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Abstract: In this paper, the piecewise parabolic method is presented for solving the one-dimensional advection-diffusion 

type equation and its application to the burger equation. First, the given solution domain is discretized by using a uniform 

Discretization grid point. Next by applying the integration in terms of spatial variable, we discretized the given advection-

diffusion type equation and converting it into the system of first-order ordinary differential equation in terms of temporarily 

variable. Next, by using Taylor series expansion we discretized the obtained system of ordinary differential equation and obtain 

the central finite difference equation. Then using this difference equation, the given advection-diffusion type equation is solved 

by using the parabolic method at each specified grid point. To validate the applicability of the proposed method, four model 

examples are considered and solved at each specific grid point on its solution domain. The stability and convergent analysis of 

the present method is worked by supported the theoretical and mathematical statements and the accuracy of the solution is 

obtained. The accuracy of the present method has been shown in the sense of root mean square error norm L2 and maximum 

absolute error norm L∞ and the local behavior of the solution is captured exactly. Numerical, exact solutions and behavior of 

maximum absolute error between them have been presented in terms of graphs and the corresponding root means square error 

norm L2 and maximum absolute error norm L∞ presented in tables. The present method approximates the exact solution very 

well and it is quite efficient and practically well suited for solving advection-diffusion type equation. The numerical result 

presented in tables and graphs indicates that the approximate solution is in good agreement with the exact solution. Hence the 

proposed method is accruable to solve the advection-diffusion type equation. 

Keywords: Advection-diffusion Type Equation, Burger Equation, Piece-wise Parabolic Method, Taylor Series Expansion, 

Stability, Convergent Analysis, Root Mean Square and Maximum Absolute Error Norm 

 

1. Introduction 

The nonlinear advection-diffusion type equation is one of 

the popular and important models describing many 

phenomena derived from various areas of mathematical 

physics and engineering fields [1]. The nonlinear model 

arises in gas dynamics, water waves, electrodynamics, 

chemical reactions, transport of pollutants flood, and 

ecological systems [10]. This equation is also found in the 

form of hydrodynamics, shock waves, heat conduction [1], 

and it is called quasi-linear parabolic partial differential [2, 4, 

6]. The nonlinear homogenous quasi-linear parabolic partial 

differential is encountered in the theory of shock waves, 

mathematical modeling of turbulent fluid, and in continuous 

stochastic processes [2, 6]. Such a type of equation was 

firstly introduced by Bateman [4] in 1915 and he proposed 

the steady-state solution of the problem [2]. In 1948, Burgers 

[2, 5, 7] introduced this equation to capture some features of 

turbulent fluid in a channel caused by the interaction of the 

opposite effects of convection and diffusion [2, 21]. These 

types of the equation represent the Burgers equation, the heat 

conduction equation, the nonlinear Schrödinger equation, the 

Navier–Stokes equation [1]. Burgers’ equation arises in many 

physical problems including one-dimensional turbulence, 

sound waves in a viscous medium, shock waves in a viscous 

medium, waves in fluid-filled viscous elastic tubes, and 
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magnetohydrodynamic waves in a medium with finite 

electrical conductivity [3, 6] 

Nonlinear phenomena play a crucial role in applied 

mathematics and physics [17]. The importance of obtaining 

the exact or approximate solutions of PDEs in physics and 

mathematics is still a hot topic as regards seeking new 

methods for obtaining new exact or approximate solutions [3, 

8, 13, 15, 17]. For that purpose, different methods have been 

put forward for seeking various exact solutions of 

multifarious physical models described using nonlinear PDEs 

[17]. A well-known model was first introduced by Bateman 

[4], who found its steady solutions, descriptive of certain 

viscous flows. It was later proposed by Burgers [14] as one 

of a class of equations describing mathematical models of 

turbulence [17]. Khater et al. [12] proposed the Chebyshev 

spectral collocation method for solving the coupled Burgers’ 

equations [31]. With pseudo-spectral methods care must be 

taken with the round-off error issue when higher derivatives 

or a large several points N is involved [12]. In their work 

Gowrisankar, S. and Natesan, S. [16], present the numerical 

solution of singularly perturbed initial-boundary Burgers’ 

equation by using an efficient robust numerical method. They 

provide an e-uniformly convergent numerical method for the 

singularly perturbed Burger [16]. They obtain uniform 

convergence concerning the perturbation parameter ε . Even 

though the method is capable of approximating Burger’s 

equation, they failed to solve a relatively small perturbation 

parameter. Amit et al. [11] Present solution of burger 

equation using seventh order convergent weakly L-stable 

Newton Cotes formula and application of Burger’s equation. 

They used Hermit's interpolation polynomial approximation 

(oscillatory interpolation) and explicit backward Taylor’s 

polynomial approximation. Both Hermits interpolation and 

Taylor series method is computationally time-consuming for 

a large number of the grid point. So the solution is containing 

high contaminated round-off error and truncation error. 

Soyoon et al. [1] presented a solution of the nonlinear 

advection-diffusion equation by a backward semi-Lagrangian 

method. The method is computationally difficult when the 

number for a large number of the grid point. Sachin [10] 

presents the numerical solution of the burger equation by 

using the -Nicolson type method. This method is of 

computational cost because it requires a large number of grid 

points to give an accurate solution for the Burger equation 

[30]. Reza Abazaria and Borhanifar [17] presented the 

solution of Burgers and coupled Burgers’ equation by using 

the differential transform method (DTM). DTM is a semi-

numerical–analytic technique that formalizes the Taylor 

series differently. The Taylor series method is 

computationally time-consuming for large orders and high 

contaminated round-off error and truncation error. 

However, still, the accuracy of the method needs attention; 

because the treatment of the method used to solve the 

nonlinear advection-diffusion type equation is not trivial 

distribution. Even though the accuracy of the aforementioned 

methods needs attention, they require large memory and long 

computational time. So the treatments of this method present 

severe difficulties that have to be addressed to ensure the 

accuracy of the solution. To this end, this paper aims to 

develop a parabolic method that is capable of solving one-

dimensional advection-diffusion and approximate the exact 

solution. The convergence has been shown in the sense of 

L∞  norm and ��	 norm so that the local behavior of the 

solution is captured exactly. The stability and convergence of 

the present method are also investigated by using Von 

Neumann stability analysis techniques. 

Statement of the problem 

Consider that the following nonlinear advection-diffusion 

type equation considered in [1] given by: 

��� + ��� = 	��� 	
�, 
� ∈ 
�, �� × 
0, ��         (1) 

with initial and boundary condition respectively 

�
�, 0� = �
��, � ≤ � ≤ �,                         (2) 

�
�, 
� = ��

�, �
�, 
� = ��

�, 0 ≤ 
 ≤ �       (3) 

where ν	 > 	0 is the coefficient of kinematic viscosity and f
x�, g�
t� ) and g�
t�	 assumed to be sufficiently smooth 

functions for the existence and the uniqueness of the solution 

[18, 19]. The solution u may represent a temperature for heat 

transfer or a species concentration for mass transfer at 

position x and time t with the advection velocity u [1]. The 

local subdomain corresponding to each node can firstly be 

determined based on the Euclidean distance between the nodes [9].  

Now we define a mesh size h and k and the constant grid 

point by drawing equidistance horizontal and vertical lines of 

distance ‘h’  and ‘k’  respectively in ‘ x ’ and ‘t ’ direction. 

These lines are called gridlines and the point at which they 

interacting is known as the mesh point. The mesh point that 

lies at end of the domain is called the boundary point. The 

points that lie inside the region are called interiors points. 

The goal is to approximate the solution ‘u!	"’ at the interior 

mesh points. Hence we discretized the solution domain as: 

� = �# < �� < �� < ⋯ < �& = � 

0 = 
# < 
� < 
� < ⋯ < 
' = �                  (4) 

Where �()� = �( + *ℎ	 and 
,)� = 
, + -. , * =
0
1�0, - = 0
1�1. 0 and 1 are the maximum numbers of 

grid points respectively in the x and t direction. Then the 

present paper is organized as follows. Section two is a 

description of numerical methods, section three is Stability 

and convergence analysis, section four is Numerical results. 

Section five is Discussion; section six is the conclusion. 

2. Description of Numerical Methods 

In this paper, the parabolic method is developed to solve 

the nonlinear parabolic partial differential equation given in 

Eq. (1). These nonlinear parabolic partial differential 

equations such as nonlinear advection-diffusion type 

equation have first-order derivatives in time and first & 

second order in space. 

Parabolic Methods 
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PPM is a third-order Godunov-type method [20]. This 

method has several remarkable features that distinguish it 

from other Godunov-type schemes [18]. The scheme is 

conservative, dimensionally UN split, and suitable for a 

general equation of state [18, 20]. Temporal evolution is 

second-order accurate and employs characteristic projection 

operators; spatial interpolation is piece-wise parabolic 

making the scheme third-order accurate in smooth regions of 

the flow away from discontinuities [19]. Second, the 

representation of the nonlinear wave interactions used to 

calculate fluxes is greatly simplified, making the algorithm 

simpler and more robust [18, 19]. The features make, PPM 

highly suitable for multi-fluid problems with complex 

structures such as shock waves and contact discontinuities 

[18]. Numerical tests prove that it outperforms other schemes 

[18, 19, 22, 28]. 

Spatial Discretization 

To discretized the derivative of governing equation, we use 

the algorism of piecewise parabolic methods. To do this 

consider governing equation in Eq.(1) and rewriting it in the 

form of: 

�� + 23
��4� = 	���                       (5) 

where 3
�� = 56
� . Let us consider that the bisection of the 

grid point in the duration of the spatial variable	�#	 < �� <�� < ⋯ < �(7�/� < �( < �()�/� < ⋯ < �&. Now integrating 

Eq.(5) in interval 
�(796, �()96� we have: 

: ��;� − : ���;� = −: 23
��4�;�
�=>96
�=?96

�=>96
�=?96

�=>96
�=?96

 

@ ��;� − 	2��4�=?96
�=>96 = −23
��4�=?96

�=>96�=>96�=?96
                                                                  (6) 

Now from Eq. (6), we can assume that 

: ��;�
�=>96
�=?96

≈ ;�
�( , 
�;
  

	2��4�=?96
�=>96 ≈ −	 B�� C�()��, 
D − �� C�(7��, 
DE = − 	

ℎ� F�G�()�, 
H − 2�G�( , 
H + �
�(7�
�J 

−23
��4�=?96
�=>96 ≈ �

K B3 C�(79
6, 
D − 3 C�()9

6, 
DE                                                     (7) 

Now By substituting Eq.(7) into Eq.(6) we obtain the system of the nonlinear ordinary differential equation given in the 

form: 

L5
�= ,��
L� = M

K6 F�G�()�, 
H − 2�G�( , 
H + �
�(7�
�J + �
K B3 C�(796, 
D − 3 C�()9

6, 
DE                          (8) 

subjected to initial and boundary condition: 

�G�( , 0H = �G�(H, � ≤ �( ≤ �, 

�
�, 
� = ��

�, �
�, 
� = ��

�, 0 ≤ 
 ≤ �                                                               (9) 

Temporal Discretization 

Assuming that �
�, 
� has continuous higher order partial derivative on the region 20, �4�20, �4. For the sake of simplicity, 

we use	�G�( , 
,H = �(, and 
LO5
L�O = ;�P�(	, for Q ≥ 1 is Q�K order derivatives. By using Taylor series expansion, we have 

	�(	,)� = �(	, + .;��(	, + S6
�! ;���(	, + SU

V! ;�	V�(	, +…. 

	�(	,7� = �(	, − .;��(	, + S6
�! ;���(	, − SU

V! ;�	V�(	, +⋯                                                   (10) 

Subtract the second equation from the first equation we obtain the central difference equation of the first-order derivative of 

the function concerning temporal variable at the point	G�( , 
,H: 
;��(	, = 5=	W>975=	W?9

�S + X�                                                           (11) 
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Where X� = − S6
Y ;�V�(	, is a local truncation error term. Now truncating the local truncation error and substituting Eq. (11) 

into Eq. (10) we obtain the full Discretization of governing partial differential equation with corresponding initial and 

boundary condition given in the form of 

�(	,)� − �(	,7�2. = 	
ℎ� F�G�()�, 
,H − 2�G�( , 
,H + �
�(7�
,�J + 1

ℎ B3 C�(7��, 
,D − 3 C�()��, 
,DE 
�(	,)� = �(	,7� + ZF�()�,, − 2�(,, + �(7�,,J + [ B3(79

6,, − 3()96,,E                                       (12) 

subjected to initial and boundary condition: 

�G�( , 0H = �G�(H, � ≤ �( ≤ �, 

�
�, 
,� = ��

,�, �
�, 
,� = ��

,�, 0 ≤ 
, ≤ �                                                    (13) 

where Z = 2	./ℎ� , [ = �S
K , �G�( , 
,H ≅ �(,,  and 

3 C�(796, 
,D ≅ 3(79
6,, Now using the discrete scheme in Eqs. 

(12) and (13) we obtain the accurate numerical solution of 

the advection-diffusion type equation. 

Stability and Convergent Analysis 

The Fourier analysis (Von-Neumann) stability [32] 

analysis technique is applied to investigate the stability of the 

proposed method. Such an approach has been used by many 

researchers like [23-26, 32]. Now consider that the make 

nonlinearity in the difference scheme is linear by taking	] =
max	 �(  such that3
�� ≅ `5

� . Again assume that the trial 

solution of governing equation at 
�( , 
,� is 

�
*, -� = a,bc(d                           (14) 

where e = √−1		g = hi
& , � ∈ ℝ and a  is a complex number. 

Now using 3(79
6,, ≈

`5=?96,W
�  and substituting Eq. (14) into 

Eq.(13) we obtain: 

a,)�bc(d = a,7�bc(d + ZFa,bc
()��d − 2a,bc(d +
a,bc
(7��dJ + [ ka,bc
(796�d − a,bc
()96�dl  
a = a7� + 2Z
mnog − 1� − 2[eoe-
g2� 

a� − B2Z
mnog − 1� − 2[eoe-
g2�E a − 1 = 0 

Let p = qZ
mnog − 1� − [eoe-
d��r, the above equation is 

rewritten as of the form: 

	a� − 2pa − 1 = 0                        (15) 

By using the Perfect square method the root of Eq. (15) is 

a
�� = 2p ± √1 − p�                       (16) 

Since Z = 2	./ℎ� ≪ 1  and [ = �S
K ≪ 1  for ℎ → 0 . 

Hence	|a
��| < 1. Thus this shows that the scheme is stable. 

Definition [26]: A scheme considering being consistent 

with a partial differential equation if the truncation error 

associated with this scheme is tending to zero when the time 

and spatial step size tend to zero. 

Definition [27]: The finite difference method is consistent 

in the ‖. ‖ -norm if the 	limK→#S→#z	X(	,z = 0 . Moreover, the 

method is the consistency of order 
Q, {�  if 	z		X(	,. z =|
ℎP +	.}�. 
Now our proposed numerical scheme satisfies all of the 

above conditions. It means from Eq. (9) we have: 	X� =
− S6

Y ;�V�(	,  and X� = − K6
�� ~���(	,  are the local traction error 

associated with our proposed method. 

X(	, = 
X� + X�� = −.�
6 ;�V�(	, − .	ℎ�

6 ~���(	, 

limK→#S→#
z	X(	,z = limK→#S→#

�−.�
6 ;�V�(	, − .	ℎ�

6 ~���(	,� = 0 

Therefore we conclude that for 	ℎ, . → 0 , the truncation 

error of our proposed scheme is satisfies 	lim	G	X(	,H = 0 

and	lim	z	X(	,z = 0. Thus our proposed scheme is consistent 

with the order of accuracy is 	O
ℎ� + .�� . Hence 	�	X(	,� ≤O
ℎ� + .��. 
Theorem 1: If the global error in the proposed scheme is 

bounded, then the scheme is stable. 

Proof: Since the global error is the combination of round-

off error and truncation error in the proposed scheme. Let us 

consider that �(	,  is global error and �(	,  round off error in 

the scheme. And where a round of error defined by �(	, =�(	, − ��(	, is the error between two numerical solutions. Now 

substituting this into the proposed scheme the general round 

of error is 

�(	,)� = �(	,7� + ZF�()�,, − 2�(,, + �(7�,,J + [ B�(7��,, − �()��,,E 
ZF�()�,, − 2�(,, + �(7�,,J=�(	,)� − �(	,7� − 	[ B�(796,, − �()96,,E 
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��()�	, = ��(	,)� + ��()�/�	, 

	�()�	, = �7���(	, + �7���()�/�	,                                                      (17) 

Thus the global error is 

�(	, = 	�()�	, + 	X(	, 

	�()�	,)� = �7���(	,)� + �7���()�/�	, + 	X(	,                                             (18) 

Apply the matrix norm on both sides of Eq.(18) we obtain: 

z	�()�	,)�z = z�7���(	, + �7���()�/�	, + 	X(	,z 

≤ z�7���(	,z + z�7���()�/�	,z + z	X(	,z 

≤ � � 1
‖�‖ �|�(	,|� +

1
‖�‖ ��()�/�	,� +

1
‖�	�‖ z	X(	,z� 

≤ � �	max( q �
‖�‖ ��(	#�, �

	‖�‖ ��()�/�	#�r + �
‖�	�‖ z	X(	,z� ≤ �	
ℎ� + .��. 

where � = �7���. Hence the global error is bounded so that 

the proposed scheme is stable. 

Corollary 1: Under the condition of the above theorem the 

proposed scheme is given in Eq. (12) is a well-posed scheme 

with the given initial and boundary condition. 

Proof: Let �
�( , 
,� and �(,  are the exact and numerical 

solution of PDE in Eq.(1) at grid point 
�( , 
,�. Then the 

global error at the initial condition 
�( , 
#� . Is defined by 

�(,# = �G�( , 
#H − �(#. By using the condition of the above 

theorem we have: 

z�(,#z = z�G�( , 
#H − �(#z = 0 

Hence the scheme is well-posed at 
�( , 
#� for the initial 

condition. For * ≠ 0 and	- = 1
1�1, the global error is 

z�(,,z = z�G�( , 
(H − �(,z ≤ �	
ℎ� + .�� 
Hence z�(,,z → 0 for both	ℎ, . → 0. Thus the scheme is 

well-posed. So it is convergent. 

Criteria for Investigation the Accuracy of Proposed 

In this section, we investigate the accuracy of the present 

method. To show the accuracy of the present method, the 

Root Mean Square (RMS) error [33] norm ( �� ) and 

maximum absolute error norm (��) are used to measure the 

accuracy of the proposed method. The RMS error and 

maximum absolute error are calculated as follows in the 

reference [11] given by: 

�� = �ℎ∑ G��G�( , 
,H − �(	,�H�&(��   

And the maximum absolute error is calculated by: 

�∞ = max��(�&��G�( , 
'H − �(	'� 
Where �G�( , 
,H  and �(	,  are respectively exact and 

numerical solutions of the Advection-diffusion type equation 

at the grid point	G�( , 
,H. 

3. Results and Numerical Experiments 

To test the validity of the proposed method, we have 

considered the following model problem. 

Example1: Consider the in Eq. (1) on [0, 1] considered by 

Soyoon Bak et al. in [1] with the shock initial condition 

initial and boundary conditions respectively. 

�
�, 0� = � 9�, 0 ≤ � ≤ 1/101 − �, 1/10 < � ≤ 1 , �
0, 
� = 0 = �
1, 
� 
Example 2: Consider the in Eq. (1) on [0, 1] considered by 

Amit Kumar Verma et. al. in [11] with the periodic initial 

condition initial and Dirichlet boundary conditions respectively. 

�
�, 0� = oe-�� 

�
0, 
� = 0 = �
1, 
� 
The unique exact solution of the above Burger’s equation 

is given by: 

�
�, 
� = � ∑ ��b7M�6i6� �⁄ sin	
 ���∞���
�# + ∑ ��b7M�6i6� �⁄ cos	
 ���∞���

£	

where �# = @ bC 9¤¥
¦§¨
i��7��D�
# ;�  and 

	�� = @ bq 9¤¥
¦§¨
i��7��¦§¨	
©πª�r�
# ;� 

Example3: Consider the in Eq. (1) on [0, 1] considered by 

Amit Kumar Verma et al. in [11] 

The unique exact solution of the above Burger’s equation 

is given by: 

�
�, 
� = �	 B «G?¥6¤6¬ ­⁄ H ¨®"
i��)�«G?¥6¤6¬H ¨®"
�i��
�)«G?¥6¤6¬ ­⁄ H ¦§¨
i��)�«G?¥6¤6¬H ¦§¨
�i��E  

Example 4: Consider the in Eq. (1) on [0, 1] considered by 

Amit Kumar Verma et al. in [11] with initial condition initial 

and Dirichlet boundary conditions respectively. 
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�
�, 0� = 4�
1 − �� 
�
0, 
� = 0 = �
1, 
� 

The unique exact solution of the above Burger’s equation 

is given by: 

�
�, 
� = �	 B ∑ °±«?¥±6¤6¬ 6⁄ ¨®"	
�i��∞±²9
°³)∑ °±«?¥±6¤6¬ 6⁄ ¦§¨	
�i��∞±²9

E 	

where �# = @ b´6µ
6

U¥ 
V7���¶�
# ;�  and 

	�� = 2@ bq 9
¤¥
V7���¦§¨	
©πª�r�

# ;� 

Table 1. Root Mean Square (RMS) error norm (��) and maximum absolute error norm (��) for problem give in example one with computations carried out 

until final time T=0.1 with different mesh size and v=0.01. 

Mesh size By present method 

h k ·� ·¸ 

0.1 0.01 3.3321E-04 1.0537E-04 

0.0125 0.01 6.2625E-06 7.0016E-07 

0.001 0.0125 8.3026E-06 2.6255E-07 

 

Figure 1. a) Profile of approximate solution for Example 1 with h=0.1, k=0.01 and v=0.01; b) Profile of exact solution for Example 1 with h=0.1, 
k=0.01 and v=0.01. 

 
Figure 2. Plotting for showing the behavior of solution for h=0.1, k=0.01, and v=0.01. 
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Figure 3. log-log plotting for showing the behavior of error in solution for h=k=0.01 and v=0.01. 

Table 2. Comparison of Root Mean Square (RMS) error norm (��) and maximum absolute error norm (��) for problem give in example two with v=2. 

With computations carried out until final time T=0.001 

Mesh size By Amit K. V. et al. in [11] By present Method 

h k �� �� �� �� 

0.0125 0.0001 2.71275E-4 6.41526E-05 6.4299E-07 7.1889E-08 

0.01 0.0001   6.3611E-05 6.3611E-06 

0.008 0.0001   4.6723E-03 4.1790E-04 

With computations carried out until final time T=0.01 

h k �� �� �� �� 

0.0125 0.0001 2.413E-04 5.82562E-05 4.5497E-06 1.4387E-07 

0.05 0.001   1.2520E-05 2.7995E-06 

0.04 0.001   1.4122E-04 2.8243E-05 

With computations carried out until final time T=0.1 

h k �� �� �� �� 

0.0125 0.0001 9.54852E-05 2.27535E-05 7.6714E-07 2.4259E-07 

0.04 0.0001   1.3057E-07 2.6114E-08 

0.05 0.0001   2.0261E-07 4.5305E-08 

 

Figure 4. a) Profile graph of approximate solution for Example 2 with h=0.1, k=0.0001, and v=2; b) Profile graph of the exact solution for Example 2 with 

h=0.1, k=0.0001, and v=2. 
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Figure 5. Plotting graph of Example 2 for showing the behavior of solution for h=0.1, k=0.0001, and v=2. 

 

Figure 6. Semilogx plotting for showing the behavior of error in solution for h=0.1, k=0.0001, and v=2. 

Table 3. Comparison of Root Mean Square (RMS) error norm (��) and maximum absolute error norm (��) for problem give in example three with v=0.002. 

Mesh size By SS Xie et al [29] By Amit et al. in[11] By present method 

With computations carried out until final time T=1.7 

h k �� �� �� �� �� �� 

0.0005 0.01 2.9704E-02 3.5936E-03 5.02E-04 1.67E-05 5.264E-06 1.177E-06 

0.1 0.0001     2.474E-05 7.824E-06 

With computations carried out until final time T=3 

0.0005 0.01 1.90097E-02 2.635E-03 2.1289E-4 8.14E-05 5.933E-05 1.326E-05 

0.1 0.0001     3.062E-05 9.685E-06 

With computations carried out until final time T=3.5 

0.0005 0.01 1.67887E-02 2.417E-03 1.687E-04 6.69E-5 7.186E-05 1.607E-05 

0.01 0.001     1.9176E-05 6.064E-06 
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Figure 7. a) Profile graph of approximate solution for Example 3 with h=0.05, k=0.01, and v=0.002; b) Profile graph of Exact solution for Example 3 with 

h=0.05, k=0.01, and v=0.002. 

 

Figure 8. Plotting graph of Example 3 for showing the behavior of solution with h=0.05, k=0.01, and v=0.002. 

 
Figure 9. Semi log plotting for showing the behavior of error in solution for h=0.05, k=0.01, and v=0.002. 
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Table 4. Comparison of Root Mean Square (RMS) error norm (��) and maximum absolute error norm (��) for problem give in example four with v=2. 

Mesh-size By Amit et al. in[11] By present method 

h k ·� ·¸ ·� ·¸ 

With computations carried out until final time T=0.001 

0.0125 0.0001 2.64275E-04 6.55334E-05 5.5124E-07 6.1630E-08 

0.02 0.0001   2.7535E-09 3.8941E-10 

With computations carried out until final time T=0.01 

0.0125 0.0001 2.35909E-04 6.07706E-05 1.8785E-07 2.6050E-08 

0.05 0.0001   2.6863E-07 4.9883E-08 

With computations carried out until final time T=0.1 

0.0125 0.0001 9.85169E-05 2.46429E-05 9.3345E-08 1.3201E-08 

0.04 0.0001   4.0702E-07 8.1404E-08 

 

Figure 10. a)  Profile graph of approximate solution for Example 4 with h=0.01, k=0.01, and v=2; b) Profile graph of exact solution for Example 4 with 

h=0.01, k=0.01 and v=2. 

 

Figure 11. Plotting graph of Example 4 for showing the behavior of solution with h=0.1, k=0.01, and v=2. 
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Figure 12. Semilogx plotting for showing the behavior of error in solution for Example 4 with h=0.1, k=0.01, and v=2. 

4. Discussion 

In this paper, the piece-wise parabolic method is presented 

for solving the one-dimensional advection-diffusion type 

equation and application to the burger equation. To 

demonstrate the competence of the method, four model 

examples are solved by taking different values for step size h, 

and time step k. Numerical results obtained by the present 

method have been associated with numerical results obtained 

by the method in [1, 11, 29] and the results are summarized 

in Tables and graphs. Moreover, in the present numerical 

computation, the result presented in Table 1-4 show that the 

root mean square error norm (�� ) and maximum absolute 

error norm (�� ) decrease rapidly as the number of mesh 

points M increases in a spatial variable with fixed N in the 

temporal direction. In this case, the accuracy of the present 

method decrees. Further, as shows in Figures 1a-1b, 2, 4a-4b, 

5, 7a-7b, 8, 10a-10b, and 11 the proposed method 

approximates the exact solution very well for different values 

of step length ℎ  and time step . . To further verify the 

applicability of the planned method, graphs were plotted 

aimed at Examples 1, 2, 3, and 4 for exact solutions versus 

the numerical solutions obtained by the present method 

showed by figures 2, 5, 8, and 11 respectively indicate good 

agreement of the results, and proves the reliability of the 

present method. Also, Figures 3, 6, 9, and 12 respectively 

specify the behavior of absolute error obtained by the present 

method within the effects of mesh sizes on the solution 

domain. Hence, the numerical results presented in this paper 

validate the improvement of the proposed method over some 

of the existing methods described in the literature. Both the 

theoretical and numerical error bounds have been established. 

The results in the Tables are further confirmed that the 

computational rate of convergence and theoretical estimates 

are in agreement. 

Comparison among Table 2-Table 4 and the graphs of the 

numerical and exact solution of one-dimensional advection-

diffusion type equation shows that the present method 

generates a more accurate result and it is superior to the 

method developed in [1, 11, 29] and It is approximate the 

exact solution very well. 

5. Conclusion 

A new approach, the piece-wise parabolic method is using 

to solve the one-dimensional advection-diffusion type 

equation, and application to burger equation numerically is 

presented in this study. The comparison of the results 

obtained by the present method with other methods reveals 

that the present method is more convenient, reliable, and 

effective. An error analysis based on the Fourier series is also 

developed in this study. As it can be seen that, the accuracy 

improves when 0	small grid number in spatial direction with 

fixed 1 in the temporal direction. In a summary, the piece-

wise parabolic method is a reliable method that is capable to 

solve the one-dimensional advection-diffusion type equation 

and burger equation. Based on the findings, this method is 
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well approximate and gives better accuracy of the numerical 

solution with a fixed time step, ., and large step size	ℎ. 
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