t);

+∞∑
n=0

vn(x, t)

)
(38)

and 

M(u, v) = An(x, t) =
1

n!

dn

dλn

[(
+∞∑
n=0

λiui

)(
+∞∑
n=0

λiui

)′
x

]
λ=0

; n = 0, 1, 2, ...

M(u, v) = Bn(x, t) =
1

n!

dn

dλn

[(
+∞∑
n=0

λivi

)(
+∞∑
n=0

λivi

)′
x

]
λ=0

; n = 0, 1, 2, .....

P (u, v) = Cn(x, t) =
1

n!

dn

dλn

[(
+∞∑
n=0

λiui
+∞∑
n=0

λivi

)′

x

]
λ=0

; n = 0, 1, 2, ...

(39)

We obtain 

+∞∑
n=0

un(x, t) = sinx+
t∫
0

∂2
(

+∞∑
n=0

un(x, s)

)
∂x2

ds+ 2
t∫
0

An(x, s)ds−
t∫
0

Cn(x, s)ds

+∞∑
n=0

vn(x, t) = sinx+
t∫
0

∂2
(

+∞∑
n=0

vn(x, s)

)
∂x2

ds+ 2
t∫
0

Bn(x, s)ds−
t∫
0

Cn(x, s)ds

(40)

and the Adomian algorithm can be written as:

u0(x, t) = sinx

un+1(x, t) =
t∫
0

∂2un(x, s)

∂x2
ds+ 2

t∫
0

An(x, s)ds−
t∫
0

Cn(x, s)ds, n ≥ 0

v0(x, t) = sinx

vn+1(x, t)
t∫
0

∂2vn(x, s)

∂x2
ds+ 2

t∫
0

Bn(x, s)ds−
t∫
0

Cn(x, s)ds, n ≥ 0

(41)

(39) and (41) result to: 

A0(x, t) = u0(x, t)× ∂u0(x, t)

∂x
= (sinx)

∂

∂x
(sinx) = cosx sinx

B0(x, t) = v0(x, t)× ∂v0(x, t)

∂x
= (sinx)× ∂

∂x
(sinx) = cosx sinx

C0(x, t) =
∂

∂x
(v0(x, t)u0(x, t)) =

∂

∂x

(
sin2 x

)
= 2 cosx sinx.

u1(x, t) = −t sinx
v1(x, t) = −t sinx

(42)

If n = 1, we obtain: 

A1(x, t) = u0u1x + u1u0x
B1(x, t) = v0v1x + v1v0x
C1(x, t) = u1xv0 + u0xv1 + u1v0x + u0v1x

u2 =
t2

2!
sinx

v2 =
t2

2!
sinx

(43)

Similarly, the pairs can be expressed as: 
u3(x, t) = − t

3

3!
sinx

v3(x, t) = − t
3

3!
sinx

(44)
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
u4(x, t) =

t4

4!
sinx

v4(x, t) =
t4

4!
sinx

(45)

and 
un(x, t) =

1

n!
(−t)n sinx

vn(x, t) =
1

n!
(−t)n sinx

∀ n ∈ N. (46)

Combining the results obtained above, we obtain:
u(x, t) =

(
1 + (−t) +

(−t)2

2!
+

(−t)3

3!
+ ...+

1

n!
(−t)n + ..

)
sinx

v(x, t) =

(
1 + (−t) +

(−t)2

2!
+

(−t)3

3!
+ ...+

1

n!
(−t)n + ..

)
sinx

(47)

The solution of the problem (34) is  u(x, t) = e−t sinx

v(x, t) = e−t sinx
(48)

3.5. Example 5

Finally, consider the system nonlinear coupled partial differential equations [10]

∂u(x, y, t)

∂t
− ∂v(x, y, t)

∂x

∂w(x, y, t)

∂y
= 1

∂v(x, y, t)

∂t
− ∂w(x, y, t)

∂x

∂u(x, y, t)

∂y
= 5

∂w(x, y, t)

∂t
− ∂u(x, y, t)

∂x

∂v(x, y, t)

∂y
= 5

(49)

Where the initial conditions are 
u(x, y, t) = x+ 2y

v(x, y, t) = x− 2y

w(x, y, t) = −x+ 2y

(50)

with 

N1(u,w) =
∂v(x, y, t)

∂x

∂w(x, y, t)

∂y

N2(u,w) =
∂w(x, y, t)

∂x

∂u(x, y, t)

∂y

N3(u, v) =
∂u(x, y, t)

∂x

∂v(x, y, t)

∂y

(51)
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Integrating the system with respect to t, gives:

u(x, y, t) = x+ 2y + t+
t∫
0

N1(u,w)ds

v(x, y, t) = x− 2y + 5t+
t∫
0

N2(u,w)ds

w(x, y, t) = −x+ 2y + 5t+
t∫
0

N3(u,w)ds

(52)

Let’s pose 

u(x, y, t) =
∞∑
n=0

un(x, y, t)

v(x, y, t) =
∞∑
n=0

vn(x, y, t)

w(x, y, t) =
∞∑
n=0

wn(x, y, t)

et



N1(u,w) =
∞∑
n=0

An(x, y, t)

N2(u,w) =
∞∑
n=0

Bn(x, y, t)

N3(u, v) =
∞∑
n=0

Cn(x, y, t)

(53)

We have the following Adomian algorithm:


u0(x, y, t) = x+ 2y + 3t

u1(x, y, t) = −2t+
t∫
0

A0(x, y, t)ds

un(x, y, t) =
t∫
0

An−1(x, y, s)ds,∀n ≥ 2


v0(x, y, t) = x− 2y + 3t

v1(x, y, t) = 2t+
t∫
0

B0(x, y, s)ds

vn(x, y, t) =
t∫
0

Bn−1(x, y, t)ds,∀n ≥ 2


w0(x, y, t) = −x+ 2y + 3t

w1(x, y, t) = 2t+
t∫
0

C0(x, y, t)ds

wn(x, y, t) =
t∫
0

Cn−1(x, y, t)ds,∀n ≥ 2

(54)

Which gives us 

 u0(x, y, t) = x+ 2y + 3t
u1(x, y, t) = −2t+ 2t = 0
un(x, y, t) = 0,∀n ≥ 2 v0(x, y, t) = x− 2y + 3t
v1(x, y, t) = 2t− 2t = 0
vn(x, y, t) = 0,∀n ≥ 2 w0(x, y, t) = −x+ 2y + 3t
w1(x, y, t) = 2t− 2t
wn(x, y, t) = 0,∀n ≥ 2

(55)
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Therefore, the solutions of this system of non linear coupled partial differential equations are
u(x, y, t) = u0(x, y, t) = x+ 2y + 3t

v(x, y, t) = v0(x, y, t) = x− 2y + 3t

w(x, y, t) = w0(x, y, t) = −x+ 2y + 3t

(56)

4. Conclusion
The findings of this article which focused on the exact

solution of two systems of linear partial differential equations,
two systems of nonlinear partial differential equations and
a system of coupled nonlinear partial differential equations,
show that calculus of Adomian algorithm is fast and it results
in exact analytical solutions.

Determining the exact solutions for all these systems proves
the efficiency of the method. However,further research should
investigate other systems of linear and non linear partial
differential equations in order to better identify the problems
posed by the implementation of this method.

References

[1] K. Abbaoui, Les fondements de la méthode
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